CS 450: Numerical Anlaysis ${ }^{1}$
 Introduction to Scientific Computing

University of Illinois at Urbana-Champaign

[^0]
Scientific Computing Applications

- Mathematical modelling for computational science Typical scientific computing problems are numerical solutions to PDEs
- Newtonian dynamics: simulating particle systems in time
- Models for fluids, air flow, plasmas, etc., for engineering
- PDE-constrained numerical optimization: finding optimal configurations (used in engineering of control systems)
- Computational chemistry (electronic structure calculations): many-electron Schrödinger equation
- Numerical algorithms: linear algebra and optimization
- Linear algebra and numerical optimization are building blocks for machine learning and data science
- Computer architecture, compilers, and parallel computing use numerical algorithms (matrix multiplication, Gaussian elimination) as benchmarks

Course Structure

- Complex numerical problems are generally reduced to simpler problems
- Discretization corresponds to representing a continuous function/model by a discrete set of points
- Nonlinear problems are mapped to linear problems
- Complicated functions are mapped to polynomials
- Differential equations are mapped to algebraic equations
- The course topics will follow this hierarchical structure
- Error, conditioning, and floating point are the starting point for representation and evaluation of algorithms for any numerical problem
- Linear systems provide the simplest and most important building block for solving linear algebra problems
- Least squares and eigenvalue problems provide basic technology for matrices
- Nonlinear equations and optimization make use of matrix algebra to solve more general modelling problems
- Numerical interpolation, differentiation, and quadrature provide the building blocks to reduce numerical PDE problems to matrix algebra

Numerical Analysis

- Numerical Problems involving Continuous Phenomena:

Given input $\boldsymbol{x} \in \mathbb{R}^{n}$, approximate output $\boldsymbol{y}=f(\boldsymbol{x})$

- Problem is well-posed if a unique solution exists and changes continuously with the initial conditions, i.e., f is a continuous function, $f(\hat{\boldsymbol{x}}) \rightarrow f(\boldsymbol{x})$ as $\hat{\boldsymbol{x}} \rightarrow \boldsymbol{x}$.
- Otherwise, problem is ill-posed
- Error Analysis:

Quality of approximation is quantified by distance to the solution

- If solution $y=f(\boldsymbol{x})$ is a scalar, distance from computed solution \hat{y} to correct answer is the absolute error

$$
\Delta y=\hat{y}-y
$$

while the normalized distance is the relative error

$$
\Delta y / y=\frac{\hat{y}-y}{|y|}
$$

- More generally, we are interested in the error

$$
\Delta y=\hat{\boldsymbol{y}}-\boldsymbol{y}
$$

the magnitude of which is measured by a given vector norm

Sources of Error

- Representation of Numbers:
- We cannot represent arbitrary real numbers in a finite amount of space, e.g. a computer cannot exactly represent π
- Moreover, hardware architectures are only well-fit to work with fixed-length (32-bit or 64-bit) representations
- As we will see, the best we can do is represent a wide range of numbers with a relatively uniform precision, which corresponds to scientific notation
- With scientific notation, we seek to store the most significant digits of each number, so that the magnitude of the relative error in the floating point representation $f l(x)$ for most real numbers x will be $|f l(x)-x| /|x| \leq \epsilon$
- Propagated Data Error: error due approximations in the input, $f(\hat{x})-f(x)$
- Computational Error $=\hat{f}(x)-f(x)=$ Truncation Error + Rounding Error
- Truncation error is the error made due to approximations made by the algorithm (simplified models used in our approximation)
- Rounding error is the error made due to inexact representation of quantities computed by the algorithm

Error Analysis

- Forward Error:

Forward error is the computational error of an algorithm

- Absolute: $\hat{f}(x)-f(x)$
- Relative: $(\hat{f}(x)-f(x)) /|f(x)|$
- Usually, we care about the magnitude of the final error, but carrying through signs is important when analyzing error
- Backward Error:

It can be hard to tell what a 'good' forward error is, but backward error analysis enables us to measure computational error with respect to data propagation error

- An algorithm is backward stable if its a solution to a nearby problem
- If the computed solution $\hat{f}(x)=f(\hat{x})$ then

$$
\text { backward error }=\hat{x}-x
$$

- More precisely, we want the nearest \hat{x} to x with $\hat{f}(x)=f(\hat{x})$
- If the backward error is smaller than the propagated data error, the solution computed by the algorithm is as good as possible

