CS 450: Numerical Anlaysis¹ Linear Systems

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Vector Norms

Properties of vector norms

A norm is uniquely defined by its unit sphere:

Inner-Product Spaces

Properties of inner-product spaces: Inner products $\langle x, y \rangle$ must satisfy

$$egin{aligned} &\langle m{x},m{x}
angle &\geq 0\ &\langle m{x},m{x}
angle &= 0 &\Leftrightarrow &m{x} = m{0}\ &\langle m{x},m{y}
angle &= \langlem{y},m{x}
angle\ &m{x},m{y} + m{z}
angle &= \langlem{x},m{y}
angle + \langlem{x},m{z}
angle\ &\langle lpham{x},m{y}
angle &= \langlem{x},m{y}
angle + \langlem{x},m{z}
angle \end{aligned}$$

Inner-product-based vector norms and Cauchy-Schwartz

Matrix Norms

Properties of matrix norms:

$$\begin{aligned} ||\mathbf{A}|| &\geq 0 \\ ||\mathbf{A}|| &= 0 \quad \Leftrightarrow \quad \mathbf{A} = \mathbf{0} \\ ||\alpha \mathbf{A}|| &= |\alpha| \cdot ||\mathbf{A}|| \\ ||\mathbf{A} + \mathbf{B}|| &\leq ||\mathbf{A}|| + ||\mathbf{B}|| \quad \text{(triangle inequality)} \end{aligned}$$

Frobenius norm:

Operator/induced/subordinate matrix norms:

Induced Matrix Norms

Interpreting induced matrix norms (amplification and reduction):

Matrix Condition Number

Demo: Conditioning of 2x2 Matrices **Demo:** Condition number visualized

• Matrix condition number definition: $\kappa(A) = ||A|| \cdot ||A^{-1}||$ is the ratio of the maximum A can amplify a vector and the minimum to which it can reduce the norm when applied to a unit-norm vector.

Derivation from perturbations:

$u(\mathbf{A}) =$	mox	$\max\limits_{\text{perturbations in input}}$	relative perturbation in output
$\kappa(\mathbf{A}) =$	inputs		relative perturbation in input

since a matrix is a linear operator, we can decouple its action on the input x and the perturbation δx since $A(x + \delta x) = Ax + A\delta x$, so

Matrix Conditioning

• The matrix condition number $\kappa(A)$ is the ratio between the max and min distance from the surface to the center of the unit ball transformed by $\kappa(A)$:

The matrix condition number bounds the worst-case amplification of error in a matrix-vector product:

Norms and Conditioning of Orthogonal Matrices

Orthogonal matrices:

Norm and condition number of orthogonal matrices:

Singular Value Decomposition

The singular value decomposition (SVD):

Norms and Conditioning via SVD

Norm and condition number in terms of singular values:

Visualization of Matrix Conditioning

Existence of SVD

• Consider any maximizer $x_1 \in \mathbb{R}^n$ with $||x_1||_2 = 1$ to $||Ax_1||_2$

Conditioning of Linear Systems

• Lets now return to formally deriving the conditioning of solving Ax = b:

Conditioning of Linear Systems II

• Consider perturbations to the input coefficients $\hat{A} = A + \delta A$:

Solving Basic Linear Systems

Solve
$$Dx = b$$
 if D is diagonal

• Solve
$$Qx = b$$
 if Q is orthogonal

• Given SVD
$$A = U\Sigma V^T$$
, solve $Ax = b$

Solving Triangular Systems

• Lx = b if L is lower-triangular is solved by forward substitution:

$$l_{11}x_1 = b_1 \qquad x_1 = l_{21}x_1 + l_{22}x_2 = b_2 \quad \Rightarrow \quad x_2 = l_{31}x_1 + l_{32}x_2 + l_{33}x_3 = b_3 \qquad x_3 = l_{31}x_1 + l_{32}x_2 + l_{33}x_3 + l_{33}x_3 = l_{31}x_3 + l_{32}x_3 + l_{33}x_3 = l_{31}x_3 + l_{32}x_3 +$$

Algorithm can also be formulated recursively by blocks:

Solving Triangular Systems

Existence of solution to Lx = b**:**

Uniqueness of solution:

Computational complexity of forward/backward substitution:

Properties of Triangular Matrices

 \triangleright Z = XY is lower triangular is X and Y are both lower triangular:

• L^{-1} is lower triangular if it exists:

LU Factorization

An LU factorization consists of a unit-diagonal lower-triangular factor L and upper-triangular factor U such that A = LU:

• Given an LU factorization of A, we can solve the linear system Ax = b:

Demo: LU factorization

Gaussian Elimination Algorithm

• Algorithm for factorization is derived from equations given by A = LU:

• The computational complexity of LU is $O(n^3)$:

Existence of LU Factorization

The LU factorization may not exist: Consider matrix $\begin{bmatrix} 3 & 2 \\ 6 & 4 \\ 0 & 3 \end{bmatrix}$.

Permutation of rows enables us to transform the matrix so the LU factorization does exist:

Demo: LU with Partial Pivoting

Gaussian Elimination with Partial Pivoting

Partial pivoting permutes rows to make divisor u_{ii} maximal at each step:

A row permutation corresponds to an application of a *row permutation* matrix $P_{jk} = I - (e_j - e_k)(e_j - e_k)^T$:

Partial Pivoting Example

• Lets consider again the matrix
$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 6 & 4 \\ 0 & 3 \end{bmatrix}$$
.

Complete Pivoting

Complete pivoting permutes rows and columns to make divisor u_{ii} is maximal at each step:

Complete pivoting is noticeably more expensive than partial pivoting:

Round-off Error in LU

• Lets consider factorization of $\begin{bmatrix} \epsilon & 1 \\ 1 & 1 \end{bmatrix}$ where $\epsilon < \epsilon_{mach}$:

• Permuting the rows of A in partial pivoting gives $PA = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$

Error Analysis of LU

The main source of round-off error in LU is in the computation of the Schur complement:

▶ When computed in floating point, absolute backward error δA in LU (so $\hat{L}\hat{U} = A + \delta A$) is $|\delta a_{ij}| \leq \epsilon_{mach}(|\hat{L}| \cdot |\hat{U}|)_{ij}$

Helpful Matrix Properties

▶ Matrix is *diagonally dominant*, so $\sum_{i \neq j} |a_{ij}| \le |a_{ii}|$:

• Matrix is symmetric positive definite (SPD), so $\forall_{x\neq 0}, x^T A x > 0$:

Matrix is symmetric but indefinite:

• Matrix is *banded*,
$$a_{ij} = 0$$
 if $|i - j| > b$:

Solving Many Linear Systems

Suppose we have computed A = LU and want to solve AX = B where B is n × k with k < n:</p>

Suppose we have computed A = LU and now want to solve a perturbed system (A - uv^T)x = b:
 Can use the Sherman-Morrison-Woodbury formula

$$(A - uv^T)^{-1} = A^{-1} + \frac{A^{-1}uv^TA^{-1}}{1 - v^TA^{-1}u}$$