CS 450: Numerical Anlaysis ${ }^{1}$

Linear Least Squares

University of Illinois at Urbana-Champaign

[^0]
Linear Least Squares

- Find $\boldsymbol{x}^{\star}=\operatorname{argmin}_{\boldsymbol{x} \in \mathbb{R}^{n}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}$ where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$:

Since $m \geq n$, the minimizer generally does not attain a zero residual $\boldsymbol{A x}-\boldsymbol{b}$.
We can rewrite the optimization problem constraint via

$$
\boldsymbol{x}^{\star}=\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}=\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left[(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})^{T}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})\right]
$$

- Given the SVD $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ we have $\boldsymbol{x}^{\star}=\underbrace{\boldsymbol{V} \boldsymbol{\Sigma}^{\dagger} \boldsymbol{U}^{T}}_{\boldsymbol{A}^{\dagger}} \boldsymbol{b}$, where $\boldsymbol{\Sigma}^{\dagger}$ contains the reciprocal of all nonzeros in Σ :
- The minimizer satisfies $\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \boldsymbol{x}^{\star} \cong \boldsymbol{b}$ and consequently also satisfies

$$
\boldsymbol{\Sigma} \boldsymbol{y}^{\star} \cong \boldsymbol{d} \quad \text { where } \boldsymbol{y}^{\star}=\boldsymbol{V}^{T} \boldsymbol{x}^{\star} \text { and } \boldsymbol{d}=\boldsymbol{U}^{T} \boldsymbol{b} \text {. }
$$

- The minimizer of the reduced problem is $\boldsymbol{y}^{\star}=\boldsymbol{\Sigma}^{\dagger} \boldsymbol{d}$, so $y_{i}=d_{i} / \sigma_{i}$ for $i \in\{1, \ldots, n\}$ and $y_{i}=0$ for $i \in\{n+1, \ldots, m\}$.

Data Fitting via Linear Least Squares

- Given a set of m points with coordinates \boldsymbol{x} and \boldsymbol{y}, seek an $n-1$ degree polynomial p so that $p\left(x_{i}\right) \approx y_{i}$ by minimizing

$$
\sum_{i=1}^{m}\left(y_{i}-p\left(x_{i}\right)\right)^{2}=\sum_{i=1}^{m}\left(y_{i}-\sum_{j=1}^{n} z_{j} x_{i}^{j-1}\right)^{2}
$$

where $z \in \mathbb{R}^{n}$ are the unknown polynomial coefficients

- we can write this objective as a linear least squares problem

$$
\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{z}\|_{2}^{2} \quad \text { where } \quad \boldsymbol{A}=\left[\begin{array}{cccc}
1 & x_{1} & \cdots & x_{1}^{n-1} \\
\vdots & \vdots & & \vdots \\
1 & x_{m} & \cdots & x_{m}^{n-1}
\end{array}\right]
$$

Conditioning of Linear Least Squares

- Consider a perturbation δb to the right-hand-side b

$$
A(x+\delta x) \cong b+\delta b
$$

- The amplification in relative perturbation magnitude (from b to \boldsymbol{x}) depends on how much of b is spanned by the columns of A,

$$
\begin{aligned}
(\boldsymbol{x}+\boldsymbol{\delta} \boldsymbol{x}) & =\boldsymbol{A}^{\dagger}(\boldsymbol{b}+\boldsymbol{\delta} \boldsymbol{b}) \\
\boldsymbol{\delta} \boldsymbol{x} & =\boldsymbol{A}^{\dagger} \boldsymbol{\delta} \boldsymbol{b} \\
\frac{\|\boldsymbol{\delta} \boldsymbol{x}\|_{2}}{\|\boldsymbol{x}\|_{2}} & =\frac{\left\|\boldsymbol{A}^{\dagger} \boldsymbol{\delta} \boldsymbol{b}\right\|_{2}}{\|\boldsymbol{x}\|_{2}} \\
& \leq \frac{1}{\sigma_{\min }(\boldsymbol{A})} \frac{\|\boldsymbol{\delta}\|_{2}}{\|\boldsymbol{x}\|_{2}} \\
& \leq \frac{1}{\sigma_{\min }(\boldsymbol{A})} \frac{\|\boldsymbol{\delta} \boldsymbol{b}\|_{2}}{\|\boldsymbol{A} \boldsymbol{x}\|_{2} /\|\boldsymbol{A}\|_{2}} \\
& \leq \kappa(\boldsymbol{A}) \frac{\|\boldsymbol{b}\|_{2}}{\|\boldsymbol{A} \boldsymbol{x}\|_{2}} \frac{\|\boldsymbol{\delta} \boldsymbol{b}\|_{2}}{\|\boldsymbol{b}\|_{2}}
\end{aligned}
$$

