
CS 450: Numerical Anlaysis1

Introduction to Scientific Computing

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).

http://heath.cs.illinois.edu/scicomp/notes/index.html

Scientific Computing Applications

▶ Mathematical modelling for computational science Typical scientific
computing problems are numerical solutions to PDEs
▶ Newtonian dynamics: simulating particle systems in time
▶ Models for fluids, air flow, plasmas, etc., for engineering
▶ PDE-constrained numerical optimization: finding optimal configurations (used in

engineering of control systems)
▶ Computational chemistry (electronic structure calculations): many-electron

Schrödinger equation

▶ Numerical algorithms: linear algebra and optimization
▶ Linear algebra and numerical optimization are building blocks for machine

learning and data science
▶ Computer architecture, compilers, and parallel computing use numerical

algorithms (matrix multiplication, Gaussian elimination) as benchmarks

Course Structure
▶ Complex numerical problems are generally reduced to simpler problems

▶ Discretization corresponds to representing a continuous function/model by a
discrete set of points

▶ Nonlinear problems are mapped to linear problems
▶ Complicated functions are mapped to polynomials
▶ Differential equations are mapped to algebraic equations

▶ The course topics will follow this hierarchical structure
▶ Error, conditioning, and floating point are the starting point for representation

and evaluation of algorithms for any numerical problem
▶ Linear systems provide the simplest and most important building block for

solving linear algebra problems
▶ Least squares and eigenvalue problems provide basic technology for matrices
▶ Nonlinear equations and optimization make use of matrix algebra to solve more

general modelling problems
▶ Numerical interpolation, differentiation, and quadrature provide the building

blocks to reduce numerical PDE problems to matrix algebra

Numerical Analysis
▶ Numerical Problems involving Continuous Phenomena:

Given input x ∈ Rn, approximate output y = f(x)
▶ Problem is well-posed if a unique solution exists and changes continuously with

the initial conditions, i.e., f is a continuous function, f(x̂) → f(x) as x̂ → x.
▶ Otherwise, problem is ill-posed

▶ Error Analysis:
Quality of approximation is quantified by distance to the solution
▶ If solution y = f(x) is a scalar, distance from computed solution ŷ to correct

answer is the absolute error
∆y = ŷ − y,

while the normalized distance is the relative error

∆y/y =
ŷ − y

|y|
▶ More generally, we are interested in the error

∆y = ŷ − y

the magnitude of which is measured by a given vector norm

Sources of Error
▶ Representation of Numbers:

▶ We cannot represent arbitrary real numbers in a finite amount of space, e.g. a
computer cannot exactly represent π

▶ Moreover, hardware architectures are only well-fit to work with fixed-length
(32-bit or 64-bit) representations

▶ As we will see, the best we can do is represent a wide range of numbers with a
relatively uniform precision, which corresponds to scientific notation

▶ With scientific notation, we seek to store the most significant digits of each
number, so that the magnitude of the relative error in the floating point
representation fl(x) for most real numbers x will be |fl(x)− x|/|x| ≤ ϵ

▶ Propagated Data Error: error due approximations in the input, f(x̂)− f(x)

▶ Computational Error = f̂(x)− f(x) = Truncation Error + Rounding Error
▶ Truncation error is the error made due to approximations made by the

algorithm (simplified models used in our approximation)
▶ Rounding error is the error made due to inexact representation of quantities

computed by the algorithm

Demo: Floating Point vs Program Logic

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/01-error-and-fp/Floating Point vs Program Logic.html

Error Analysis
▶ Forward Error:

Forward error is the computational error of an algorithm
▶ Absolute: f̂(x)− f(x)
▶ Relative: (f̂(x)− f(x))/|f(x)|
▶ Usually, we care about the magnitude of the final error, but carrying through

signs is important when analyzing error
▶ Backward Error:

It can be hard to tell what a ‘good’ forward error is, but backward error
analysis enables us to measure computational error with respect to data
propagation error
▶ An algorithm is backward stable if its a solution to a nearby problem
▶ If the computed solution f̂(x) = f(x̂) then

backward error = x̂− x

▶ More precisely, we want the nearest x̂ to x with f̂(x) = f(x̂)

▶ If the backward error is smaller than the propagated data error, the solution
computed by the algorithm is as good as possible

