
CS 450: Numerical Anlaysis1

Linear Least Squares

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).

http://heath.cs.illinois.edu/scicomp/notes/index.html

Linear Least Squares
▶ Find x⋆ = argminx∈Rn ||Ax− b||2 where A ∈ Rm×n:

Since m ≥ n, the minimizer generally does not attain a zero residual Ax− b.
We can rewrite the optimization problem constraint via

x⋆ = argmin
x∈Rn

||Ax− b||22 = argmin
x∈Rn

[
(Ax− b)T (Ax− b)

]

▶ Given the SVD A = UΣV T we have x⋆ = V Σ†UT︸ ︷︷ ︸
A†

b, where Σ† contains the

reciprocal of all nonzeros in Σ:
▶ The minimizer satisfies UΣV Tx⋆ ∼= b and consequently also satisfies

Σy⋆ ∼= d where y⋆ = V Tx⋆ and d = UT b.

▶ The minimizer of the reduced problem is y⋆ = Σ†d, so yi = di/σi for
i ∈ {1, . . . , n} and yi = 0 for i ∈ {n+ 1, . . . ,m}.

Data Fitting via Linear Least Squares

▶ Given a set of m points with coordinates x and y, seek an n− 1 degree
polynomial p so that p(xi) ≈ yi by minimizing

m∑
i=1

(yi − p(xi))
2 =

m∑
i=1

(
yi −

n∑
j=1

zjx
j−1
i

)2

where z ∈ Rn are the unknown polynomial coefficients
▶ we can write this objective as a linear least squares problem

∥y −Az∥22 where A =

1 x1 · · · xn−1
1

...
...

...
1 xm · · · xn−1

m



Demo: Polynomial fitting with the normal equations

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Polynomial fitting with the normal equations.html

Conditioning of Linear Least Squares
▶ Consider a perturbation δb to the right-hand-side b

A(x+ δx) ∼= b+ δb

▶ The amplification in relative perturbation magnitude (from b to x) depends
on how much of b is spanned by the columns of A,

(x+ δx) = A†(b+ δb)

δx = A†δb

∥δx∥2
∥x∥2

=
∥A†δb∥2
∥x∥2

≤ 1

σmin(A)

∥δb∥2
∥x∥2

≤ 1

σmin(A)

∥δb∥2
∥Ax∥2/∥A∥2

≤ κ(A)
∥b∥2

∥Ax∥2
∥δb∥2
∥b∥2

Normal Equations
▶ Normal equations are given by solving ATAx = ATb:

If ATAx = ATb then

(UΣV T)TUΣV Tx = (UΣV T)Tb

ΣTΣV Tx = ΣTUTb

V Tx = (ΣTΣ)−1ΣTUTb = Σ†UTb

x = V Σ†UTb = x⋆

▶ However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm
Generally we have κ(ATA) = κ(A)2 (the singular values of ATA are the
squares of those in A). Consequently, solving the least squares problem via
the normal equations may be unstable because it involves solving a problem
that has worse conditioning than the initial least squares problem.

Demo: Normal equations vs Pseudoinverse
Demo: Issues with the normal equations

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Issues with the normal equations.html

Solving the Normal Equations

▶ If A is full-rank, then ATA is symmetric positive definite (SPD):
▶ Symmetry is easy to check (ATA)T = ATA.
▶ A being full-rank implies σmin > 0 and further if A = UΣV T we have

ATA = V TΣ2V

which implies that rows of V are the eigenvectors of ATA with eigenvalues Σ2

since ATAV T = V TΣ2.

▶ Since ATA is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:

ATA = LLT

QR Factorization
▶ If A is full-rank there exists an orthogonal matrix Q and a unique

upper-triangular matrix R with a positive diagonal such that A = QR
▶ Given ATA = LLT , we can take R = LT and obtain Q = AL−T , since

L−1AT︸ ︷︷ ︸
QT

AL−T︸ ︷︷ ︸
Q

= I implies that Q has orthonormal columns.

