
CS 450: Numerical Anlaysis1

Linear Systems

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).

http://heath.cs.illinois.edu/scicomp/notes/index.html


Vector Norms
▶ Properties of vector norms

||x|| ≥ 0

||x|| = 0 ⇔ x = 0

||αx|| = |α| · ||x||
||x+ y|| ≤ ||x||+ ||y|| (triangle inequality) implies continuity

▶ A norm is uniquely defined by its unit sphere: Surface defined by space of
vectors V ⊂ Rn such that ∀x ∈ V, ||x|| = 1

▶ p-norms ||x||p =
(∑

i |xi|p
)1/p

▶ p = 1 gives sum of absolute values of entry (unit sphere is diamond-like)
▶ p = ∞ gives maximum entry in absolute value (unit sphere is box-like)
▶ p = 2 gives Euclidean distance metric (unit sphere is spherical)

Demo: Vector Norms

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/01-error-and-fp/Vector Norms.html


Inner-Product Spaces
▶ Properties of inner-product spaces: Inner products ⟨x,y⟩ must satisfy

⟨x,x⟩ ≥ 0

⟨x,x⟩ = 0 ⇔ x = 0

⟨x,y⟩ = ⟨y,x⟩
⟨x,y + z⟩ = ⟨x,y⟩+ ⟨x, z⟩

⟨αx,y⟩ = α⟨x,y⟩
▶ Inner-product-based vector norms and Cauchy-Schwartz

The p = 2 vector norm is the Eucledian inner-product norm,

||x||2 =
√
xTx

and due to Cauchy-Schwartz inequality |⟨x,y⟩| ≤
√
⟨x,x⟩ · ⟨y,y⟩,

|xTy| ≤ ||x||2||y||2.

Other inner-products can be expressed as ⟨x,y⟩ = xTAy where A is
symmetric positive definite, yielding norms ||x||A =

√
xTAx



Matrix Norms
▶ Properties of matrix norms:

||A|| ≥ 0

||A|| = 0 ⇔ A = 0

||αA|| = |α| · ||A||
||A+B|| ≤ ||A||+ ||B|| (triangle inequality)

▶ Frobenius norm:

||A||F =

(∑
i,j

a2ij

)1/2

▶ Operator/induced/subordinate matrix norms:
For any vector norm || · ||, the induced matrix norm is

||A|| = max
x̸=0

||Ax||/||x|| = max
||x||=1

||Ax||

Demo: Matrix norms

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/Matrix norms.html


Induced Matrix Norms

▶ Interpreting induced matrix norms (amplification and reduction): A matrix
is uniquely defined with respect to a norm by a unit-ball, which is the space of
vectors y = Ax for all x on the unit-sphere of the norm.

||A||p = max
||x||p=1

||Ax||p

is the maximum possible p-norm amplification due to application of A

1/||A−1||p = min
||x||p=1

||Ax||p

is the maximum possible p-norm reduction due to application of A



Matrix Condition Number
▶ Matrix condition number definition: κ(A) = ||A|| · ||A−1|| is the ratio of the

maximum A can amplify a vector and the minimum to which it can reduce
the norm when applied to a unit-norm vector.

▶ Derivation from perturbations:

κ(A) = max
inputs

max
perturbations in input

∣∣∣∣relative perturbation in output
relative perturbation in input

∣∣∣∣
since a matrix is a linear operator, we can decouple its action on the input x
and the perturbation δx since A(x+ δx) = Ax+Aδx, so

κ(A) =

∣∣∣∣∣∣∣∣∣∣∣

||A||︷ ︸︸ ︷
max

perturbations in input
relative perturbation growth

max
inputs

relative input reduction︸ ︷︷ ︸
1/||A−1||

∣∣∣∣∣∣∣∣∣∣∣

Demo: Conditioning of 2x2 Matrices
Demo: Condition number visualized

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/Conditioning of 2x2 Matrices.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/Condition number visualized.html


Matrix Conditioning

▶ The matrix condition number κ(A) is the ratio between the max and min
distance from the surface to the center of the unit ball transformed by κ(A):

