CS 450: Numerical Anlaysis¹ Eigenvalue Problems

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Eigenvalues and Eigenvectors

A matrix A has eigenvector-eigenvalue pair (eigenpair) (λ, x) if

Each $n \times n$ matrix has up to n eigenvalues, which are either real or complex

Eigenvalue Decomposition

▶ If a matrix A is diagonalizable, it has an *eigenvalue decomposition*

• A and B are similar, if there exist Z such that $A = ZBZ^{-1}$

Similarity of Matrices

Invertible similarity transformations $m{Y} = m{X} m{A} m{X}^{-1}$

matrix (A)	reduced form (Y)
arbitrary	
diagonalizable	

Unitary similarity transformations $Y = UAU^H$

matrix ($oldsymbol{A}$)	reduced form (Y)
arbitrary	
normal	
Hermitian	

Orthogonal similarity transformations $oldsymbol{Y} = oldsymbol{Q} oldsymbol{A} oldsymbol{Q}^T$

matrix (A)	reduced form (Y)
real	
real symmetric	
SPD	

Canonical Forms

Any matrix is *similar* to a bidiagonal matrix, giving its *Jordan form*:

Any diagonalizable matrix is *unitarily similar* to a triangular matrix, giving its Schur form:

▶ Real matrices are *orthogonally similar* to a block-triangular real matrix with 1×1 or 2×2 blocks (real Schur form)

Eigenvectors from Schur Form

• Given the eigenvectors of one matrix, we seek those of a similar matrix:

Its easy to obtain eigenvectors of triangular matrix T:

Rayleigh Quotient

For any vector x, the Rayleigh quotient provides an estimate for some eigenvalue of A:

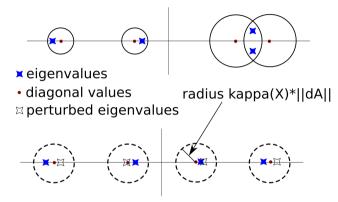
Perturbation Analysis of Eigenvalue Problems

For non-defective $A = XDX^{-1}$, the eigenvalues of $A + \delta A = \hat{X}(D + \delta D)X^{-1}$ satisfy $\|\delta D\| < \kappa(X)\|\delta A\|$:

• Gershgorin's theorem allows us to bound the effect of the perturbation on the eigenvalues of a (diagonal) matrix: Given a matrix $A \in \mathbb{R}^{n \times n}$, let $r_i = \sum_{j \neq i} |a_{ij}|$, define the Gershgorin disks as

$$D_i = \{ z \in \mathbb{C} : |z - a_{ii}| \le r_i \}.$$

Gershgorin Theorem Perturbation Visualization



▶ Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.

Bottom part corresponds to bounds on Gershgorin disks of $X^{-1}(A + \delta A)X$, which contain the eigenvalues D of A and the perturbed eigenvalues $D + \delta D$ of $A + \delta A$ provided that $||\delta A||$ is sufficiently small.

Conditioning of Particular Eigenpairs

• Consider the effect of a matrix perturbation on an eigenvalue λ associated with a right eigenvector x and a left eigenvector y, $\lambda = y^H A x / y^H x$

A more accurate eigenvalue approximation than Rayleigh quotient for a normalized perturbed eigenvector (e.g., iterative guess) $\hat{x} = x + \delta x$, can be obtained with an estimate of both eigenvectors (also $\hat{y} = y + \delta y$),

Google's PageRank

A well-known application of eigenproblems is the problem of ranking \boldsymbol{n} web-pages

Power Iteration

Power iteration can be used to compute the largest eigenvalue of a real symmetric matrix A:

The error of power iteration decreases at each step by the ratio of the largest eigenvalues:

Rates of Convergence

▶ If the error at the *k*th step with respect to the desired solution is e_k , *r*th order convergence implies that $\lim_{k\to\infty} ||e_k||/||e_{k-1}||^r \leq C$

Inverse and Rayleigh Quotient Iteration

• Inverse iteration uses LU/QR/SVD of A to run power iteration on A^{-1}

Rayleigh quotient iteration provides rapid convergence to an eigenpair

Deflation

Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair, to obtain further eigenpairs, can perform *deflation*

Direct Matrix Reductions

We can always compute an orthogonal similarity transformation to reduce a general matrix to *upper-Hessenberg* (upper-triangular plus the first subdiagonal) matrix H, i.e. A = QHQ^T:

▶ In the symmetric case, Hessenberg form implies tridiagonal:

Demo: Orthogonal Iteration

Simultaneous and Orthogonal Iteration

Simultaneous iteration provides the main idea for computing many eigenvectors at once:

Orthogonal iteration performs QR at each step to ensure stability

Orthogonal Iteration Convergence

► If A has distinct eigenvalues and R_i has positive decreasing diagonal, the *j*th column of Q_i converges to the *j*th Schur vector of A linearly with rate max(|λ_{j+1}/λ_j|, |λ_j/λ_{j-1}|).