Visualization of Forward and Backward Error

Conditioning

- Absolute Condition Number:

The absolute condition number is a property of the problem, which measures its sensitivity to perturbations in input

$$
\kappa_{\text {abs }}(f)=\lim _{\text {size of input perturbation } \rightarrow 0} \max _{\text {inputs }} \quad \max _{\text {perturbations in input }}\left|\frac{\text { perturbation in output }}{\text { perturbation in input }}\right|
$$

For problem f at input x it is simply the derivative of f at x,

$$
\kappa_{a b s}(f)=\lim _{\Delta x \rightarrow 0}\left|\frac{f(x+\Delta x)-f(x)}{\Delta x}\right|=\left|\frac{d f}{d x}(x)\right|
$$

When considering a space of inputs \mathcal{X} it is $\kappa_{a b s}=\max _{x \in \mathcal{X}}\left|\frac{d f}{d x}(x)\right|$

- (Relative) Condition Number:

The relative condition number considers relative perturbations in input and output, so that

$$
\kappa(f)=\kappa_{\text {rel }}(f)=\max _{x \in \mathcal{X}} \lim _{\Delta x \rightarrow 0}\left|\frac{(f(x+\Delta x)-f(x)) / f(x)}{\Delta x / x}\right|=\frac{\kappa_{a b s}(f)|x|}{|f(x)|}
$$

Posedness and Conditioning

- What is the condition number of an ill-posed problem?
- If the condition number is bounded and the solution is unique, we know the problem is well-posed (solution changes continously)
- In fact, an alternative definition of an ill-posed problem is that f has a condition number of $\kappa_{\text {abs }}(f)=\infty$ (meaning f is not differentiable for some input)
- This condition implies that the solutions to a well-posed problem f are continuous and differentiable in the given space of possible inputs to f
- Geometrically, the condition number can be thought of as the reciprocal of the distance (in an appropriate geometric embedding of problem configurations) from f to the nearest ill-posed problem

Stability and Accuracy

- Accuracy:

An algorithm is accurate if $\hat{f}(x)=f(x)$ for all inputs x when $\hat{f}(x)$ is computed in infinite precision

- In other words, the truncation error is zero (rounding error is ignored)
- More generally, an algorithm is accurate if its truncation error is negligible in the desired context
- Yet more generally, the accuracy of an algorithm is expressed in terms of bounds on the magnitude of its truncation error
- Stability:

An algorithm is stable if its output in finite precision (floating point arithmetic) is always near its output in exact precision

- Stability measures the sensitivity of an algorithm to roundoff and truncation error
- In some cases, such as the approximation of a derivative using a finite difference formula, there is a trade-off between stability and accuracy

Error and Conditioning

- Two major sources of error: roundoff and truncation error.
- roundoff error concerns floating point error due to finite precision
- truncation error concerns error incurred due to algorithmic approximation, e.g. the representation of a function by a finite Taylor series

$$
f(x+h) \approx g(h)=\sum_{i=0}^{k} \frac{f^{(i)}(x)}{i!} h^{i}
$$

The absolute truncation error of this approximation is

$$
f(x+h)-g(h)=\sum_{i=k+1}^{\infty} \frac{f^{(i)}(x)}{i!} h^{i}=O\left(h^{k+1}\right) \text { as } h \rightarrow 0
$$

- To study the propagation of roundoff error in arithmetic we can use the notion of conditioning. The condition number tells use the worst-case amplification of output error with respect to input error

$$
\kappa(f)=\max _{x \in \mathcal{X}} \lim _{\Delta x \rightarrow 0}\left|\frac{(f(x+\Delta x)-f(x)) / f(x)}{\Delta x / x}\right|=\frac{\left|f^{\prime}(x) x\right|}{|f(x)|}
$$

Floating Point Numbers

- Scientific Notation

Floating-point numbers are a computational realization of scientific notation,

$$
4.12165 \times 10^{6}, 2.145 \times 10^{-3}
$$

- Scientific-notation provides a unique representation of any real number for a given amount of 'precision' (number of significant digits)
- Normalized floating-point numbers are just a binary form of scientific notation,

$$
1.01001 \times 2^{5}, 1.0110 \times 2^{-3}
$$

- Significand (Mantissa) and Exponent Given x with s leading bits x_{0}, \ldots, x_{s-1}

$$
f(x)=\sum_{i=0}^{s-1} x_{i} 2^{k-i}=\underbrace{x_{0} \cdot x_{1} \ldots x_{s-1}}_{\text {significand/mantissa }} \times 2^{\text {exponent }}
$$

