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Eigenvalues and Eigenvectors
▶ A matrix A has eigenvector-eigenvalue pair (eigenpair) (λ,x) if

▶ Each n× n matrix has up to n eigenvalues, which are either real or complex



Eigenvalue Decomposition
▶ If a matrix A is diagonalizable, it has an eigenvalue decomposition

▶ A and B are similar, if there exist Z such that A = ZBZ−1



Similarity of Matrices
Invertible similarity transformations Y = XAX−1

matrix (A) reduced form (Y )
arbitrary
diagonalizable

Unitary similarity transformations Y = UAUH

matrix (A) reduced form (Y )
arbitrary
normal
Hermitian

Orthogonal similarity transformations Y = QAQT

matrix (A) reduced form (Y )
real
real symmetric
SPD



Canonical Forms
▶ Any matrix is similar to a bidiagonal matrix, giving its Jordan form:

▶ Any diagonalizable matrix is unitarily similar to a triangular matrix, giving its
Schur form:

▶ Real matrices are orthogonally similar to a block-triangular real matrix with
1× 1 or 2× 2 blocks (real Schur form)



Eigenvectors from Schur Form

▶ Given the eigenvectors of one matrix, we seek those of a similar matrix:

▶ Its easy to obtain eigenvectors of triangular matrix T :



Rayleigh Quotient
▶ For any vector x, the Rayleigh quotient provides an estimate for some

eigenvalue of A:



Perturbation Analysis of Eigenvalue Problems
▶ For non-defective A = XDX−1, the eigenvalues of

A+ δA = X̂(D + δD)X−1 satisfy ∥δD∥ ≤ κ(X)∥δA∥:

▶ Gershgorin’s theorem allows us to bound the effect of the perturbation on
the eigenvalues of a (diagonal) matrix:
Given a matrix A ∈ Rn×n, let ri =

∑
j ̸=i |aij |, define the Gershgorin disks as

Di = {z ∈ C : |z − aii| ≤ ri}.



Gershgorin Theorem Perturbation Visualization

▶ Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.
▶ Bottom part corresponds to bounds on Gershgorin disks of X−1(A+ δA)X,

which contain the eigenvalues D of A and the perturbed eigenvalues
D + δD of A+ δA provided that ||δA|| is sufficiently small.



Conditioning of Particular Eigenpairs
▶ Consider the effect of a matrix perturbation on an eigenvalue λ associated

with a right eigenvector x and a left eigenvector y, λ = yHAx/yHx

▶ A more accurate eigenvalue approximation than Rayleigh quotient for a
normalized perturbed eigenvector (e.g., iterative guess) x̂ = x+ δx, can be
obtained with an estimate of both eigenvectors (also ŷ = y + δy),



Google’s PageRank
A well-known application of eigenproblems is the problem of ranking n
web-pages



Power Iteration
▶ Power iteration can be used to compute the largest eigenvalue of a real

symmetric matrix A:

▶ The error of power iteration decreases at each step by the ratio of the
largest eigenvalues:

Demo: Power iteration and its Variants

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/04-eigenvalues/Power iteration and its Variants.html


Rates of Convergence
▶ If the error at the kth step with respect to the desired solution is ek, rth

order convergence implies that limk→∞ ∥ek∥/∥ek−1∥r ≤ C



Inverse and Rayleigh Quotient Iteration
▶ Inverse iteration uses LU/QR/SVD of A to run power iteration on A−1

▶ Rayleigh quotient iteration provides rapid convergence to an eigenpair



Deflation
▶ Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair,

to obtain further eigenpairs, can perform deflation



Direct Matrix Reductions
▶ We can always compute an orthogonal similarity transformation to reduce a

general matrix to upper-Hessenberg (upper-triangular plus the first
subdiagonal) matrix H , i.e. A = QHQT :

▶ In the symmetric case, Hessenberg form implies tridiagonal:

Demo: Householder Similarity Transforms

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/04-eigenvalues/Householder Similarity Transforms.html


Simultaneous and Orthogonal Iteration
▶ Simultaneous iteration provides the main idea for computing many

eigenvectors at once:

▶ Orthogonal iteration performs QR at each step to ensure stability

Demo: Orthogonal Iteration

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/04-eigenvalues/Orthogonal Iteration.html


Orthogonal Iteration Convergence
▶ If A has distinct eigenvalues and Ri has positive decreasing diagonal, the

jth column of Qi converges to the jth Schur vector of A linearly with rate
max(|λj+1/λj |, |λj/λj−1|).



