CS 450: Numerical Anlaysis¹ Linear Least Squares

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Linear Least Squares

Find
$$x^{\star} = \operatorname{argmin}_{x \in \mathbb{R}^n} ||Ax - b||_2$$
 where $A \in \mathbb{R}^{m imes n}$:

Since $m \ge n$, the minimizer generally does not attain a zero residual Ax - b. We can rewrite the optimization problem constraint via

$$oldsymbol{x}^{\star} = \operatorname*{argmin}_{oldsymbol{x} \in \mathbb{R}^n} ||oldsymbol{A}oldsymbol{x} - oldsymbol{b}||_2^2 = \operatorname*{argmin}_{oldsymbol{x} \in \mathbb{R}^n} \left[(oldsymbol{A}oldsymbol{x} - oldsymbol{b})^T (oldsymbol{A}oldsymbol{x} - oldsymbol{b})
ight]$$

• Given the SVD $A = U\Sigma V^T$ we have $x^* = \underbrace{V\Sigma^{\dagger}U^T}_{A^{\dagger}} b$, where Σ^{\dagger} contains the

reciprocal of all nonzeros in Σ :

• The minimizer satisfies $m{U} m{\Sigma} m{V}^T m{x}^\star \cong m{b}$ and consequently also satisfies

$$oldsymbol{\Sigma} oldsymbol{y}^\star \cong oldsymbol{d}$$
 where $oldsymbol{y}^\star = oldsymbol{V}^T oldsymbol{x}^\star$ and $oldsymbol{d} = oldsymbol{U}^T oldsymbol{b}.$

• The minimizer of the reduced problem is $y^* = \Sigma^{\dagger} d$, so $y_i = d_i / \sigma_i$ for $i \in \{1, ..., n\}$ and $y_i = 0$ for $i \in \{n + 1, ..., m\}$.

Data Fitting via Linear Least Squares

• Given a set of *m* points with coordinates x and y, seek an n-1 degree polynomial p so that $p(x_i) \approx y_i$ by minimizing

$$\sum_{i=1}^{m} (y_i - p(x_i))^2 = \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} z_j x_i^{j-1} \right)^2$$

where $\boldsymbol{z} \in \mathbb{R}^n$ are the unknown polynomial coefficients

we can write this objective as a linear least squares problem

$$\|oldsymbol{y}-oldsymbol{A}oldsymbol{z}\|_2^2$$
 where $oldsymbol{A}=egin{bmatrix} 1 & x_1 & \cdots & x_1^{n-1} \ dots & dots & dots \ dots & dots \ dots & dots \ dots & dots \ dots$

Conditioning of Linear Least Squares

• Consider a perturbation δb to the right-hand-side b

 $A(x + \delta x) \cong b + \delta b$

The amplification in relative perturbation magnitude (from b to x) depends on how much of b is spanned by the columns of A,

$$egin{aligned} & (oldsymbol{x}+oldsymbol{\delta}oldsymbol{x}) & =oldsymbol{A}^\dagger(oldsymbol{b}+oldsymbol{\delta}oldsymbol{b}) \ & oldsymbol{\delta}oldsymbol{x} & =oldsymbol{A}^\dagger(oldsymbol{b}+oldsymbol{\delta}oldsymbol{b})\|_2 \ & \displaystyle rac{\|oldsymbol{\delta}oldsymbol{x}\|_2}{\|oldsymbol{x}\|_2} & \leq rac{1}{\sigma_{min}(oldsymbol{A})}rac{\|oldsymbol{\delta}oldsymbol{b}\|_2}{\|oldsymbol{A}oldsymbol{x}\|_2} \ & \displaystyle \leq rac{1}{\sigma_{min}(oldsymbol{A})}rac{\|oldsymbol{\delta}oldsymbol{b}\|_2}{\|oldsymbol{A}oldsymbol{x}\|_2} \ & \displaystyle \leq \kappa(oldsymbol{A})rac{\|oldsymbol{b}\|_2}{\|oldsymbol{A}oldsymbol{x}\|_2} \ & \displaystyle \leq \kappa(oldsymbol{A})rac{\|oldsymbol{b}\|_2}{\|oldsymbol{A}oldsymbol{x}\|_2} \ & \displaystyle \leq \kappa(oldsymbol{A})rac{\|oldsymbol{b}\|_2}{\|oldsymbol{A}oldsymbol{x}\|_2} \ & \displaystyle \|oldsymbol{b}\|_2 \ & \displaystyle \|oldsymbol{$$

