CS 450: Numerical Anlaysis ${ }^{1}$
 Linear Systems

University of Illinois at Urbana-Champaign

[^0]- Properties of vector norms
- A norm is uniquely defined by its unit sphere:
- p-norms

Inner-Product Spaces

- Properties of inner-product spaces: Inner products $\langle\boldsymbol{x}, \boldsymbol{y}\rangle$ must satisfy

$$
\begin{aligned}
\langle\boldsymbol{x}, \boldsymbol{x}\rangle & \geq 0 \\
\langle\boldsymbol{x}, \boldsymbol{x}\rangle & =0 \quad \Leftrightarrow \quad \boldsymbol{x}=\mathbf{0} \\
\langle\boldsymbol{x}, \boldsymbol{y}\rangle & =\langle\boldsymbol{y}, \boldsymbol{x}\rangle \\
\langle\boldsymbol{x}, \boldsymbol{y}+\boldsymbol{z}\rangle & =\langle\boldsymbol{x}, \boldsymbol{y}\rangle+\langle\boldsymbol{x}, \boldsymbol{z}\rangle \\
\langle\alpha \boldsymbol{x}, \boldsymbol{y}\rangle & =\alpha\langle\boldsymbol{x}, \boldsymbol{y}\rangle
\end{aligned}
$$

- Inner-product-based vector norms and Cauchy-Schwartz

Matrix Norms

- Properties of matrix norms:

$$
\begin{aligned}
\|\boldsymbol{A}\| & \geq 0 \\
\|\boldsymbol{A}\| & =0 \quad \Leftrightarrow \quad \boldsymbol{A}=\mathbf{0} \\
\|\alpha \boldsymbol{A}\| & =|\alpha| \cdot\|\boldsymbol{A}\| \\
\|\boldsymbol{A}+\boldsymbol{B}\| & \leq\|\boldsymbol{A}\|+\|\boldsymbol{B}\| \quad \text { (triangle inequality) }
\end{aligned}
$$

- Frobenius norm:
- Operator/induced/subordinate matrix norms:

Induced Matrix Norms

- Interpreting induced matrix norms (amplification and reduction):

Matrix Condition Number

- Matrix condition number definition: $\kappa(\boldsymbol{A})=\|\boldsymbol{A}\| \cdot\left\|\boldsymbol{A}^{-1}\right\|$ is the ratio of the maximum \boldsymbol{A} can amplify a vector and the minimum to which it can reduce the norm when applied to a unit-norm vector.
- Derivation from perturbations:

$$
\kappa(\boldsymbol{A})=\max _{\text {inputs }} \max _{\text {perturbations in input }}\left|\frac{\text { relative perturbation in output }}{\text { relative perturbation in input }}\right|
$$

since a matrix is a linear operator, we can decouple its action on the input \boldsymbol{x} and the perturbation $\boldsymbol{\delta} \boldsymbol{x}$ since $\boldsymbol{A}(\boldsymbol{x}+\boldsymbol{\delta} \boldsymbol{x})=\boldsymbol{A x}+\boldsymbol{A} \boldsymbol{\delta} \boldsymbol{x}$, so

Matrix Conditioning

- The matrix condition number $\kappa(\boldsymbol{A})$ is the ratio between the max and min distance from the surface to the center of the unit ball transformed by $\kappa(\boldsymbol{A})$:
- The matrix condition number bounds the worst-case amplification of error in a matrix-vector product:

Norms and Conditioning of Orthogonal Matrices

- Orthogonal matrices:
- Norm and condition number of orthogonal matrices:

Singular Value Decomposition

- The singular value decomposition (SVD):

Norms and Conditioning via SVD

- Norm and condition number in terms of singular values:

Visualization of Matrix Conditioning

Existence of SVD

- Consider any maximizer $x_{1} \in \mathbb{R}^{n}$ with $\left\|\boldsymbol{x}_{1}\right\|_{2}=1$ to $\left\|\boldsymbol{A} \boldsymbol{x}_{1}\right\|_{2}$

Conditioning of Linear Systems

- Lets now return to formally deriving the conditioning of solving $\boldsymbol{A x}=\boldsymbol{b}$:

Conditioning of Linear Systems II

- Consider perturbations to the input coefficients $\hat{A}=A+\delta A$:

Solving Basic Linear Systems

- Solve $\boldsymbol{D} \boldsymbol{x}=\boldsymbol{b}$ if \boldsymbol{D} is diagonal
- Solve $\boldsymbol{Q x}=\boldsymbol{b}$ if \boldsymbol{Q} is orthogonal
- Given SVD $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$, solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$