Visualization of Forward and Backward Error

Conditioning
▶ Absolute Condition Number:

The absolute condition number is a property of the problem, which measures
its sensitivity to perturbations in input

κabs(f) = lim
size of input perturbation→0

max
inputs

max
perturbations in input

∣∣∣∣perturbation in output
perturbation in input

∣∣∣∣
For problem f at input x it is simply the derivative of f at x,

κabs(f) = lim
∆x→0

∣∣∣∣f(x+∆x)− f(x)

∆x

∣∣∣∣ = ∣∣∣∣ dfdx(x)
∣∣∣∣

When considering a space of inputs X it is κabs = maxx∈X

∣∣∣ dfdx(x)∣∣∣
▶ (Relative) Condition Number:

The relative condition number considers relative perturbations in input and
output, so that

κ(f) = κrel(f) = max
x∈X

lim
∆x→0

∣∣∣∣(f(x+∆x)− f(x))/f(x)

∆x/x

∣∣∣∣ = κabs(f)|x|
|f(x)|

Demo: Conditioning of Evaluating tan

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/01-error-and-fp/Conditioning of Evaluating tan.html

Posedness and Conditioning

▶ What is the condition number of an ill-posed problem?

▶ If the condition number is bounded and the solution is unique, we know the
problem is well-posed (solution changes continously)

▶ In fact, an alternative definition of an ill-posed problem is that f has a condition
number of κabs(f) = ∞ (meaning f is not differentiable for some input)

▶ This condition implies that the solutions to a well-posed problem f are
continuous and differentiable in the given space of possible inputs to f

▶ Geometrically, the condition number can be thought of as the reciprocal of the
distance (in an appropriate geometric embedding of problem configurations)
from f to the nearest ill-posed problem

Stability and Accuracy
▶ Accuracy:

An algorithm is accurate if f̂(x) = f(x) for all inputs x when f̂(x) is computed
in infinite precision
▶ In other words, the truncation error is zero (rounding error is ignored)
▶ More generally, an algorithm is accurate if its truncation error is negligible in

the desired context
▶ Yet more generally, the accuracy of an algorithm is expressed in terms of

bounds on the magnitude of its truncation error

▶ Stability:
An algorithm is stable if its output in finite precision (floating point
arithmetic) is always near its output in exact precision
▶ Stability measures the sensitivity of an algorithm to roundoff and truncation

error
▶ In some cases, such as the approximation of a derivative using a finite

difference formula, there is a trade-off between stability and accuracy

Error and Conditioning
▶ Two major sources of error: roundoff and truncation error.

▶ roundoff error concerns floating point error due to finite precision
▶ truncation error concerns error incurred due to algorithmic approximation, e.g.

the representation of a function by a finite Taylor series

f(x+ h) ≈ g(h) =

k∑
i=0

f (i)(x)

i!
hi

The absolute truncation error of this approximation is

f(x+ h)− g(h) =

∞∑
i=k+1

f (i)(x)

i!
hi = O(hk+1) as h → 0

▶ To study the propagation of roundoff error in arithmetic we can use the
notion of conditioning. The condition number tells use the worst-case
amplification of output error with respect to input error

κ(f) = max
x∈X

lim
∆x→0

∣∣∣∣(f(x+∆x)− f(x))/f(x)

∆x/x

∣∣∣∣ = |f ′(x)x|
|f(x)|

Demo: Truncation vs Rounding

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/01-error-and-fp/Truncation vs Rounding.html

Floating Point Numbers
▶ Scientific Notation

Floating-point numbers are a computational realization of scientific notation,

4.12165× 106, 2.145× 10−3

▶ Scientific-notation provides a unique representation of any real number for a
given amount of ‘precision’ (number of significant digits)

▶ Normalized floating-point numbers are just a binary form of scientific notation,

1.01001× 25, 1.0110× 2−3

▶ Significand (Mantissa) and Exponent Given x with s leading bits x0, . . . , xs−1

fl(x) =

s−1∑
i=0

xi2
k−i = x0.x1 . . . xs−1︸ ︷︷ ︸

significand/mantissa

×2

k︸︷︷︸
exponent

A floating point number’s binary representation has s− 1 significand bits
(excluding x0 = 1), some bits to represent the exponent, and a sign bit

Demo: Picking apart a floating point number
Demo: Density of Floating Point Numbers