Normal Equations

Demo: Normal equations vs Pseudoinverse Demo: Issues with the normal equations

• Normal equations are given by solving
$$A^T A x = A^T b$$
:
If $A^T A x = A^T b$ then

$$(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T)^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T\boldsymbol{x} = (\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T)^T\boldsymbol{b}$$
$$\boldsymbol{\Sigma}^T\boldsymbol{\Sigma}\boldsymbol{V}^T\boldsymbol{x} = \boldsymbol{\Sigma}^T\boldsymbol{U}^T\boldsymbol{b}$$
$$\boldsymbol{V}^T\boldsymbol{x} = (\boldsymbol{\Sigma}^T\boldsymbol{\Sigma})^{-1}\boldsymbol{\Sigma}^T\boldsymbol{U}^T\boldsymbol{b} = \boldsymbol{\Sigma}^{\dagger}\boldsymbol{U}^T\boldsymbol{b}$$
$$\boldsymbol{x} = \boldsymbol{V}\boldsymbol{\Sigma}^{\dagger}\boldsymbol{U}^T\boldsymbol{b} = \boldsymbol{x}^{\star}$$

However, solving the normal equations is a more ill-conditioned problem then the original least squares algorithm

Generally we have $\kappa(A^T A) = \kappa(A)^2$ (the singular values of $A^T A$ are the squares of those in A). Consequently, solving the least squares problem via the normal equations may be unstable because it involves solving a problem that has worse conditioning than the initial least squares problem.

Solving the Normal Equations

- If A is full-rank, then $A^T A$ is symmetric positive definite (SPD):
 - Symmetry is easy to check $(A^T A)^T = A^T A$.
 - A being full-rank implies $\sigma_{\min} > 0$ and further if $A = U \Sigma V^T$ we have

$$\boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{V}^T \boldsymbol{\Sigma}^2 \boldsymbol{V}$$

which implies that rows of V are the eigenvectors of $A^T A$ with eigenvalues Σ^2 since $A^T A V^T = V^T \Sigma^2$.

Since A^TA is SPD we can use Cholesky factorization, to factorize it and solve linear systems:

$$A^T A = L L^T$$

QR Factorization

- If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that A = QR
 - Given $A^T A = LL^T$, we can take $R = L^T$ and obtain $Q = AL^{-T}$, since $\underbrace{L^{-1}A^T}_{Q^T} \underbrace{AL^{-T}}_{Q} = I$ implies that Q has orthonormal columns.
- A reduced QR factorization (unique part of general QR) is defined so that $Q \in \mathbb{R}^{m \times n}$ has orthonormal columns and R is square and upper-triangular A full QR factorization gives $Q \in \mathbb{R}^{m \times m}$ and $R \in \mathbb{R}^{m \times n}$, but since R is upper triangular, the latter m n columns of Q are only constrained so as to keep Q orthogonal. The reduced QR factorization is given by taking the first n columns Q and \hat{Q} the upper-triangular block of R, \hat{R} giving $A = \hat{Q}\hat{R}$.
- We can solve the normal equations (and consequently the linear least squares problem) via reduced QR as follows

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta^Teta & eta^T \hat{m{Q}}^T \hat{m{Q}} & \hat{m{R}} x = \hat{m{R}}^T \hat{m{Q}}^T m{b} & \Rightarrow & \hat{m{R}} x = \hat{m{Q}}^T m{b} \ & \downarrow & I \end{aligned}$$

Gram-Schmidt Orthogonalization

Classical Gram-Schmidt process for QR:

The Gram-Schmidt process orthogonalizes a rectangular matrix, i.e. it finds a set of orthonormal vectors with the same span as the columns of the given matrix. If a_i is the *i*th column of the input matrix, the *i*th orthonormal vector (*i*th column of Q) is

$$oldsymbol{q}_i = oldsymbol{b}_i / \underbrace{||oldsymbol{b}_i||_2}_{r_{ii}}, \hspace{1em}$$
 where $oldsymbol{b}_i = oldsymbol{a}_i - \sum_{j=1}^{i-1} \underbrace{\langle oldsymbol{q}_j, oldsymbol{a}_i
angle}_{r_{ji}} oldsymbol{q}_j.$