▶ The max distance to center is given by the vector maximizing max||x||=1 ||Ax||2.
▶ The min distance to center is given by the vector minimizing

min||x||=1 ||Ax||2 = 1/(max||x||=1 ||A−1x||2).
▶ Thus, we have that κ(A) = ||A||2||A−1||2

▶ The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product: Consider y + δy = A(x+ δx), assume ||x||2 = 1

▶ In the worst case, ||y||2 is minimized, that is ||y||2 = 1/||A−1||2
▶ In the worst case, ||δy||2 is maximized, that is ||δy||2 = ||A||2||δy||2
▶ So ||δy||2/||y||2 is at most κ(A)||δx||2/||x||2



Norms and Conditioning of Orthogonal Matrices

▶ Orthogonal matrices: A matrix Q is orthogonal, if its square and its columns
are orthonormal, or equivalently QT = Q−1.

▶ Norm and condition number of orthogonal matrices: For any ||v||2 = 1,

||Qv||2 =
(〈

vTQT ,Qv
〉)1/2

=

(
vTQTQv

)1/2

=

(
vTv

)1/2

= ||v||2

Consequently, ||Q||2 = ||Q−1||2 = κ(Q) = 1.
Qv expresses v in a coordinate system whose axes are columns of QT



Singular Value Decomposition

▶ The singular value decomposition (SVD):
We can express any matrix A as

A = UΣV T

where U and V are orthogonal, and Σ is square nonnegative and diagonal,

Σ =

σmax
. . .

σmin


Any matrix is diagonal when expressed as an operator mapping vectors from
a coordinate system given by V to a coordinate system given by UT .



Norms and Conditioning via SVD

▶ Norm and condition number in terms of singular values:
When multiplying a vector by matrix A = UΣV T

▶ Multiplication by V T changes coordinate systems, leaving the norm unchanged
▶ Multiplication by U changes coordinate systems, leaving the norm unchanged

so, only multiplication by Σ has an effect on the vector norm
▶ Note that ||Σ||2 = σmax, ||Σ−1||2 = 1/σmin, so

κ(A) = κ(Σ) =
σmax

σmin



Visualization of Matrix Conditioning



Existence of SVD
▶ Consider any maximizer x1 ∈ Rn with ∥x1∥2 = 1 to ∥Ax1∥2

Let y1 = Ax1/ ∥Ax1∥2 and σ1 = yT
1 Ax1 = ∥Ax1∥2, then consider any

maximizer x2 of ∥∥(A− σ1y1x
T
1 )x2

∥∥
2
.

We can see that x1 ⊥ x2 since, otherwise, we have x2 = αx1 + x̃2 with
x̃2 ⊥ x1 and ∥x̃2∥2 < ∥x2∥2 and∥∥(A− σ1y1x

T
1 )(αx1 + x̃2)

∥∥
2
=

∥∥(A− σ1y1x
T
1 )x̃2

∥∥
2
.

Hence we have a contradiction, since∥∥(A− σ1y1x
T
1 )x2

∥∥
2
< (1/ ∥x̃2∥2)

∥∥(A− σ1y1x
T
1 )x̃2

∥∥
2
.

More generally, we can see that any maximizer xi+1 to

∥(A−
[
y1 · · · yi

] σ1 . . .
σi

 [
x1 · · · xi

]T
)xi+1∥2

is orthogonal to x1, . . . ,xi and similar for yi+1.



Conditioning of Linear Systems
▶ Lets now return to formally deriving the conditioning of solving Ax = b:

Consider a perturbation to the right-hand side (input) b̂ = b+ δb

Ax̂ = b̂

A(x+ δx) = b+ δb

Aδx = δb

we wish to bound the size of the relative perturbation to the output ||δx||/||x||
with respect to the size of the relative perturbation the the input ||δb||/||b||

δx = A−1δb

||δx||
||x||

=
||A−1δb||

||x||
≤ ||A−1|| · ||δb||

||x||
we can use that ||x|| ≥ ||b||/σmax = ||b||/||A|| so

||δx||
||x||

≤ ||A|| · ||A−1||︸ ︷︷ ︸
κ(A)