Normal Equations

- Normal equations are given by solving $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}$:

If $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}$ then

$$
\begin{aligned}
\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)^{T} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \boldsymbol{x} & =\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)^{T} \boldsymbol{b} \\
\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \boldsymbol{x} & =\boldsymbol{\Sigma}^{T} \boldsymbol{U}^{T} \boldsymbol{b} \\
\boldsymbol{V}^{T} \boldsymbol{x} & =\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}\right)^{-1} \boldsymbol{\Sigma}^{T} \boldsymbol{U}^{T} \boldsymbol{b}=\boldsymbol{\Sigma}^{\dagger} \boldsymbol{U}^{T} \boldsymbol{b} \\
\boldsymbol{x} & =\boldsymbol{V} \boldsymbol{\Sigma}^{\dagger} \boldsymbol{U}^{T} \boldsymbol{b}=\boldsymbol{x}^{\star}
\end{aligned}
$$

- However, solving the normal equations is a more ill-conditioned problem then the original least squares algorithm
Generally we have $\kappa\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=\kappa(\boldsymbol{A})^{2}$ (the singular values of $\boldsymbol{A}^{T} \boldsymbol{A}$ are the squares of those in \boldsymbol{A}). Consequently, solving the least squares problem via the normal equations may be unstable because it involves solving a problem that has worse conditioning than the initial least squares problem.

Solving the Normal Equations

- If \boldsymbol{A} is full-rank, then $\boldsymbol{A}^{T} \boldsymbol{A}$ is symmetric positive definite (SPD):
- Symmetry is easy to check $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{T}=\boldsymbol{A}^{T} \boldsymbol{A}$.
- \boldsymbol{A} being full-rank implies $\sigma_{\text {min }}>0$ and further if $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ we have

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{V}^{T} \boldsymbol{\Sigma}^{2} \boldsymbol{V}
$$

which implies that rows of \boldsymbol{V} are the eigenvectors of $\boldsymbol{A}^{T} \boldsymbol{A}$ with eigenvalues $\boldsymbol{\Sigma}^{2}$ since $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{V}^{T}=\boldsymbol{V}^{T} \boldsymbol{\Sigma}^{2}$.

- Since $\boldsymbol{A}^{T} \boldsymbol{A}$ is SPD we can use Cholesky factorization, to factorize it and solve linear systems:

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}
$$

QR Factorization

- If \boldsymbol{A} is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix \boldsymbol{R} with a positive diagonal such that $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R}$
- Given $\boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}$, we can take $\boldsymbol{R}=\boldsymbol{L}^{T}$ and obtain $\boldsymbol{Q}=\boldsymbol{A} \boldsymbol{L}^{-T}$, since $\underbrace{\boldsymbol{L}^{-1} \boldsymbol{A}^{T}}_{\boldsymbol{Q}^{T}} \underbrace{\boldsymbol{A} \boldsymbol{L}^{-T}}_{\boldsymbol{Q}}=\boldsymbol{I}$ implies that \boldsymbol{Q} has orthonormal columns.
- A reduced QR factorization (unique part of general QR) is defined so that $\boldsymbol{Q} \in \mathbb{R}^{m \times n}$ has orthonormal columns and \boldsymbol{R} is square and upper-triangular A full $Q R$ factorization gives $\boldsymbol{Q} \in \mathbb{R}^{m \times m}$ and $\boldsymbol{R} \in \mathbb{R}^{m \times n}$, but since \boldsymbol{R} is upper triangular, the latter $m-n$ columns of Q are only constrained so as to keep Q orthogonal. The reduced $Q R$ factorization is given by taking the first n columns Q and \hat{Q} the upper-triangular block of \boldsymbol{R}, \hat{R} giving $\boldsymbol{A}=\hat{\boldsymbol{Q}} \hat{\boldsymbol{R}}$.
- We can solve the normal equations (and consequently the linear least squares problem) via reduced QR as follows

