CS 450: Numerical Anlaysis¹ Linear Least Squares

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Linear Least Squares

 $lackbox{ Find } m{x}^\star = \mathop{
m argmin}_{m{x} \in \mathbb{R}^n} ||m{A}m{x} - m{b}||_2 ext{ where } m{A} \in \mathbb{R}^{m imes n}.$

▶ Given the SVD $A = U\Sigma V^T$ we have $x^* = \underbrace{V\Sigma^\dagger U^T}_{A^\dagger} b$, where $Σ^\dagger$ contains the reciprocal of all nonzeros in Σ:

Data Fitting via Linear Least Squares **Demo: Polynomial fitting with the normal equations**

▶ Given a set of m points with coordinates x and y, seek an n-1 degree polynomial p so that $p(x_i) \approx y_i$ by minimizing

we can write this objective as a linear least squares problem

Conditioning of Linear Least Squares

ightharpoonup Consider a perturbation δb to the right-hand-side b

The amplification in relative perturbation magnitude (from b to x) depends on how much of b is spanned by the columns of A,

Normal Equations

Demo: Normal equations vs Pseudoinverse **Demo:** Issues with the normal equations

Normal equations are given by solving $A^TAx = A^Tb$:

► However, solving the normal equations is a more ill-conditioned problem then the original least squares algorithm

Solving the Normal Equations

▶ If A is full-rank, then A^TA is symmetric positive definite (SPD):

Since A^TA is SPD we can use Cholesky factorization, to factorize it and solve linear systems:

OR Factorization

If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that A=QR

▶ A reduced QR factorization (unique part of general QR) is defined so that $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and R is square and upper-triangular

We can solve the normal equations (and consequently the linear least squares problem) via reduced QR as follows

Gram-Schmidt Orthogonalization

Demo: Gram-Schmidt—The Movie **Demo:** Gram-Schmidt and Modified Gram-Schmidt

Classical Gram-Schmidt process for QR:

Modified Gram-Schmidt process for QR:

Householder QR Factorization

▶ A Householder transformation $Q = I - 2uu^T$ is an orthogonal matrix defined to annihilate entries of a given vector z, so $Qz = \pm ||z||_2 e_1$:

lacktriangle Imposing this form on Q leaves exactly two choices for u given z,

$$m{u} = rac{m{z} \pm ||m{z}||_2 m{e}_1}{||m{z} \pm ||m{z}||_2 m{e}_1||_2}$$

Visualization of Householder Reflector

Applying Householder Transformations

▶ The product x = Qw can be computed using O(n) operations if Q is a Householder transformation

ightharpoonup Householder transformations are also called *reflectors* because their application reflects a vector along a hyperplane (changes sign of component of w that is parallel to u)

Givens Rotations

▶ Householder reflectors reflect vectors, Givens rotations rotate them

lacktriangle Givens rotations are defined by orthogonal matrices of the form $\begin{bmatrix} c & s \\ -s & c \end{bmatrix}$

OR via Givens Rotations

► We can apply a Givens rotation to a pair of matrix rows, to eliminate the first nonzero entry of the second row

lacktriangle Thus, n(n-1)/2 Givens rotations are needed for QR of a square matrix

Rank-Deficient Least Squares

Suppose we want to solve a linear system or least squares problem with a (nearly) rank deficient matrix A

Rank-deficient least squares problems seek a minimizer $m{x}$ of $||m{A}m{x}-m{b}||_2$ of minimal norm $||m{x}||_2$

Truncated SVD

▶ After floating-point rounding, rank-deficient matrices typically regain full-rank but have nonzero singular values on the order of $\epsilon_{\rm mach}\sigma_{\rm max}$

▶ By the *Eckart-Young-Mirsky theorem*, truncated SVD also provides the best low-rank approximation of a matrix (in 2-norm and Frobenius norm)

QR with Column Pivoting

QR with column pivoting provides a way to approximately solve rank-deficient least squares problems and compute the truncated SVD

ightharpoonup A pivoted QR factorization can be used to compute a rank-r approximation