▶ A reduced QR factorization (unique part of general QR) is defined so that
Q ∈ Rm×n has orthonormal columns and R is square and upper-triangular
A full QR factorization gives Q ∈ Rm×m and R ∈ Rm×n, but since R is upper
triangular, the latter m− n columns of Q are only constrained so as to keep
Q orthogonal. The reduced QR factorization is given by taking the first n
columns Q and Q̂ the upper-triangular block of R, R̂ giving A = Q̂R̂.

▶ We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows

ATAx = ATb ⇒ R̂T Q̂T Q̂︸ ︷︷ ︸
I

R̂x = R̂T Q̂Tb ⇒ R̂x = Q̂Tb

Gram-Schmidt Orthogonalization
▶ Classical Gram-Schmidt process for QR:

The Gram-Schmidt process orthogonalizes a rectangular matrix, i.e. it finds a
set of orthonormal vectors with the same span as the columns of the given
matrix. If ai is the ith column of the input matrix, the ith orthonormal vector
(ith column of Q) is

qi = bi/ ||bi||2︸ ︷︷ ︸
rii

, where bi = ai −
i−1∑
j=1

⟨qj ,ai⟩︸ ︷︷ ︸
rji

qj .

▶ Modified Gram-Schmidt process for QR:
Better numerical stability is achieved by orthogonalizing each vector with
respect to each previous vector in sequence (modifying the vector prior to
orthogonalizing to the next vector), so bi = MGS(ai, i− 1), where
MGS(d, 0) = d and

MGS(d, j) = MGS(d− ⟨qj ,d⟩qj , j − 1)

Demo: Gram-Schmidt–The Movie
Demo: Gram-Schmidt and Modified Gram-Schmidt

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Gram-Schmidt--The Movie.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Gram-Schmidt and Modified Gram-Schmidt.html

Householder QR Factorization
▶ A Householder transformation Q = I − 2uuT is an orthogonal matrix

defined to annihilate entries of a given vector z, so Qz = ±||z||2e1:
▶ Householder QR achieves unconditional stability, by applying only orthogonal

transformations to reduce the matrix to upper-triangular form.
▶ Householder transformations (reflectors) are orthogonal matrices, that reduce

a vector to a multiple of the first elementary vector, αe1 = Qz.
▶ Because multiplying a vector by an orthogonal matrix preserves its norm, we

must have that |α| = ||z||2.
▶ As we will see, this transformation can be achieved by a rank-1 perturbation of

identify of the form Q = I − 2uuT where u is a normalized vector.
▶ Householder matrices are both symmetric and orthogonal implying that

Q = QT = Q−1.

▶ Imposing this form on Q leaves exactly two choices for u given z,

u =
z ± ||z||2e1

||z ± ||z||2e1||2

Demo: 3x3 Householder demo

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/3x3 Householder demo.html

Visualization of Householder Reflector

Applying Householder Transformations
▶ The product x = Qw can be computed using O(n) operations if Q is a

Householder transformation

x = (I − 2uuT)w = w − 2⟨u,w⟩u

▶ Householder transformations are also called reflectors because their
application reflects a vector along a hyperplane (changes sign of component
of w that is parallel to u)
▶ I − uuT would be an elementary projector, since ⟨u,w⟩u gives component of w

pointing in the direction of u and

x = (I − uuT)w = w − ⟨u,w⟩u

subtracts it out.
▶ On the other hand, Householder reflectors give

y = (I − 2uuT)w = w − 2⟨u,w⟩u = x− ⟨u,w⟩u

which reverses the sign of that component, so that ||y||2 = ||w||2.

Givens Rotations
▶ Householder reflectors reflect vectors, Givens rotations rotate them

▶ Householder matrices reflect vectors across a hyperplane, by negating the sign
of the vector component that is perpendicular to the hyperplane (parallel to u)

▶ Any vector can be reflected to a multiple of an elementary vector by a single
Householder rotation (in fact, there are two rotations, resulting in a different
sign of the resulting vector)

▶ Givens rotations instead rotate vectors by an axis of rotation that is
perpendicular to a hyperplane spanned by two elementary vectors

▶ Consequently, each Givens rotation can be used to zero-out (annihilate) one
entry of a vector, by rotating it so that the component of the vector pointing in
the direction of the axis corresponding to that entry, points into a different axis

▶ Givens rotations are defined by orthogonal matrices of the form
[
c s
−s c

]
▶ Given a vector

[
a
b

]
we define c and s so that

[
c s
−s c

] [
a
b

]
=

[√
a2 + b2

0

]
▶ Solving for c and s, we get c = a√

a2+b2
, s = b√

a2+b2

QR via Givens Rotations
▶ We can apply a Givens rotation to a pair of matrix rows, to eliminate the first

nonzero entry of the second row


I

c s
I

−s c
I





...
a
...
b
...