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/01-error-and-fp/Picking apart a floating point number.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/01-error-and-fp/Density of Floating Point Numbers.html

Rounding Error

▶ Maximum Relative Representation Error (Machine Epsilon)
▶ If we have s significant digits in scientific notation, our error is bounded to

variations of 1 in least significant digit, whose magnitude relative to the number
we are trying to represent is 101−s in decimal and 21−s in binary

▶ Formally, with s significant binary digits the relative representation error of
positive real number x is (with k = ⌊log2(|x|)⌋ and each xi ∈ {0, 1})

x =

∞∑
i=0

xi2
k−i = xrem +

s−1∑
i=0

xi2
k−i, where |xrem/x| ≤ 21−s

▶ The maximum such error, 21−s, is called machine epsilon,

ϵ = argmin
ϵ>0

(fl(1 + ϵ) = 1 + ϵ)

Demo: Floating point and the Harmonic Series
Demo: Floating Point and the Series for the Exponential Function

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/01-error-and-fp/Floating point and the Harmonic Series.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/01-error-and-fp/Floating Point and the Series for the Exponential Function.html

Rounding Error in Operations (I)
▶ Addition and Subtraction

▶ Subtraction is just negation of a sign bit followed by addition
▶ Catastrophic cancellation occurs when the magnitude of the result is much

smaller than the magnitude of both operands
▶ Cancellation corresponds to losing significant digits, e.g.

3.1423× 105 − 3.1403× 105 = 2.0× 102

▶ Generally, we can bound the error incurred during addition of two real numbers
x, y in floating point (ignoring final rounding, which has relative error ϵ) as

|(x+ y)− (fl(x) + fl(y)|
|x+ y|

≤ ϵ(|x|+ |y|)
|x+ y|

by this we can also observe that the condition number of addition of x, y i.e.
f(x, y) = x+ y, is κ(f(x, y)) = (|x|+ |y|)/|x+ y|

▶ Consequently, when x+ y = 0 and x, y ̸= 0, κ(f(x, y)) = ∞. In general if x+ y is
near 0 addition is ill-conditioned.

Demo: Catastrophic Cancellation

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/01-error-and-fp/Catastrophic Cancellation.html

Rounding Error in Operations (II)
▶ Multiplication and Division

▶ Multiplication is a lot safer than addition in floating point
▶ To analyze its error, we use a 2-term Taylor series approximation typical in

relative error analysis

f(ϵ) = (1 + nϵ)k ≈ f(0) +
df

dϵ
(0)ϵ = 1 + knϵ

since ϵ is small, this linear approximation is accurate (to within O(ϵ2))
▶ Aside from final rounding, we can bound the error in multiplication as

|xy − fl(fl(x)fl(y))|
|xy|

≤ |xy − (x(1 + ϵ)y(1 + ϵ))(1 + ϵ)|
|xy|

≈ 3ϵ

▶ Consequently, multiplication f(x, y) = xy is always well-conditioned, κ(f) ≈ 3

▶ Division is multiplication by the reciprocal, and reciprocation is also
well-conditioned

Demo: Polynomial Evaluation Floating Point

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/01-error-and-fp/Polynomial Evaluation Floating Point.html

Exceptional and Subnormal Numbers
▶ Exceptional Numbers

We had mentioned that the leading bit in normalized floating point numbers is
assumed to be 1, but how do represent 0?
▶ Exceptional floating point numbers are 0,−0,∞,−∞, and NaN = 0/0 = ∞−∞

▶ Subnormal (Denormal) Number Range
▶ The range of magnitudes of normalized floating point numbers with an exponent

range [−e, e] is [2−e, 2e+1(1− ϵ/2)]

▶ For numbers of magnitude < 2−e, the relative representation error is unbounded
▶ Subnormal numbers are evenly spaced in [−2−e, 2−e] with gaps of ϵ2−e

▶ Consequently, the absolute representation error in [−2−e, 2−e] is at most ϵ2−e

▶ Gradual Underflow: Avoiding underflow in addition
The main benefit of subnormal numbers is that for any machine numbers
(floating-point numbers) x and y, fl(x− y) = 0 if and only if x = y, since the
gap between any two representable numbers is |x− y| ≥ ϵ2−e

Floating Point Number Line

	Motivation and Course Overview
	Numerical Error
	Conditioning
	Floating Point