· ||δb||
||b||

=
σmax||δb||
σmin||b||



Conditioning of Linear Systems II
▶ Consider perturbations to the input coefficients Â = A+ δA:

In this case, we solve the perturbed system

Âx̂ = b

(A+ δA)(x+ δx) = b

δAx+Aδx+ δAδx = 0

∥δAx∥ = ∥Âδx∥+O(∥δA∥2)

we wish to bound the size of the relative perturbation to the output ∥δx∥/∥x∥
with respect to the size of the relative perturbation the the input ∥δA∥/∥A∥

∥Aδx∥ = ∥δAx∥+O(∥δA∥2)
∥δx∥ ≤ ∥A−1∥∥δAx∥ ≤ ∥A−1∥ · ∥δA∥ · ∥x∥+O(∥δA∥2)
∥δx∥
∥x∥

≤ ∥A−1∥ · ∥A∥︸ ︷︷ ︸
κ(A)

·∥δA∥
∥A∥

+O(∥δA∥2)



Solving Basic Linear Systems

▶ Solve Dx = b if D is diagonal
xi = bi/dii with total cost O(n)

▶ Solve Qx = b if Q is orthogonal
x = QTb with total cost O(n2)

▶ Given SVD A = UΣV T , solve Ax = b

▶ Compute z = UT b
▶ Solve Σy = z (diagonal)
▶ Compute x = V x



Solving Triangular Systems

▶ Lx = b if L is lower-triangular is solved by forward substitution:

l11x1 = b1 x1 = b1/l11

l21x1 + l22x2 = b2 ⇒ x2 = (b2 − l21x1)/l22

l31x1 + l32x2 + l33x3 = b3 x3 = (b3 − l31x1 − l32x2)/l33
...

...

▶ Algorithm can also be formulated recursively by blocks:[
l11
l21 L22

] [
x1
x2

]
=

[
b1
b2

]
x1 = b1/l11, then solve recursively for x2 in L22x2 = b2 − l21x1.

Demo: Coding back-substitution

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/Coding back-substitution.html


Solving Triangular Systems

▶ Existence of solution to Lx = b:
If some lii = 0, the solution may not exist, and L−1 does not exist.

▶ Uniqueness of solution: Even if some lii = 0 and L−1 does not exist, the
system may have a solution. The solution will not be unique since columns of
L are necessarily linearly dependent if a diagonal element is zero. May want
to select solution minimizing norm of x.

▶ Computational complexity of forward/backward substitution:
The recursive algorithm has the cost recurrence,

T (n) = T (n− 1) + n =

n∑
i=1

i = n(n+ 1)/2.

The total cost is n2/2 multiplications and n2/2 additions to leading order.



Properties of Triangular Matrices
▶ Z = XY is lower triangular is X and Y are both lower triangular:[

z11 z12
z21 Z22

]
=

[
x11
x21 X22

] [
y11
y21 Y 22

]
.

Clearly, z11 = x11y11 and z12 = 0, then we proceed by the same argument for
the triangular matrix product Z22 = X22Y22.

▶ L−1 is lower triangular if it exists:
We give a constructive proof by providing an algorithm for triangular matrix
inversion. We need Y = X−1 so[

Y11

Y21 Y22

] [
X11

X21 X22

]
=

[
I

I

]
,

from which we can deduce

Y11 = X−1
11 , Y22 = X−1

22 , Y21 = −Y22X21Y11.



LU Factorization
▶ An LU factorization consists of a unit-diagonal lower-triangular factor L

and upper-triangular factor U such that A = LU :

▶ Unit-diagonal implies each lii = 1, leaving n(n− 1)/2 unknowns in L and
n(n+ 1)/2 unknowns in U , for a total of n2, the same as the size of A.

▶ For rectangular matrices A ∈ Rm×n, one can consider a full LU factorization,
with L ∈ Rm×max(m,n) and U ∈ Rmax(m,n)×n, but it is fully described by a
reduced LU factorization, with lower-trapezoidal L ∈ Rm×min(m,n) and
upper-trapezoidal U ∈ Rmin(m,n)×n.

