CS 450: Numerical Anlaysis ${ }^{1}$

Eigenvalue Problems

University of Illinois at Urbana-Champaign

[^0]
Eigenvalues and Eigenvectors

- A matrix \boldsymbol{A} has eigenvector-eigenvalue pair (eigenpair) $(\lambda, \boldsymbol{x})$ if
- Each $n \times n$ matrix has up to n eigenvalues, which are either real or complex

Eigenvalue Decomposition

- If a matrix \boldsymbol{A} is diagonalizable, it has an eigenvalue decomposition
- \boldsymbol{A} and \boldsymbol{B} are similar, if there exist \boldsymbol{Z} such that $\boldsymbol{A}=\boldsymbol{Z} \boldsymbol{B} \boldsymbol{Z}^{-1}$

Similarity of Matrices

Invertible similarity transformations $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{A} \boldsymbol{X}^{-1}$

matrix (\boldsymbol{A})	reduced form (\boldsymbol{Y})
arbitrary	
diagonalizable	

Unitary similarity transformations $\boldsymbol{Y}=\boldsymbol{U} \boldsymbol{A} \boldsymbol{U}^{H}$

matrix (\boldsymbol{A})	reduced form (\boldsymbol{Y})
arbitrary	
normal	
Hermitian	

Orthogonal similarity transformations $\boldsymbol{Y}=\boldsymbol{Q} \boldsymbol{A} \boldsymbol{Q}^{T}$

matrix (\boldsymbol{A})	reduced form (\boldsymbol{Y})
real	
real symmetric	
SPD	

Canonical Forms

- Any matrix is similar to a bidiagonal matrix, giving its Jordan form:
- Any diagonalizable matrix is unitarily similar to a triangular matrix, giving its Schur form:
- Real matrices are orthogonally similar to a block-triangular real matrix with 1×1 or 2×2 blocks (real Schur form)

Eigenvectors from Schur Form

- Given the eigenvectors of one matrix, we seek those of a similar matrix:
- Its easy to obtain eigenvectors of triangular matrix \boldsymbol{T} :

Rayleigh Quotient

- For any vector \boldsymbol{x}, the Rayleigh quotient provides an estimate for some eigenvalue of \boldsymbol{A} :

Perturbation Analysis of Eigenvalue Problems

- For non-defective $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$, the eigenvalues of $\boldsymbol{A}+\boldsymbol{\delta} \boldsymbol{A}=\hat{\boldsymbol{X}}(\boldsymbol{D}+\boldsymbol{\delta} \boldsymbol{D}) \boldsymbol{X}^{-1}$ satisfy $\|\boldsymbol{\delta} \boldsymbol{D}\| \leq \kappa(X)\|\boldsymbol{\delta} \boldsymbol{A}\|:$
- Gershgorin's theorem allows us to bound the effect of the perturbation on the eigenvalues of a (diagonal) matrix:
Given a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, let $r_{i}=\sum_{j \neq i}\left|a_{i j}\right|$, define the Gershgorin disks as

$$
D_{i}=\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq r_{i}\right\} .
$$

Gershgorin Theorem Perturbation Visualization

- Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.
- Bottom part corresponds to bounds on Gershgorin disks of $\boldsymbol{X}^{-1}(\boldsymbol{A}+\boldsymbol{\delta} \boldsymbol{A}) \boldsymbol{X}$, which contain the eigenvalues \boldsymbol{D} of \boldsymbol{A} and the perturbed eigenvalues $D+\delta D$ of $\boldsymbol{A}+\boldsymbol{\delta} \boldsymbol{A}$ provided that $\|\boldsymbol{\delta} \boldsymbol{A}\|$ is sufficiently small.

Conditioning of Particular Eigenpairs

- Consider the effect of a matrix perturbation on an eigenvalue λ associated with a right eigenvector \boldsymbol{x} and a left eigenvector $\boldsymbol{y}, \lambda=\boldsymbol{y}^{H} \boldsymbol{A} \boldsymbol{x} / \boldsymbol{y}^{H} \boldsymbol{x}$
- A more accurate eigenvalue approximation than Rayleigh quotient for a normalized perturbed eigenvector (e.g., iterative guess) $\hat{\boldsymbol{x}}=\boldsymbol{x}+\boldsymbol{\delta} \boldsymbol{x}$, can be obtained with an estimate of both eigenvectors (also $\hat{\boldsymbol{y}}=\boldsymbol{y}+\boldsymbol{\delta} \boldsymbol{y}$),

Google's PageRank

A well-known application of eigenproblems is the problem of ranking n web-pages

Power Iteration

- Power iteration can be used to compute the largest eigenvalue of a real symmetric matrix A :
- The error of power iteration decreases at each step by the ratio of the largest eigenvalues:

Rates of Convergence

- If the error at the k th step with respect to the desired solution is e_{k}, r th order convergence implies that $\lim _{k \rightarrow \infty}\left\|e_{k}\right\| /\left\|e_{k-1}\right\|^{r} \leq C$

Inverse and Rayleigh Quotient Iteration

- Inverse iteration uses LU/QR/SVD of \boldsymbol{A} to run power iteration on \boldsymbol{A}^{-1}
- Rayleigh quotient iteration provides rapid convergence to an eigenpair

Deflation

- Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair, to obtain further eigenpairs, can perform deflation

Direct Matrix Reductions

- We can always compute an orthogonal similarity transformation to reduce a general matrix to upper-Hessenberg (upper-triangular plus the first subdiagonal) matrix \boldsymbol{H}, i.e. $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{H} \boldsymbol{Q}^{T}$:
- In the symmetric case, Hessenberg form implies tridiagonal:

Simultaneous and Orthogonal Iteration

- Simultaneous iteration provides the main idea for computing many eigenvectors at once:
- Orthogonal iteration performs QR at each step to ensure stability

Orthogonal Iteration Convergence

- If \boldsymbol{A} has distinct eigenvalues and \boldsymbol{R}_{i} has positive decreasing diagonal, the j th column of \boldsymbol{Q}_{i} converges to the j th Schur vector of \boldsymbol{A} linearly with rate $\max \left(\left|\lambda_{j+1} / \lambda_{j}\right|,\left|\lambda_{j} / \lambda_{j-1}\right|\right)$.

