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Linear Least Squares
▶ Find x⋆ = argminx∈Rn ||Ax− b||2 where A ∈ Rm×n:

▶ Given the SVD A = UΣV T we have x⋆ = V Σ†UT︸ ︷︷ ︸
A†

b, where Σ† contains the

reciprocal of all nonzeros in Σ:



Data Fitting via Linear Least Squares

▶ Given a set of m points with coordinates x and y, seek an n− 1 degree
polynomial p so that p(xi) ≈ yi by minimizing

▶ we can write this objective as a linear least squares problem

Demo: Polynomial fitting with the normal equations

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Polynomial fitting with the normal equations.html


Conditioning of Linear Least Squares

▶ Consider a perturbation δb to the right-hand-side b

▶ The amplification in relative perturbation magnitude (from b to x) depends
on how much of b is spanned by the columns of A,



Normal Equations
▶ Normal equations are given by solving ATAx = ATb:

▶ However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm

Demo: Normal equations vs Pseudoinverse
Demo: Issues with the normal equations

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Issues with the normal equations.html


Solving the Normal Equations
▶ If A is full-rank, then ATA is symmetric positive definite (SPD):

▶ Since ATA is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:



QR Factorization
▶ If A is full-rank there exists an orthogonal matrix Q and a unique

upper-triangular matrix R with a positive diagonal such that A = QR

▶ A reduced QR factorization (unique part of general QR) is defined so that
Q ∈ Rm×n has orthonormal columns and R is square and upper-triangular

▶ We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows



Gram-Schmidt Orthogonalization
▶ Classical Gram-Schmidt process for QR:

▶ Modified Gram-Schmidt process for QR:

Demo: Gram-Schmidt–The Movie
Demo: Gram-Schmidt and Modified Gram-Schmidt

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Gram-Schmidt--The Movie.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Gram-Schmidt and Modified Gram-Schmidt.html


Householder QR Factorization

▶ A Householder transformation Q = I − 2uuT is an orthogonal matrix
defined to annihilate entries of a given vector z, so Qz = ±||z||2e1:

▶ Imposing this form on Q leaves exactly two choices for u given z,

u =
z ± ||z||2e1

||z ± ||z||2e1||2

Demo: 3x3 Householder demo

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/3x3 Householder demo.html


Visualization of Householder Reflector



Applying Householder Transformations
▶ The product x = Qw can be computed using O(n) operations if Q is a

Householder transformation

▶ Householder transformations are also called reflectors because their
application reflects a vector along a hyperplane (changes sign of component
of w that is parallel to u)



Givens Rotations
▶ Householder reflectors reflect vectors, Givens rotations rotate them

▶ Givens rotations are defined by orthogonal matrices of the form
[
c s
−s c

]



QR via Givens Rotations
▶ We can apply a Givens rotation to a pair of matrix rows, to eliminate the first

nonzero entry of the second row

▶ Thus, n(n− 1)/2 Givens rotations are needed for QR of a square matrix

Demo: Relative cost of matrix factorizations

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Relative cost of matrix factorizations.html


Rank-Deficient Least Squares
▶ Suppose we want to solve a linear system or least squares problem with a

(nearly) rank deficient matrix A

▶ Rank-deficient least squares problems seek a minimizer x of ||Ax− b||2 of
minimal norm ||x||2



Truncated SVD
▶ After floating-point rounding, rank-deficient matrices typically regain

full-rank but have nonzero singular values on the order of ϵmachσmax

▶ By the Eckart-Young-Mirsky theorem, truncated SVD also provides the best
low-rank approximation of a matrix (in 2-norm and Frobenius norm)

Demo: Image compression

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Image compression.html


QR with Column Pivoting
▶ QR with column pivoting provides a way to approximately solve

rank-deficient least squares problems and compute the truncated SVD

▶ A pivoted QR factorization can be used to compute a rank-r approximation
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