▶ Given an LU factorization of A, we can solve the linear system Ax = b:
▶ using forward substitution Ly = b

▶ using backward substitution to solve Ux = y

Backward substitution is the same as forward substitution with a reversal of
the ordering of the elements of the vectors and the ordering of the
rows/columns of the matrix.



Gaussian Elimination Algorithm
▶ Algorithm for factorization is derived from equations given by A = LU :[

a11 a12

a21 A22

]
=

[
1
l21 L22

] [
u11 u12

U22

]
=

[
L11

L21 L22

] [
U11 U12

U22

]
▶ First, observe

[
u11 u12

]
=

[
a11 a12

]
▶ To obtain l21 compute l21 = a21/u11

▶ Obtain L22 and U22 by recursively computing LU of the Schur complement

S = A22 − l21u12

▶ The computational complexity of LU is O(n3):
Computing l21 = a21/u11 requires O(n) operations, finding S requires 2n2, so
to leading order the complexity of LU is

T (n) = T (n− 1) + 2n2 =

n∑
i=1

2i2 ≈ 2n3/3

Demo: LU factorization

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/LU factorization.html


Existence of LU Factorization
▶ The LU factorization may not exist: Consider matrix

3 2
6 4
0 3

.

Proceeding with Gaussian elimination we obtain3 2
6 4
0 3

 =

1 0
2 1
0 l32

[
3 2
0 u21

]
.

Then we need that 4 = 4 + u21 so u21 = 0, but at the same time l32u21 = 3.

More generally, if and only if for any partitioning
[
A11 A12

A21 A22

]
the leading

minor is singular (det(A11) = 0), A has no LU factorization.
▶ Permutation of rows enables us to transform the matrix so the LU

factorization does exist:
Gaussian elimination can only fail if dividing by zero. At every recursive step of
Gaussian elimination, if the leading entry of the first row is zero, we permute it
with a row with an leading nonzero (if a21 = 0, we set u11 = 0 and l21 = 0).



Gaussian Elimination with Partial Pivoting
▶ Partial pivoting permutes rows to make divisor uii maximal at each step:

Based on our argument above, for any matrix A there exists a permutation
matrix P that can permute the rows of A to permit an LU factorization,

PA = LU .

Partial pivoting finds such a permutation matrix P one row at a time. The ith
row is selected to maximize the magnitude of the leading element (over
elements in the first column), which becomes the entry uii. This selection
ensures that we are never forced to divide by zero during Gaussian
elimination and that the magnitude of any element in L is at most 1.

▶ A row permutation corresponds to an application of a row permutation
matrix Pjk = I − (ej − ek)(ej − ek)

T :
If we permute row ij .o be the leading (ith) row at the ith step, the overall
permutation matrix is given by P T =

∏n−1
i=1 Piij .

Demo: LU with Partial Pivoting

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/LU with Partial Pivoting.html


Partial Pivoting Example
▶ Lets consider again the matrix A =

3 2
6 4
0 3

.

▶ The largest magnitude element in the first column is 6, so we select this as our
pivot and perform the first step of LU 1

1
1


︸ ︷︷ ︸

P1

6 4
3 2
0 3

 =

 1
1/2
0

 [
6 4

]
+

0 0
0 2− (1/2) · 4
0 3− 0 · 4



▶ The Schur complement is
[
0 3

]T and we proceed with pivoted LU,[
1

1

]
︸ ︷︷ ︸

P2

[
0
3

]
=

[
1
0

] [
3
]

▶ The overall LU factorization is then given by P1

[
1

P2

]
A =

 1
0 1
1/2 0

[
6 4

3

]



Complete Pivoting

▶ Complete pivoting permutes rows and columns to make divisor uii is
maximal at each step:
▶ Partial pivoting ensures that the magnitude of the multipliers satisfies

|l21| = |a21|/|u11| ≤ 1

▶ Complete pivoting also gives ||u12||∞ ≤ |u11| and consequently
|l21| · ||u12||∞ = |a21| · ||u12||∞/|u11| ≤ |a21|

▶ Complete pivoting yields a factorization of the form LU = PAQ where P and
Q are permutation matrices