QR Iteration
▶ QR iteration reformulates orthogonal iteration for n = k to reduce cost/step,

▶ If orthogonal iteration starts with Q̂1 = Q0, then Q̂i =
∏i−1

j=0Qj ,

▶ QR iteration converges to triangular Ai if the eigenvalues are distinct in
modulus, and in general converges to block-triangular form with a block for
each set of eigenvalues of equal modulus.



QR Iteration with Shift
▶ QR iteration can be accelerated using shifting:

▶ The shift is selected to accelerate convergence to an eigenvalue (pair):



QR Iteration Complexity
▶ QR iteration is accelerated by first reducing to upper-Hessenberg or

tridiagonal form:



Solving Tridiagonal Symmetric Eigenproblems
A variety of methods exists for the tridiagonal eigenproblem:



Introduction to Krylov Subspace Methods
▶ Krylov subspace methods work with information contained in the n× k matrix

Kk =
[
x0 Ax0 · · · Ak−1x0

]

▶ Assuming Kn is invertible, the matrix K−1
n AKn is a companion matrix C:



Krylov Subspaces
▶ Given QkRk = Kk, we obtain an orthonormal basis for the Krylov subspace,

Kk(A,x0) = span(Qk) = {p(A)x0 : deg(p) < k},
where p is any polynomial of degree less than k.

▶ The Krylov subspace includes the k − 1 approximate dominant eigenvectors
generated by k − 1 steps of power iteration:



Krylov Subspace Methods
▶ The k × k matrix Hk = QT

kAQk minimizes ∥AQk −QkHk∥2:

▶ Hk is Hessenberg, because the companion matrix Ck is Hessenberg:



Rayleigh-Ritz Procedure

▶ The eigenvalues/eigenvectors of Hk are the Ritz values/vectors:

▶ The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only Hk and Qk:

Demo: Arnoldi vs Power Iteration

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/04-eigenvalues/Arnoldi vs Power Iteration.html


Arnoldi Iteration
▶ Arnoldi iteration computes the ith column of Hn, hi and the ith column of

Qn directly using the recurrence Aqi = Qnhi =
∑i+1

j=1 hjiqj

Demo: Arnoldi Iteration
Demo: Arnoldi Iteration with Complex Eigenvalues

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/04-eigenvalues/Arnoldi Iteration.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/04-eigenvalues/Arnoldi Iteration with Complex Eigenvalues.html


Lanczos Iteration
▶ Lanczos iteration provides a method to reduce a symmetric matrix to a

tridiagonal matrix:

▶ After each matrix-vector product, it suffices to orthogonalize with respect to
two previous vectors:



Cost Krylov Subspace Methods
▶ The cost of matrix-vector multiplication when the matrix has m nonzeros

▶ The cost of orthogonalization at the kth iteration of a Krylov subspace
method is



Restarting Krylov Subspace Methods
▶ In finite precision, Lanczos generally loses orthogonality, while

orthogonalization in Arnoldi can become prohibitively expensive:

▶ Consequently, in practice, low-dimensional Krylov subspace methods are
constructed repeatedly using carefully selected new starting vectors:



Generalized Eigenvalue Problem
▶ A generalized eigenvalue problem has the form Ax = λBx,

▶ When A and B are symmetric and B is SPD, we can perform Cholesky on B,
multiply A by the inverted factors, and diagonalize it:

▶ Specialized canonical forms and methods exist for the generalized
eigenproblem with fewer constraints on B and better cost/stability.
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