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Eigenvalues and Eigenvectors
▶ A matrix A has eigenvector-eigenvalue pair (eigenpair) (λ,x) if

Ax = λx

▶ For any scalar α, αx is also an eigenvector of A with eigenvalue λ

▶ Generally, an eigenvalue λ is associated with an eigenspace X ⊆ Cn such that
each x ∈ X is an eigenvector of A with eigenvalue λ.

▶ The dimensionality of an eigenspace is at most the multiplicity of an eigenvalue
(when less, matrix is defective, otherwise matrix is diagonalizable).

▶ Each n× n matrix has up to n eigenvalues, which are either real or complex
▶ The conjugate of any complex eigenvalue of a real matrix is also an eigenvalue.
▶ The dimensionalities of all the eigenspaces (multiplicity associated with each

eigenvalue) sum up to n for a diagonalizable matrix.
▶ If the matrix is real, real eigenvalues are associated with real eigenvectors, but

complex eigenvalues may not be.



Eigenvalue Decomposition
▶ If a matrix A is diagonalizable, it has an eigenvalue decomposition

A = XDX−1

where X are the right eigenvectors, X−1 are the left eigenvectors and D are
eigenvalues

AX =
[
Ax1 · · ·Axn

]
= XD =

[
d11x1 · · · dnnxn

]
.

▶ If A is Hermitian, its right and left singular vectors are the same by symmetry,
hence in this case X−1 = XH .

▶ More generally, any normal matrix, AHA = AAH , has unitary eigenvectors.
▶ A and B are similar, if there exist Z such that A = ZBZ−1

▶ Normal matrices are unitarily similar (Z−1 = ZH) to diagonal matrices
▶ Symmetric real matrices are orthogonally similar (Z−1 = ZT ) to real diagonal

matrices
▶ Hermitian matrices are unitarily similar to real diagonal matrices



Similarity of Matrices
Invertible similarity transformations Y = XAX−1

matrix (A) reduced form (Y )
arbitrary bidiagonal
diagonalizable diagonal

Unitary similarity transformations Y = UAUH

matrix (A) reduced form (Y )
arbitrary triangular (Schur)
normal diagonal
Hermitian real diagonal

Orthogonal similarity transformations Y = QAQT

matrix (A) reduced form (Y )
real Hessenberg
real symmetric real diagonal
SPD real positive diagonal



Canonical Forms

▶ Any matrix is similar to a bidiagonal matrix, giving its Jordan form:

A = X

J1

. . .
Jk

X−1, ∀i, Ji =


λi 1

. . . . . .
. . . 1

λi


the Jordan form is unique modulo ordering of the diagonal Jordan blocks.

▶ Any diagonalizable matrix is unitarily similar to a triangular matrix, giving its
Schur form: A = QTQH where T is upper-triangular, so the eigenvalues of
A is the diagonal of T . Columns of Q are the Schur vectors.

▶ Real matrices are orthogonally similar to a block-triangular real matrix with
1× 1 or 2× 2 blocks (real Schur form)



Eigenvectors from Schur Form
▶ Given the eigenvectors of one matrix, we seek those of a similar matrix:

Suppose that A = SBS−1 and B = XDX−1 where D is diagonal,
▶ The eigenvalues of A are {d11, . . . , dnn}
▶ A = SBS−1 = SXDX−1S−1 so SX are the eigenvectors of A

▶ Its easy to obtain eigenvectors of triangular matrix T :
▶ One eigenvector is simply the first elementary vector.
▶ The eigenvector associated with any diagonal entry (eigenvalue λ) may be

obtaining by observing that

0 = (T − λI)x =

U11 u T13

0 vT

U33

−U−1
11 u
1
0

 ,

so it suffices to solve U11y = −u to obtain eigenvector x.



Rayleigh Quotient

▶ For any vector x, the Rayleigh quotient provides an estimate for some
eigenvalue of A:

ρA(x) =
xHAx

xHx
.

▶ If x is an eigenvector of A, then ρA(x) is the associated eigenvalue.
▶ Moreover, for y = Ax, the Rayleigh quotient is the best possible eigenvalue

estimate given x and y, as it is the solution to xα ∼= y.
▶ The normal equations for this scalar-output least squares problem are

xTxα = xTy ⇒ α =
xTy

xTx
=

xTAx

xTx
.



Perturbation Analysis of Eigenvalue Problems
▶ For non-defective A = XDX−1, the eigenvalues of

A+ δA = X̂(D + δD)X−1 satisfy ∥δD∥ ≤ κ(X)∥δA∥:
Note that the eigenvalues of X−1(A+ δA)X = D +X−1δAX are also
D + δD. So if we have perturbation to the matrix ||δA||F , its effect on the
eigenvalues corresponds to a (non-diagonal/arbitrary) perturbation
δÂ = X−1δAX of a diagonal matrix of eigenvalues D , with norm

||δÂ||F ≤ ||X−1||2||δA||F ||X||2 = κ(X)||δA||F .

▶ Gershgorin’s theorem allows us to bound the effect of the perturbation on
the eigenvalues of a (diagonal) matrix:
Given a matrix A ∈ Rn×n, let ri =

∑
j ̸=i |aij |, define the Gershgorin disks as

Di = {z ∈ C : |z − aii| ≤ ri}.
The eigenvalues λ1, . . . , λn of any matrix A ∈ Rn×n are contained in the union
of the Gershgorin disks, ∀i ∈ {1, . . . , n}, λi ∈

⋃n
j=1Dj .