▶ Complete pivoting is noticeably more expensive than partial pivoting:
▶ Partial pivoting requires just O(n) comparison operations and a row

permutation
▶ Complete pivoting requires O(n2) comparison operations, which somewhat

increases the leading order cost of LU overall



Round-off Error in LU

▶ Lets consider factorization of
[
ϵ 1
1 1

]
where ϵ < ϵmach:

▶ Without pivoting we would compute L =

[
1 0
1/ϵ 1

]
, U =

[
ϵ 1
0 1− 1/ϵ

]
▶ Rounding yields fl(U) =

[
ϵ 1
0 −1/ϵ

]
▶ This leads to Lfl(U) =

[
ϵ 1
1 0

]
, a backward error of

[
0 0
0 1

]

▶ Permuting the rows of A in partial pivoting gives PA =

[
1 1
ϵ 1

]
▶ We now compute L =

[
1 0
ϵ 1

]
, U =

[
1 1
0 1− ϵ

]
, so fl(U) =

[
1 1
0 1

]
▶ This leads to Lfl(U) =

[
1 1
ϵ 1 + ϵ

]
, a backward error of

[
0 0
0 ϵ

]



Error Analysis of LU
▶ The main source of round-off error in LU is in the computation of the Schur

complement:
▶ Recall that division is well-conditioned, while addition can be ill-conditioned
▶ After k steps of LU, we are working on Schur complement A22 −L21U12 where

A22 is (n− k)× (n− k), L21 and UT
12 are (n− k)× k

▶ Partial pivoting and complete pivoting improve stability by making sure L21U12

is small in norm
▶ When computed in floating point, absolute backward error δA in LU (so

L̂Û = A+ δA) is |δaij | ≤ ϵmach(|L̂| · |Û |)ij
For any aij with j ≥ i (lower-triangle is similar), we compute

aij −
i∑

k=1

l̂ikûkj = aij − ⟨l̂i, ûj⟩,

which in floating point incurs round-off error at most ϵmach⟨|l̂i|, |ûj |⟩. Using
this, for complete pivoting, we can show |δaij | ≤ ϵmachn

2||A||∞.



Helpful Matrix Properties
▶ Matrix is diagonally dominant, so

∑
i ̸=j |aij | ≤ |aii|:

Pivoting is not required if matrix is strictly diagonally dominant∑
i ̸=j |aij | < |aii|.

▶ Matrix is symmetric positive definite (SPD), so ∀x̸=0,x
TAx > 0:

L = U and pivoting is not required, Cholesky algorithm A = LLT can be
used (L in Cholesky is not unit-diagonal).

▶ Matrix is symmetric but indefinite:
Compute pivoted LDL factorization PAP T = LDLT (where L is
lower-triangular and unit-diagonal, while D is block-diagonal with 2-by-2
diagonal or antidiagonal blocks)

▶ Matrix is banded, aij = 0 if |i− j| > b:
LU without pivoting and Cholesky preserve banded structure and require only
O(nb2) work.



Solving Many Linear Systems
▶ Suppose we have computed A = LU and want to solve AX = B where B

is n× k with k < n:
Cost is O(n2k) for solving the k independent linear systems

▶ Suppose we have computed A = LU and now want to solve a perturbed
system (A− uvT )x = b:
Can use the Sherman-Morrison-Woodbury formula

(A− uvT )−1 = A−1 +
A−1uvTA−1

1− vTA−1u

▶ Consequently we have Ax = b+ uvTA−1

1−vTA−1u
b = b+ vTA−1b

1−vTA−1u
u

▶ Need not form A−1 or L−1 or U−1, suffices to use backward/forward
substitution to solve wTA = vT , i.e. solve UTLTw = v and then solve

LUx = b+

(
wT b

1−wTu

)
︸ ︷︷ ︸

scalar

u

Demo: Sherman-Morrison

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/02-linear-systems/Sherman-Morrison.html

	Vector and Matrix Norms
	Matrix Condition Number
	Singular Value Decomposition
	Perturbation Analysis
	Algorithms for Simple Linear Systems
	Gaussian Elimination
	LU Decomposition
	Naive Algorithm
	Existence of LU
	Pivoting
	Error Analysis

	Linear System Problem Variants