$$
\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b} \quad \Rightarrow \quad \hat{\boldsymbol{R}}^{T} \underbrace{\hat{\boldsymbol{Q}}^{T} \hat{\boldsymbol{Q}}}_{\boldsymbol{I}} \hat{\boldsymbol{R}} \boldsymbol{x}=\hat{\boldsymbol{R}}^{T} \hat{\boldsymbol{Q}}^{T} \boldsymbol{b} \quad \Rightarrow \quad \hat{\boldsymbol{R}} \boldsymbol{x}=\hat{\boldsymbol{Q}}^{T} \boldsymbol{b}
$$

Gram-Schmidt Orthogonalization

- Classical Gram-Schmidt process for QR:

The Gram-Schmidt process orthogonalizes a rectangular matrix, i.e. it finds a set of orthonormal vectors with the same span as the columns of the given matrix. If a_{i} is the ith column of the input matrix, the ith orthonormal vector (ith column of Q) is

$$
\boldsymbol{q}_{i}=\boldsymbol{b}_{i} / \underbrace{\left\|\boldsymbol{b}_{i}\right\|_{2}}_{r_{i i}}, \quad \text { where } \quad \boldsymbol{b}_{i}=\boldsymbol{a}_{i}-\sum_{j=1}^{i-1} \underbrace{\left\langle\boldsymbol{q}_{j}, \boldsymbol{a}_{i}\right\rangle}_{r_{j i}} \boldsymbol{q}_{j} .
$$

- Modified Gram-Schmidt process for QR:

Better numerical stability is achieved by orthogonalizing each vector with respect to each previous vector in sequence (modifying the vector prior to orthogonalizing to the next vector), so $\boldsymbol{b}_{i}=\operatorname{MGS}\left(a_{i}, i-1\right)$, where $\operatorname{MGS}(d, 0)=d$ and

$$
\operatorname{MGS}(\boldsymbol{d}, j)=\operatorname{MGS}\left(\boldsymbol{d}-\left\langle\boldsymbol{q}_{j}, \boldsymbol{d}\right\rangle \boldsymbol{q}_{j}, j-1\right)
$$

Householder QR Factorization

- A Householder transformation $Q=I-2 u u^{T}$ is an orthogonal matrix defined to annihilate entries of a given vector \boldsymbol{z}, so $\boldsymbol{Q z}= \pm\|\boldsymbol{z}\|_{2} e_{1}$:
- Householder QR achieves unconditional stability, by applying only orthogonal transformations to reduce the matrix to upper-triangular form.
- Householder transformations (reflectors) are orthogonal matrices, that reduce a vector to a multiple of the first elementary vector, $\alpha \boldsymbol{e}_{1}=\boldsymbol{Q z}$.
- Because multiplying a vector by an orthogonal matrix preserves its norm, we must have that $|\alpha|=\|\boldsymbol{z}\|_{2}$.
- As we will see, this transformation can be achieved by a rank-1 perturbation of identify of the form $\boldsymbol{Q}=\boldsymbol{I}-2 \boldsymbol{u} \boldsymbol{u}^{T}$ where \boldsymbol{u} is a normalized vector.
- Householder matrices are both symmetric and orthogonal implying that $\boldsymbol{Q}=\boldsymbol{Q}^{T}=\boldsymbol{Q}^{-1}$.
- Imposing this form on Q leaves exactly two choices for u given z,

$$
\boldsymbol{u}=\frac{\boldsymbol{z} \pm\|\boldsymbol{z}\|_{2} \boldsymbol{e}_{1}}{\|\boldsymbol{z} \pm\| \boldsymbol{z}\left\|_{2} \boldsymbol{e}_{1}\right\|_{2}}
$$