Solving Triangular Systems

- $L x=b$ if L is lower-triangular is solved by forward substitution:

$$
\begin{array}{r}
l_{11} x_{1}=b_{1} \\
l_{21} x_{1}+l_{22} x_{2}=b_{2} \\
l_{31} x_{1}+l_{32} x_{2}+l_{33} x_{3}=b_{3}
\end{array} \quad \Rightarrow \quad \begin{aligned}
& x_{1}= \\
& x_{2}= \\
& x_{3}=
\end{aligned}
$$

- Algorithm can also be formulated recursively by blocks:

Solving Triangular Systems

- Existence of solution to $L x=b:$
- Uniqueness of solution:
- Computational complexity of forward/backward substitution:

Properties of Triangular Matrices

- $Z=X Y$ is lower triangular is X and Y are both lower triangular:
- L^{-1} is lower triangular if it exists:

LU Factorization

- An LU factorization consists of a unit-diagonal lower-triangular factor L and upper-triangular factor U such that $A=L U$:
- Given an LU factorization of A, we can solve the linear system $A x=b$:

Gaussian Elimination Algorithm

- Algorithm for factorization is derived from equations given by $A=L U$:
- The computational complexity of $\mathbf{L U}$ is $O\left(n^{3}\right)$:

Existence of LU Factorization

- The LU factorization may not exist: Consider matrix $\left[\begin{array}{ll}3 & 2 \\ 6 & 4 \\ 0 & 3\end{array}\right]$.
- Permutation of rows enables us to transform the matrix so the LU factorization does exist:

Gaussian Elimination with Partial Pivoting

- Partial pivoting permutes rows to make divisor $u_{i i}$ maximal at each step:
- A row permutation corresponds to an application of a row permutation matrix $\boldsymbol{P}_{j k}=\boldsymbol{I}-\left(\boldsymbol{e}_{j}-\boldsymbol{e}_{k}\right)\left(\boldsymbol{e}_{j}-\boldsymbol{e}_{k}\right)^{T}$:

Partial Pivoting Example

- Lets consider again the matrix $\boldsymbol{A}=\left[\begin{array}{ll}3 & 2 \\ 6 & 4 \\ 0 & 3\end{array}\right]$.

Complete Pivoting

- Complete pivoting permutes rows and columns to make divisor $u_{i i}$ is maximal at each step:
- Complete pivoting is noticeably more expensive than partial pivoting:

Round-off Error in LU

- Lets consider factorization of $\left[\begin{array}{ll}\epsilon & 1 \\ 1 & 1\end{array}\right]$ where $\epsilon<\epsilon_{\text {mach }}$:
- Permuting the rows of \boldsymbol{A} in partial pivoting gives $\boldsymbol{P} \boldsymbol{A}=\left[\begin{array}{ll}1 & 1 \\ \epsilon & 1\end{array}\right]$

Error Analysis of LU

- The main source of round-off error in LU is in the computation of the Schur complement:
- When computed in floating point, absolute backward error $\delta \boldsymbol{A}$ in LU (so $\hat{\boldsymbol{L}} \hat{\boldsymbol{U}}=\boldsymbol{A}+\boldsymbol{\delta} \boldsymbol{A})$ is $\left|\delta a_{i j}\right| \leq \epsilon_{\text {mach }}(|\hat{\boldsymbol{L}}| \cdot|\hat{\boldsymbol{U}}|)_{i j}$

Helpful Matrix Properties

- Matrix is diagonally dominant, so $\sum_{i \neq j}\left|a_{i j}\right| \leq\left|a_{i i}\right|$:
- Matrix is symmetric positive definite (SPD), so $\forall_{x \neq 0}, \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}>0$:
- Matrix is symmetric but indefinite:
- Matrix is banded, $a_{i j}=0$ if $|i-j|>b$:

Solving Many Linear Systems

- Suppose we have computed $A=L U$ and want to solve $A X=B$ where B is $n \times k$ with $k<n$:
- Suppose we have computed $A=L U$ and now want to solve a perturbed system $\left(\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{T}\right) \boldsymbol{x}=\boldsymbol{b}$:
Can use the Sherman-Morrison-Woodbury formula

$$
\left(\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{T}\right)^{-1}=\boldsymbol{A}^{-1}+\frac{\boldsymbol{A}^{-1} \boldsymbol{u} \boldsymbol{v}^{T} \boldsymbol{A}^{-1}}{1-\boldsymbol{v}^{T} \boldsymbol{A}^{-1} \boldsymbol{u}}
$$

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