=



...√
a2 + b2

...
0
...


▶ Thus, n(n− 1)/2 Givens rotations are needed for QR of a square matrix

▶ Each rotation modifies two rows, which has cost O(n)

▶ Overall, Givens rotations cost 2n3, while Householder QR has cost (4/3)n3

▶ Givens rotations provide a convenient way of thinking about QR for sparse
matrices, since nonzeros can be successively annihilated, although they
introduce the same amount of fill (new nonzeros) as Householder reflectors

Demo: Relative cost of matrix factorizations

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Relative cost of matrix factorizations.html

Rank-Deficient Least Squares
▶ Suppose we want to solve a linear system or least squares problem with a

(nearly) rank deficient matrix A
▶ A rank-deficient (singular) matrix satisfies Ax = 0 for some x ̸= 0

▶ Rank-deficient matrices must have at least one zero singular value
▶ Matrices are said to be deficient in numerical rank if they have extremely small

singular values
▶ The solution to both linear systems (if it exists) and least squares is not unique,

since we can add to it any multiple of x
▶ Rank-deficient least squares problems seek a minimizer x of ||Ax− b||2 of

minimal norm ||x||2
▶ If A is a diagonal matrix (with some zero diagonal entries), the best we can do

is xi = bi/aii for all i such that aii ̸= 0 and xi = 0 otherwise
▶ We can solve general rank-deficient systems and least squares problems via

x = A†b where the pseudoinverse is

A† = V Σ†UT σ†
i =

{
1/σi : σi > 0

0 : σi = 0

Truncated SVD
▶ After floating-point rounding, rank-deficient matrices typically regain

full-rank but have nonzero singular values on the order of ϵmachσmax
▶ Very small singular values can cause large fluctuations in the solution
▶ To ignore them, we can use a pseudoinverse based on the truncated SVD which

retains singular values above an appropriate threshold
▶ Alternatively, we can use Tykhonov regularization, solving least squares

problems of the form minx ||Ax− b||22 + α||x||22, which are equivalent to the
augmented least squares problem[

A√
αI

]
x ∼=

[
b
0

]
▶ By the Eckart-Young-Mirsky theorem, truncated SVD also provides the best

low-rank approximation of a matrix (in 2-norm and Frobenius norm)
▶ The SVD provides a way to think of a matrix as a sum of outer-products σiuiv

T
i

that are disjoint by orthogonality and the norm of which is σi

▶ Keeping the r outer products with largest norm provides the best rank-r
approximation

Demo: Image compression

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/03-least-squares/Image compression.html

QR with Column Pivoting
▶ QR with column pivoting provides a way to approximately solve

rank-deficient least squares problems and compute the truncated SVD
▶ We seek a factorization of the form QR = AP where P is a permutation matrix

that permutes the columns of A
▶ For n× n matrix A of rank r, the bottom r × r block of R will be 0

▶ To solve least squares, we can solve the rank-deficient triangular system
Ry = QT b then compute x = Py

▶ A pivoted QR factorization can be used to compute a rank-r approximation
▶ To compute QR with column pivoting,

1. pivot the column of largest norm to be the leading column,

2. form and apply a Householder reflector H so that HA =

[
α b
0 B

]
,

3. proceed recursively (go back to step 1) to pivot the next column and factorize B

▶ Computing the SVD of the first r columns of AP T gives approximations that are
typically almost as good as the truncated SVD, but other ”rank-revealing” QR
algorithms exist with more robust guarantees

▶ Halting after r steps leads to a cost of O(n2r)

	Existence and Conditioning
	Normal Equations
	QR Decomposition
	Existence and Applicability
	Gram-Schmidt Algorithm
	Householder Algorithm
	Givens Algorithm

	Rank-Deficient Problems