Visualization of Householder Reflector

Applying Householder Transformations

- The product $\boldsymbol{x}=\boldsymbol{Q} \boldsymbol{w}$ can be computed using $O(n)$ operations if \boldsymbol{Q} is a Householder transformation

$$
\boldsymbol{x}=\left(\boldsymbol{I}-2 \boldsymbol{u} \boldsymbol{u}^{T}\right) \boldsymbol{w}=\boldsymbol{w}-2\langle\boldsymbol{u}, \boldsymbol{w}\rangle \boldsymbol{u}
$$

- Householder transformations are also called reflectors because their application reflects a vector along a hyperplane (changes sign of component of w that is parallel to \boldsymbol{u})
- I-u्u ${ }^{T}$ would be an elementary projector, since $\langle\boldsymbol{u}, \boldsymbol{w}\rangle \boldsymbol{u}$ gives component of \boldsymbol{w} pointing in the direction of u and

$$
\boldsymbol{x}=\left(\boldsymbol{I}-\boldsymbol{u} \boldsymbol{u}^{T}\right) \boldsymbol{w}=\boldsymbol{w}-\langle\boldsymbol{u}, \boldsymbol{w}\rangle \boldsymbol{u}
$$

subtracts it out.

- On the other hand, Householder reflectors give

$$
\boldsymbol{y}=\left(\boldsymbol{I}-2 \boldsymbol{u} \boldsymbol{u}^{T}\right) \boldsymbol{w}=\boldsymbol{w}-2\langle\boldsymbol{u}, \boldsymbol{w}\rangle \boldsymbol{u}=\boldsymbol{x}-\langle\boldsymbol{u}, \boldsymbol{w}\rangle \boldsymbol{u}
$$

which reverses the sign of that component, so that $\|\boldsymbol{y}\|_{2}=\|\boldsymbol{w}\|_{2}$.

Givens Rotations

- Householder reflectors reflect vectors, Givens rotations rotate them
- Householder matrices reflect vectors across a hyperplane, by negating the sign of the vector component that is perpendicular to the hyperplane (parallel to u)
- Any vector can be reflected to a multiple of an elementary vector by a single Householder rotation (in fact, there are two rotations, resulting in a different sign of the resulting vector)
- Givens rotations instead rotate vectors by an axis of rotation that is perpendicular to a hyperplane spanned by two elementary vectors
- Consequently, each Givens rotation can be used to zero-out (annihilate) one entry of a vector, by rotating it so that the component of the vector pointing in the direction of the axis corresponding to that entry, points into a different axis
- Givens rotations are defined by orthogonal matrices of the form $\left[\begin{array}{cc}c & s \\ -s & c\end{array}\right]$
- Given a vector $\left[\begin{array}{l}a \\ b\end{array}\right]$ we define c and s so that $\left[\begin{array}{cc}c & s \\ -s & c\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}\sqrt{a^{2}+b^{2}} \\ 0\end{array}\right]$
- Solving for c and s, we get $c=\frac{a}{\sqrt{a^{2}+b^{2}}}, \quad s=\frac{b}{\sqrt{a^{2}+b^{2}}}$

QR via Givens Rotations

- We can apply a Givens rotation to a pair of matrix rows, to eliminate the first nonzero entry of the second row

$$
\left[\begin{array}{lllll}
\boldsymbol{I} & & & & \\
& c & & s & \\
& & \boldsymbol{I} & & \\
& -s & & c & \\
& & & & \boldsymbol{I}
\end{array}\right]\left[\begin{array}{c}
\vdots \\
a \\
\vdots \\
b \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
\sqrt{a^{2}+b^{2}} \\
\vdots \\
0 \\
\vdots
\end{array}\right]
$$

- Thus, $n(n-1) / 2$ Givens rotations are needed for QR of a square matrix
- Each rotation modifies two rows, which has cost $O(n)$
- Overall, Givens rotations cost $2 n^{3}$, while Householder QR has cost $(4 / 3) n^{3}$
- Givens rotations provide a convenient way of thinking about QR for sparse matrices, since nonzeros can be successively annihilated, although they introduce the same amount of fill (new nonzeros) as Householder reflectors