Modified Gram-Schmidt process for QR:

Better numerical stability is achieved by orthogonalizing each vector with respect to each previous vector in sequence (modifying the vector prior to orthogonalizing to the next vector), so $\mathbf{b}_i = MGS(\mathbf{a}_i, i-1)$, where $MGS(\mathbf{d}, 0) = \mathbf{d}$ and

$$MGS(d, j) = MGS(d - \langle q_j, d \rangle q_j, j - 1)$$

Householder QR Factorization

- A Householder transformation $Q = I 2uu^T$ is an orthogonal matrix defined to annihilate entries of a given vector z, so $Qz = \pm ||z||_2 e_1$:
 - Householder QR achieves unconditional stability, by applying only orthogonal transformations to reduce the matrix to upper-triangular form.
 - Householder transformations (reflectors) are orthogonal matrices, that reduce a vector to a multiple of the first elementary vector, αe₁ = Qz.
 - Because multiplying a vector by an orthogonal matrix preserves its norm, we must have that |α| = ||z||₂.
 - As we will see, this transformation can be achieved by a rank-1 perturbation of identify of the form $Q = I 2uu^T$ where u is a normalized vector.
 - Householder matrices are both symmetric and orthogonal implying that $Q = Q^T = Q^{-1}$.
- Imposing this form on Q leaves exactly two choices for u given z,

$$m{u} = rac{m{z} \pm ||m{z}||_2 m{e}_1}{||m{z} \pm ||m{z}||_2 m{e}_1||_2}$$

Visualization of Householder Reflector

Applying Householder Transformations

• The product x = Qw can be computed using O(n) operations if Q is a Householder transformation

$$\boldsymbol{x} = (\boldsymbol{I} - 2\boldsymbol{u}\boldsymbol{u}^T)\boldsymbol{w} = \boldsymbol{w} - 2\langle \boldsymbol{u}, \boldsymbol{w} \rangle \boldsymbol{u}$$

- Householder transformations are also called *reflectors* because their application reflects a vector along a hyperplane (changes sign of component of w that is parallel to u)
 - $I uu^T$ would be an elementary projector, since $\langle u, w \rangle u$ gives component of w pointing in the direction of u and

$$oldsymbol{x} = (oldsymbol{I} - oldsymbol{u}oldsymbol{u}^T)oldsymbol{w} = oldsymbol{w} - \langleoldsymbol{u},oldsymbol{w}
angleoldsymbol{u}$$

subtracts it out.

On the other hand, Householder reflectors give

$$\boldsymbol{y} = (\boldsymbol{I} - 2\boldsymbol{u}\boldsymbol{u}^T)\boldsymbol{w} = \boldsymbol{w} - 2\langle \boldsymbol{u}, \boldsymbol{w} \rangle \boldsymbol{u} = \boldsymbol{x} - \langle \boldsymbol{u}, \boldsymbol{w} \rangle \boldsymbol{u}$$

which reverses the sign of that component, so that $||y||_2 = ||w||_2$.

Givens Rotations

- Householder reflectors reflect vectors, Givens rotations rotate them
 - Householder matrices reflect vectors across a hyperplane, by negating the sign of the vector component that is perpendicular to the hyperplane (parallel to u)
 - Any vector can be reflected to a multiple of an elementary vector by a single Householder rotation (in fact, there are two rotations, resulting in a different sign of the resulting vector)
 - Givens rotations instead rotate vectors by an axis of rotation that is perpendicular to a hyperplane spanned by two elementary vectors
 - Consequently, each Givens rotation can be used to zero-out (annihilate) one entry of a vector, by rotating it so that the component of the vector pointing in the direction of the axis corresponding to that entry, points into a different axis
- Givens rotations are defined by orthogonal matrices of the form $\begin{vmatrix} c & s \\ -s & c \end{vmatrix}$

► Given a vector
$$\begin{bmatrix} a \\ b \end{bmatrix}$$
 we define c and s so that $\begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sqrt{a^2 + b^2} \\ 0 \end{bmatrix}$
► Solving for c and s , we get $c = \frac{a}{\sqrt{a^2 + b^2}}$, $s = \frac{b}{\sqrt{a^2 + b^2}}$