QR Iteration

\triangleright QR iteration reformulates orthogonal iteration for n = k to reduce cost/step,

$$lacksim$$
 If orthogonal iteration starts with $\hat{oldsymbol{Q}}_1=oldsymbol{Q}_0$, then $\hat{oldsymbol{Q}}_i=\prod_{j=0}^{i-1}oldsymbol{Q}_j$,

QR iteration converges to triangular A_i if the eigenvalues are distinct in modulus, and in general converges to block-triangular form with a block for each set of eigenvalues of equal modulus.

QR Iteration with Shift

QR iteration can be accelerated using shifting:

The shift is selected to accelerate convergence to an eigenvalue (pair):

QR Iteration Complexity

QR iteration is accelerated by first reducing to upper-Hessenberg or tridiagonal form:

Solving Tridiagonal Symmetric Eigenproblems

A variety of methods exists for the tridiagonal eigenproblem:

Introduction to Krylov Subspace Methods

Krylov subspace methods work with information contained in the $n \times k$ matrix

$$oldsymbol{K}_k = egin{bmatrix} oldsymbol{x_0} & Aoldsymbol{x_0} & \cdots & oldsymbol{A}^{k-1}oldsymbol{x_0} \end{bmatrix}$$

• Assuming K_n is invertible, the matrix $K_n^{-1}AK_n$ is a *companion matrix* C:

Krylov Subspaces

• Given $Q_k R_k = K_k$, we obtain an orthonormal basis for the Krylov subspace,

$$\mathcal{K}_k(\boldsymbol{A}, \boldsymbol{x}_0) = span(\boldsymbol{Q}_k) = \{p(\boldsymbol{A})\boldsymbol{x}_0 : deg(p) < k\},\$$

where p is any polynomial of degree less than k.

▶ The Krylov subspace includes the k - 1 approximate dominant eigenvectors generated by k - 1 steps of power iteration:

Krylov Subspace Methods

▶ The
$$k imes k$$
 matrix $oldsymbol{H}_k = oldsymbol{Q}_k^T oldsymbol{A} oldsymbol{Q}_k$ minimizes $\|oldsymbol{A} oldsymbol{Q}_k - oldsymbol{Q}_k oldsymbol{H}_k\|_2$:

 \triangleright H_k is Hessenberg, because the companion matrix C_k is Hessenberg:

Rayleigh-Ritz Procedure

▶ The eigenvalues/eigenvectors of *H*_k are the *Ritz values/vectors*:

The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q_k:

Arnoldi Iteration

Demo: Arnoldi Iteration **Demo:** Arnoldi Iteration with Complex Eigenvalues

Arnoldi iteration computes the *i*th column of H_n , h_i and the *i*th column of Q_n directly using the recurrence $Aq_i = Q_nh_i = \sum_{j=1}^{i+1} h_{ji}q_j$

Lanczos Iteration

Lanczos iteration provides a method to reduce a symmetric matrix to a tridiagonal matrix:

After each matrix-vector product, it suffices to orthogonalize with respect to two previous vectors:

Cost Krylov Subspace Methods

▶ The cost of matrix-vector multiplication when the matrix has *m* nonzeros

The cost of orthogonalization at the kth iteration of a Krylov subspace method is

Restarting Krylov Subspace Methods

In finite precision, Lanczos generally loses orthogonality, while orthogonalization in Arnoldi can become prohibitively expensive:

Consequently, in practice, low-dimensional Krylov subspace methods are constructed repeatedly using carefully selected new starting vectors:

Generalized Eigenvalue Problem

A generalized eigenvalue problem has the form $Ax = \lambda Bx$,

When A and B are symmetric and B is SPD, we can perform Cholesky on B, multiply A by the inverted factors, and diagonalize it:

Specialized canonical forms and methods exist for the generalized eigenproblem with fewer constraints on B and better cost/stability.