QR Iteration

- QR iteration reformulates orthogonal iteration for $n=k$ to reduce cost/step,
- If orthogonal iteration starts with $\hat{Q}_{1}=\boldsymbol{Q}_{0}$, then $\hat{Q}_{i}=\prod_{j=0}^{i-1} \boldsymbol{Q}_{j}$,
- QR iteration converges to triangular \boldsymbol{A}_{i} if the eigenvalues are distinct in modulus, and in general converges to block-triangular form with a block for each set of eigenvalues of equal modulus.

QR Iteration with Shift

- QR iteration can be accelerated using shifting:
- The shift is selected to accelerate convergence to an eigenvalue (pair):

QR Iteration Complexity

- QR iteration is accelerated by first reducing to upper-Hessenberg or tridiagonal form:

Solving Tridiagonal Symmetric Eigenproblems

A variety of methods exists for the tridiagonal eigenproblem:

Introduction to Krylov Subspace Methods

- Krylov subspace methods work with information contained in the $n \times k$ matrix

$$
\boldsymbol{K}_{k}=\left[\begin{array}{llll}
\boldsymbol{x}_{\mathbf{0}} & \boldsymbol{A} \boldsymbol{x}_{\mathbf{0}} & \cdots & \boldsymbol{A}^{k-1} \boldsymbol{x}_{\mathbf{0}}
\end{array}\right]
$$

- Assuming \boldsymbol{K}_{n} is invertible, the matrix $\boldsymbol{K}_{n}^{-1} \boldsymbol{A} \boldsymbol{K}_{n}$ is a companion matrix \boldsymbol{C} :

Krylov Subspaces

- Given $\boldsymbol{Q}_{k} \boldsymbol{R}_{k}=\boldsymbol{K}_{k}$, we obtain an orthonormal basis for the Krylov subspace,

$$
\mathcal{K}_{k}\left(\boldsymbol{A}, \boldsymbol{x}_{0}\right)=\operatorname{span}\left(\boldsymbol{Q}_{k}\right)=\left\{p(\boldsymbol{A}) \boldsymbol{x}_{0}: \operatorname{deg}(p)<k\right\},
$$

where p is any polynomial of degree less than k.

- The Krylov subspace includes the $k-1$ approximate dominant eigenvectors generated by $k-1$ steps of power iteration:

Krylov Subspace Methods

- The $k \times k$ matrix $\boldsymbol{H}_{k}=\boldsymbol{Q}_{k}^{T} \boldsymbol{A} \boldsymbol{Q}_{k}$ minimizes $\left\|\boldsymbol{A} \boldsymbol{Q}_{k}-\boldsymbol{Q}_{k} \boldsymbol{H}_{k}\right\|_{2}$:
- \boldsymbol{H}_{k} is Hessenberg, because the companion matrix \boldsymbol{C}_{k} is Hessenberg:

Rayleigh-Ritz Procedure

- The eigenvalues/eigenvectors of \boldsymbol{H}_{k} are the Ritz values/vectors:
- The Ritz vectors and values are the ideal approximations of the actual eigenvalues and eigenvectors based on only \boldsymbol{H}_{k} and \boldsymbol{Q}_{k} :

Arnoldi Iteration

- Arnoldi iteration computes the i th column of $\boldsymbol{H}_{n}, \boldsymbol{h}_{i}$ and the i th column of \boldsymbol{Q}_{n} directly using the recurrence $\boldsymbol{A} \boldsymbol{q}_{i}=\boldsymbol{Q}_{n} \boldsymbol{h}_{i}=\sum_{j=1}^{i+1} h_{j i} \boldsymbol{q}_{j}$

Lanczos Iteration

- Lanczos iteration provides a method to reduce a symmetric matrix to a tridiagonal matrix:
- After each matrix-vector product, it suffices to orthogonalize with respect to two previous vectors:

Cost Krylov Subspace Methods

- The cost of matrix-vector multiplication when the matrix has m nonzeros
- The cost of orthogonalization at the k th iteration of a Krylov subspace method is

Restarting Krylov Subspace Methods

- In finite precision, Lanczos generally loses orthogonality, while orthogonalization in Arnoldi can become prohibitively expensive:
- Consequently, in practice, low-dimensional Krylov subspace methods are constructed repeatedly using carefully selected new starting vectors:

Generalized Eigenvalue Problem

- A generalized eigenvalue problem has the form $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{B} \boldsymbol{x}$,
- When \boldsymbol{A} and \boldsymbol{B} are symmetric and \boldsymbol{B} is SPD, we can perform Cholesky on \boldsymbol{B}, multiply \boldsymbol{A} by the inverted factors, and diagonalize it:
- Specialized canonical forms and methods exist for the generalized eigenproblem with fewer constraints on \boldsymbol{B} and better cost/stability.

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