QR via Givens Rotations

We can apply a Givens rotation to a pair of matrix rows, to eliminate the first nonzero entry of the second row

• Thus, n(n-1)/2 Givens rotations are needed for QR of a square matrix

- Each rotation modifies two rows, which has cost O(n)
- Overall, Givens rotations cost $2n^3$, while Householder QR has cost $(4/3)n^3$
- Givens rotations provide a convenient way of thinking about QR for sparse matrices, since nonzeros can be successively annihilated, although they introduce the same amount of fill (new nonzeros) as Householder reflectors

Rank-Deficient Least Squares

- Suppose we want to solve a linear system or least squares problem with a (nearly) rank deficient matrix A
 - lacksim A rank-deficient (singular) matrix satisfies Ax=0 for some x
 eq 0
 - Rank-deficient matrices must have at least one zero singular value
 - Matrices are said to be deficient in numerical rank if they have extremely small singular values
 - The solution to both linear systems (if it exists) and least squares is not unique, since we can add to it any multiple of x
- ▶ Rank-deficient least squares problems seek a minimizer x of $||Ax b||_2$ of minimal norm $||x||_2$
 - ▶ If A is a diagonal matrix (with some zero diagonal entries), the best we can do is $x_i = b_i/a_{ii}$ for all i such that $a_{ii} \neq 0$ and $x_i = 0$ otherwise
 - We can solve general rank-deficient systems and least squares problems via $x = A^{\dagger}b$ where the pseudoinverse is

$$oldsymbol{A}^{\dagger} = oldsymbol{V} oldsymbol{\Sigma}^{\dagger} oldsymbol{U}^T \quad \sigma_i^{\dagger} = egin{cases} 1/\sigma_i & : \sigma_i > 0 \ 0 & : \sigma_i = 0 \end{cases}$$

Truncated SVD

- After floating-point rounding, rank-deficient matrices typically regain full-rank but have nonzero singular values on the order of $\epsilon_{mach}\sigma_{max}$
 - Very small singular values can cause large fluctuations in the solution
 - To ignore them, we can use a pseudoinverse based on the truncated SVD which retains singular values above an appropriate threshold
 - Alternatively, we can use Tykhonov regularization, solving least squares problems of the form $\min_{x} ||Ax b||_{2}^{2} + \alpha ||x||_{2}^{2}$, which are equivalent to the augmented least squares problem

$$egin{bmatrix} oldsymbol{A} \ \sqrt{lpha}oldsymbol{I} \end{bmatrix} oldsymbol{x}\cong egin{bmatrix} oldsymbol{b} \ oldsymbol{0} \end{bmatrix}$$

By the *Eckart-Young-Mirsky theorem*, truncated SVD also provides the best low-rank approximation of a matrix (in 2-norm and Frobenius norm)

- The SVD provides a way to think of a matrix as a sum of outer-products σ_iu_iv_i^T that are disjoint by orthogonality and the norm of which is σ_i
- Keeping the r outer products with largest norm provides the best rank-r approximation

QR with Column Pivoting

- QR with column pivoting provides a way to approximately solve rank-deficient least squares problems and compute the truncated SVD
 - We seek a factorization of the form QR = AP where P is a permutation matrix that permutes the columns of A
 - For $n \times n$ matrix A of rank r, the bottom $r \times r$ block of R will be 0
 - To solve least squares, we can solve the rank-deficient triangular system $Ry = Q^T b$ then compute x = Py

► A pivoted QR factorization can be used to compute a rank-*r* approximation

- To compute QR with column pivoting,
 - 1. pivot the column of largest norm to be the leading column,
 - 2. form and apply a Householder reflector H so that $HA = \begin{bmatrix} \alpha & b \\ 0 & B \end{bmatrix}$,

3. proceed recursively (go back to step 1) to pivot the next column and factorize $m{B}$

- Computing the SVD of the first r columns of AP^T gives approximations that are typically almost as good as the truncated SVD, but other "rank-revealing" QR algorithms exist with more robust guarantees
- Halting after r steps leads to a cost of $O(n^2 r)$