CS 450: Numerical Anlaysis ${ }^{1}$

Linear Least Squares

University of Illinois at Urbana-Champaign

[^0]
Linear Least Squares

- Find $\boldsymbol{x}^{\star}=\operatorname{argmin}_{\boldsymbol{x} \in \mathbb{R}^{n}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}$ where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$:
- Given the SVD $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ we have $\boldsymbol{x}^{\star}=\underbrace{\boldsymbol{V} \boldsymbol{\Sigma}^{\dagger} \boldsymbol{U}^{T}}_{\boldsymbol{A}^{\dagger}} \boldsymbol{b}$, where $\boldsymbol{\Sigma}^{\dagger}$ contains the reciprocal of all nonzeros in Σ :

Data Fitting via Linear Least Squares

- Given a set of m points with coordinates \boldsymbol{x} and \boldsymbol{y}, seek an $n-1$ degree polynomial p so that $p\left(x_{i}\right) \approx y_{i}$ by minimizing
- we can write this objective as a linear least squares problem

Conditioning of Linear Least Squares

- Consider a perturbation δb to the right-hand-side b
- The amplification in relative perturbation magnitude (from \boldsymbol{b} to \boldsymbol{x}) depends on how much of b is spanned by the columns of \boldsymbol{A},

Normal Equations

Demo: Normal equations vs Pseudoinverse

- Normal equations are given by solving $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}$:
- However, solving the normal equations is a more ill-conditioned problem then the original least squares algorithm

Solving the Normal Equations

- If \boldsymbol{A} is full-rank, then $\boldsymbol{A}^{T} \boldsymbol{A}$ is symmetric positive definite (SPD):
- Since $\boldsymbol{A}^{T} \boldsymbol{A}$ is SPD we can use Cholesky factorization, to factorize it and solve linear systems:

QR Factorization

- If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that $A=Q R$
- A reduced QR factorization (unique part of general QR) is defined so that $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and R is square and upper-triangular
- We can solve the normal equations (and consequently the linear least squares problem) via reduced QR as follows

Gram-Schmidt Orthogonalization

- Classical Gram-Schmidt process for QR:
- Modified Gram-Schmidt process for QR:

Householder QR Factorization

- A Householder transformation $Q=I-2 \boldsymbol{u} u^{T}$ is an orthogonal matrix defined to annihilate entries of a given vector z, so $Q z= \pm\|z\|_{2} e_{1}$:
- Imposing this form on Q leaves exactly two choices for u given z,

$$
\boldsymbol{u}=\frac{\boldsymbol{z} \pm\|\boldsymbol{z}\|_{2} \boldsymbol{e}_{1}}{\|\boldsymbol{z} \pm\| \boldsymbol{z}\left\|_{2} \boldsymbol{e}_{1}\right\|_{2}}
$$

Visualization of Householder Reflector

Applying Householder Transformations

- The product $\boldsymbol{x}=\boldsymbol{Q} \boldsymbol{w}$ can be computed using $O(n)$ operations if \boldsymbol{Q} is a Householder transformation
- Householder transformations are also called reflectors because their application reflects a vector along a hyperplane (changes sign of component of \boldsymbol{w} that is parallel to \boldsymbol{u})

Givens Rotations

- Householder reflectors reflect vectors, Givens rotations rotate them
- Givens rotations are defined by orthogonal matrices of the form $\left[\begin{array}{cc}c & s \\ -s & c\end{array}\right]$

QR via Givens Rotations

- We can apply a Givens rotation to a pair of matrix rows, to eliminate the first nonzero entry of the second row
- Thus, $n(n-1) / 2$ Givens rotations are needed for QR of a square matrix

Rank-Deficient Least Squares

- Suppose we want to solve a linear system or least squares problem with a (nearly) rank deficient matrix \boldsymbol{A}
- Rank-deficient least squares problems seek a minimizer \boldsymbol{x} of $\|\boldsymbol{A x}-\boldsymbol{b}\|_{2}$ of minimal norm $\|\boldsymbol{x}\|_{2}$

Truncated SVD

- After floating-point rounding, rank-deficient matrices typically regain full-rank but have nonzero singular values on the order of $\epsilon_{\operatorname{mach}} \sigma_{\max }$
- By the Eckart-Young-Mirsky theorem, truncated SVD also provides the best low-rank approximation of a matrix (in 2-norm and Frobenius norm)

QR with Column Pivoting

- QR with column pivoting provides a way to approximately solve rank-deficient least squares problems and compute the truncated SVD
- A pivoted QR factorization can be used to compute a rank-r approximation

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

