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Vector Norms

▶ Properties of vector norms

▶ A norm is uniquely defined by its unit sphere:

▶ p-norms

Demo: Vector Norms

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/01-error-and-fp/Vector Norms.html


Inner-Product Spaces
▶ Properties of inner-product spaces: Inner products ⟨x,y⟩ must satisfy

⟨x,x⟩ ≥ 0

⟨x,x⟩ = 0 ⇔ x = 0

⟨x,y⟩ = ⟨y,x⟩
⟨x,y + z⟩ = ⟨x,y⟩+ ⟨x, z⟩

⟨αx,y⟩ = α⟨x,y⟩

▶ Inner-product-based vector norms and Cauchy-Schwartz



Matrix Norms
▶ Properties of matrix norms:

||A|| ≥ 0

||A|| = 0 ⇔ A = 0

||αA|| = |α| · ||A||
||A+B|| ≤ ||A||+ ||B|| (triangle inequality)

▶ Frobenius norm:

▶ Operator/induced/subordinate matrix norms:

Demo: Matrix norms

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/Matrix norms.html


Induced Matrix Norms
▶ Interpreting induced matrix norms (amplification and reduction):



Matrix Condition Number
▶ Matrix condition number definition: κ(A) = ||A|| · ||A−1|| is the ratio of the

maximum A can amplify a vector and the minimum to which it can reduce
the norm when applied to a unit-norm vector.

▶ Derivation from perturbations:
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perturbations in input
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since a matrix is a linear operator, we can decouple its action on the input x
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Demo: Conditioning of 2x2 Matrices
Demo: Condition number visualized

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/Conditioning of 2x2 Matrices.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/Condition number visualized.html


Matrix Conditioning
▶ The matrix condition number κ(A) is the ratio between the max and min

distance from the surface to the center of the unit ball transformed by κ(A):

▶ The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product:



Norms and Conditioning of Orthogonal Matrices

▶ Orthogonal matrices:

▶ Norm and condition number of orthogonal matrices:



Singular Value Decomposition
▶ The singular value decomposition (SVD):



Norms and Conditioning via SVD
▶ Norm and condition number in terms of singular values:



Visualization of Matrix Conditioning



Existence of SVD
▶ Consider any maximizer x1 ∈ Rn with ∥x1∥2 = 1 to ∥Ax1∥2



Conditioning of Linear Systems
▶ Lets now return to formally deriving the conditioning of solving Ax = b:



Conditioning of Linear Systems II
▶ Consider perturbations to the input coefficients Â = A+ δA:



Solving Basic Linear Systems

▶ Solve Dx = b if D is diagonal

▶ Solve Qx = b if Q is orthogonal

▶ Given SVD A = UΣV T , solve Ax = b



Solving Triangular Systems
▶ Lx = b if L is lower-triangular is solved by forward substitution:

l11x1 = b1 x1 =

l21x1 + l22x2 = b2 ⇒ x2 =

l31x1 + l32x2 + l33x3 = b3 x3 =

...
...

▶ Algorithm can also be formulated recursively by blocks:

Demo: Coding back-substitution

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/Coding back-substitution.html


Solving Triangular Systems

▶ Existence of solution to Lx = b:

▶ Uniqueness of solution:

▶ Computational complexity of forward/backward substitution:



Properties of Triangular Matrices
▶ Z = XY is lower triangular is X and Y are both lower triangular:

▶ L−1 is lower triangular if it exists:



LU Factorization
▶ An LU factorization consists of a unit-diagonal lower-triangular factor L

and upper-triangular factor U such that A = LU :

▶ Given an LU factorization of A, we can solve the linear system Ax = b:



Gaussian Elimination Algorithm
▶ Algorithm for factorization is derived from equations given by A = LU :

▶ The computational complexity of LU is O(n3):

Demo: LU factorization

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/LU factorization.html


Existence of LU Factorization

▶ The LU factorization may not exist: Consider matrix

3 2
6 4
0 3

.

▶ Permutation of rows enables us to transform the matrix so the LU
factorization does exist:



Gaussian Elimination with Partial Pivoting
▶ Partial pivoting permutes rows to make divisor uii maximal at each step:

▶ A row permutation corresponds to an application of a row permutation
matrix Pjk = I − (ej − ek)(ej − ek)

T :

Demo: LU with Partial Pivoting

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/LU with Partial Pivoting.html


Partial Pivoting Example

▶ Lets consider again the matrix A =

3 2
6 4
0 3

.



Complete Pivoting
▶ Complete pivoting permutes rows and columns to make divisor uii is

maximal at each step:

▶ Complete pivoting is noticeably more expensive than partial pivoting:



Round-off Error in LU
▶ Lets consider factorization of

[
ϵ 1
1 1

]
where ϵ < ϵmach:

▶ Permuting the rows of A in partial pivoting gives PA =

[
1 1
ϵ 1

]



Error Analysis of LU
▶ The main source of round-off error in LU is in the computation of the Schur

complement:

▶ When computed in floating point, absolute backward error δA in LU (so
L̂Û = A+ δA) is |δaij | ≤ ϵmach(|L̂| · |Û |)ij



Helpful Matrix Properties
▶ Matrix is diagonally dominant, so

∑
i ̸=j |aij | ≤ |aii|:

▶ Matrix is symmetric positive definite (SPD), so ∀x̸=0,x
TAx > 0:

▶ Matrix is symmetric but indefinite:

▶ Matrix is banded, aij = 0 if |i− j| > b:



Solving Many Linear Systems
▶ Suppose we have computed A = LU and want to solve AX = B where B

is n× k with k < n:

▶ Suppose we have computed A = LU and now want to solve a perturbed
system (A− uvT )x = b:
Can use the Sherman-Morrison-Woodbury formula

(A− uvT )−1 = A−1 +
A−1uvTA−1

1− vTA−1u

Demo: Sherman-Morrison

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/Sherman-Morrison.html
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