Rank-Deficient Least Squares

- Suppose we want to solve a linear system or least squares problem with a (nearly) rank deficient matrix \boldsymbol{A}
- A rank-deficient (singular) matrix satisfies $\boldsymbol{A x}=\mathbf{0}$ for some $\boldsymbol{x} \neq \mathbf{0}$
- Rank-deficient matrices must have at least one zero singular value
- Matrices are said to be deficient in numerical rank if they have extremely small singular values
- The solution to both linear systems (if it exists) and least squares is not unique, since we can add to it any multiple of \boldsymbol{x}
- Rank-deficient least squares problems seek a minimizer \boldsymbol{x} of $\|\boldsymbol{A x}-\boldsymbol{b}\|_{2}$ of minimal norm $\|\boldsymbol{x}\|_{2}$
- If \boldsymbol{A} is a diagonal matrix (with some zero diagonal entries), the best we can do is $x_{i}=b_{i} / a_{i i}$ for all i such that $a_{i i} \neq 0$ and $x_{i}=0$ otherwise
- We can solve general rank-deficient systems and least squares problems via $\boldsymbol{x}=\boldsymbol{A}^{\dagger} \boldsymbol{b}$ where the pseudoinverse is

$$
\boldsymbol{A}^{\dagger}=\boldsymbol{V} \boldsymbol{\Sigma}^{\dagger} \boldsymbol{U}^{T} \quad \sigma_{i}^{\dagger}= \begin{cases}1 / \sigma_{i} & : \sigma_{i}>0 \\ 0 & : \sigma_{i}=0\end{cases}
$$

Truncated SVD

- After floating-point rounding, rank-deficient matrices typically regain full-rank but have nonzero singular values on the order of $\epsilon_{\text {mach }} \sigma_{\text {max }}$
- Very small singular values can cause large fluctuations in the solution
- To ignore them, we can use a pseudoinverse based on the truncated SVD which retains singular values above an appropriate threshold
- Alternatively, we can use Tykhonov regularization, solving least squares problems of the form $\min _{\boldsymbol{x}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}+\alpha\|\boldsymbol{x}\|_{2}^{2}$, which are equivalent to the augmented least squares problem

$$
\left[\begin{array}{c}
\boldsymbol{A} \\
\sqrt{\alpha} \boldsymbol{I}
\end{array}\right] \boldsymbol{x} \cong\left[\begin{array}{l}
\boldsymbol{b} \\
\mathbf{0}
\end{array}\right]
$$

- By the Eckart-Young-Mirsky theorem, truncated SVD also provides the best low-rank approximation of a matrix (in 2-norm and Frobenius norm)
- The SVD provides a way to think of a matrix as a sum of outer-products $\sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}$ that are disjoint by orthogonality and the norm of which is σ_{i}
- Keeping the router products with largest norm provides the best rank-r approximation

QR with Column Pivoting

- QR with column pivoting provides a way to approximately solve rank-deficient least squares problems and compute the truncated SVD
- We seek a factorization of the form $\boldsymbol{Q R}=\boldsymbol{A P}$ where \boldsymbol{P} is a permutation matrix that permutes the columns of \boldsymbol{A}
- For $n \times n$ matrix \boldsymbol{A} of rank r, the bottom $r \times r$ block of \boldsymbol{R} will be $\mathbf{0}$
- To solve least squares, we can solve the rank-deficient triangular system $\boldsymbol{R} \boldsymbol{y}=\boldsymbol{Q}^{T} \boldsymbol{b}$ then compute $\boldsymbol{x}=\boldsymbol{P} \boldsymbol{y}$
- A pivoted QR factorization can be used to compute a rank- r approximation
- To compute QR with column pivoting,

1. pivot the column of largest norm to be the leading column,
2. form and apply a Householder reflector \boldsymbol{H} so that $\boldsymbol{H} \boldsymbol{A}=\left[\begin{array}{ll}\alpha & \boldsymbol{b} \\ \mathbf{0} & \boldsymbol{B}\end{array}\right]$,
3. proceed recursively (go back to step 1) to pivot the next column and factorize \boldsymbol{B}

- Computing the SVD of the first r columns of $\boldsymbol{A} \boldsymbol{P}^{T}$ gives approximations that are typically almost as good as the truncated SVD, but other "rank-revealing" QR algorithms exist with more robust guarantees
- Halting after r steps leads to a cost of $O\left(n^{2} r\right)$

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