A floating point number's binary representation has $s-1$ significand bits (excluding $x_{0}=1$), some bits to represent the exponent, and a sign bit

Rounding Error

- Maximum Relative Representation Error (Machine Epsilon)
- If we have s significant digits in scientific notation, our error is bounded to variations of 1 in least significant digit, whose magnitude relative to the number we are trying to represent is 10^{1-s} in decimal and 2^{1-s} in binary
- Formally, with s significant binary digits the relative representation error of positive real number x is (with $k=\left\lfloor\log _{2}(|x|)\right\rfloor$ and each $x_{i} \in\{0,1\}$)

$$
x=\sum_{i=0}^{\infty} x_{i} 2^{k-i}=x_{r e m}+\sum_{i=0}^{s-1} x_{i} 2^{k-i}, \quad \text { where } \quad\left|x_{r e m} / x\right| \leq 2^{1-s}
$$

- The maximum such error, 2^{1-s}, is called machine epsilon,

$$
\epsilon=\underset{\epsilon>0}{\operatorname{argmin}}(f l(1+\epsilon)=1+\epsilon)
$$

Rounding Error in Operations (I)

- Addition and Subtraction
- Subtraction is just negation of a sign bit followed by addition
- Catastrophic cancellation occurs when the magnitude of the result is much smaller than the magnitude of both operands
- Cancellation corresponds to losing significant digits, e.g.

$$
3.1423 \times 10^{5}-3.1403 \times 10^{5}=2.0 \times 10^{2}
$$

- Generally, we can bound the error incurred during addition of two real numbers x, y in floating point (ignoring final rounding, which has relative error ϵ) as

$$
\frac{\mid(x+y)-(f l(x)+f l(y) \mid}{|x+y|} \leq \frac{\epsilon(|x|+|y|)}{|x+y|}
$$

by this we can also observe that the condition number of addition of x, y i.e. $f(x, y)=x+y$, is $\kappa(f(x, y))=(|x|+|y|) /|x+y|$

- Consequently, when $x+y=0$ and $x, y \neq 0, \kappa(f(x, y))=\infty$. In general if $x+y$ is near 0 addition is ill-conditioned.

Rounding Error in Operations (II)

- Multiplication and Division
- Multiplication is a lot safer than addition in floating point
- To analyze its error, we use a 2-term Taylor series approximation typical in relative error analysis

$$
f(\epsilon)=(1+n \epsilon)^{k} \approx f(0)+\frac{d f}{d \epsilon}(0) \epsilon=1+k n \epsilon
$$

since ϵ is small, this linear approximation is accurate (to within $O\left(\epsilon^{2}\right)$)

- Aside from final rounding, we can bound the error in multiplication as

$$
\frac{|x y-f l(f l(x) f l(y))|}{|x y|} \leq \frac{|x y-(x(1+\epsilon) y(1+\epsilon))(1+\epsilon)|}{|x y|} \approx 3 \epsilon
$$

- Consequently, multiplication $f(x, y)=x y$ is always well-conditioned, $\kappa(f) \approx 3$
- Division is multiplication by the reciprocal, and reciprocation is also well-conditioned

Exceptional and Subnormal Numbers

- Exceptional Numbers

We had mentioned that the leading bit in normalized floating point numbers is assumed to be 1, but how do represent 0 ?

- Exceptional floating point numbers are $0,-0, \infty,-\infty$, and $\mathrm{NaN}=0 / 0=\infty-\infty$
- Subnormal (Denormal) Number Range
- The range of magnitudes of normalized floating point numbers with an exponent range $[-e, e]$ is $\left[2^{-e}, 2^{e+1}(1-\epsilon / 2)\right]$
- For numbers of magnitude $<2^{-e}$, the relative representation error is unbounded
- Subnormal numbers are evenly spaced in $\left[-2^{-e}, 2^{-e}\right]$ with gaps of $\epsilon 2^{-e}$
- Consequently, the absolute representation error in $\left[-2^{-e}, 2^{-e}\right]$ is at most $\epsilon 2^{-e}$
- Gradual Underflow: Avoiding underflow in addition

The main benefit of subnormal numbers is that for any machine numbers (floating-point numbers) x and $y, f l(x-y)=0$ if and only if $x=y$, since the gap between any two representable numbers is $|x-y| \geq \epsilon 2^{-e}$

Floating Point Number Line

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