Gershgorin Theorem Perturbation Visualization

▶ Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.
▶ Bottom part corresponds to bounds on Gershgorin disks of X−1(A+ δA)X,

which contain the eigenvalues D of A and the perturbed eigenvalues
D + δD of A+ δA provided that ||δA|| is sufficiently small.



Conditioning of Particular Eigenpairs
▶ Consider the effect of a matrix perturbation on an eigenvalue λ associated

with a right eigenvector x and a left eigenvector y, λ = yHAx/yHx

For a sufficiently small perturbation δA, the eigenvalue λ is perturbed to an
eigenvalue λ̂ of Â = A+ δA. The eigenvalue perturbation, ignoring error due
to the change in eigenvectors, is

|λ̂− λ| ≈ |yHδAx/yHx| ≤ ||δA||
|yHx|

.

This is small if x is near-parallel to y and large if they are near-perpendicular.
▶ A more accurate eigenvalue approximation than Rayleigh quotient for a

normalized perturbed eigenvector (e.g., iterative guess) x̂ = x+ δx, can be
obtained with an estimate of both eigenvectors (also ŷ = y + δy),

|λ̂xAx − λ| ≈ |δxHAx+ xHAδx| ≤ |λ|||δx||+
(
|λ||yHx|+ |1− yHx| · ||A||

)
||δx||

|λ̂yAx − λ| ≈
∣∣∣∣δyHAx+ yHAδx

yHx

∣∣∣∣ ≤ |λ| ||δx||+ ||δy||
|yHx|



Google’s PageRank

A well-known application of eigenproblems is the problem of ranking n
web-pages
▶ Based on web-data, we compute transition probability from webpage i to

webpage j at aij , so
∑

j aij = 1

▶ We seek a measure of webpage popularity, which we can take to be the
probability xi of a web-surfer being on webpage i as opposed to the other
n− 1 webpages

▶ This vector of probabilities, x, is given by the stationary probability vector,
which satisfies

ATx = x

▶ For such a transition probability (stochastic) matrix A, all eigenvalues are at
most 1 in absolute value



Power Iteration
▶ Power iteration can be used to compute the largest eigenvalue of a real

symmetric matrix A:

x(i) = Ax(i−1) (typically with normalization of x(i) at each step).

For a random x(0), power iteration converges eigenvalue of A with largest
modulus, limi→∞ ρA(x(i)) = λmax(A). If this eigenvalue has multiplicity one,
power iteration converges to the dominant eigenvector.

▶ The error of power iteration decreases at each step by the ratio of the
largest eigenvalues:
Assuming A is diagonalizable with eigenvectors U and V H = U−1,

x(k) = Akx(0) = (UDV H)kx(0) = UDkV Hx(0) =

n∑
i=1

ui λ
k
i v

H
i x(0)︸ ︷︷ ︸

α(i,k)

.

The coefficient α(i,k) associated with the maximum λi and dominant
eigenvector ui grows relatively, since |α(i,k)/α(j,k)| = (|λi|/|λj |)k |α(i,0)/α(j,0)|︸ ︷︷ ︸

constant

.

Demo: Power iteration and its Variants

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/04-eigenvalues/Power iteration and its Variants.html


Rates of Convergence

▶ If the error at the kth step with respect to the desired solution is ek, rth
order convergence implies that limk→∞ ∥ek∥/∥ek−1∥r ≤ C

▶ Power iteration achieves linear convergence with C = |λ2|/|λ1| assuming
decreasing order, |λi| ≥ |λi+1| and that |λ1| > |λ2|.

▶ Convergence of order r > 1 (superlinear) implies that the number of digits of
correctness increases by a factor of r at each step.

▶ For r > 1, error ek ≤ ϵ is achieved after O(logr(log(1/ϵ))) steps.
▶ Having achieved superlinear convergence (r > 1), methods differ only by

constant factors in complexity.



Inverse and Rayleigh Quotient Iteration
▶ Inverse iteration uses LU/QR/SVD of A to run power iteration on A−1

▶ For a randomly chosen x(0), solving

Ax(i) = x(i−1) (typically with normalization of x(i) at each step).

converges to limi→∞ ρA(x(i)) = λmin(A) provided there is a unique eigenvalue
with minimum magnitude.

▶ Inverse iteration on A− σI converges to the eigenvalue closes to σ, since all
eigenvalues are shifted by σ.

▶ Rayleigh quotient iteration provides rapid convergence to an eigenpair

(A− ρA(x(i−1))I)x(i) = x(i−1),

since at each step the relative magnitude largest eigenvalue of
(A− ρA(x(i−1))I)−1 grows. Formally, it achieves cubic convergence, but
requires matrix refactorization at each step.



Deflation
▶ Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair,

to obtain further eigenpairs, can perform deflation
▶ Given eigenvalue λ1 and right eigenvector x1, seek v so that B = A− λ1uv

T

has eigenvalues 0, λ2, . . . , λn, where

A = XD Y T︸︷︷︸
X−1

=

n∑
i=1

λixiy
T
i .

▶ Ideal choice would be v = yT
1 , i.e., the left eigenvector associated with λ1, as

then the n− 1 other eigenvectors of B would be the same as those of A.
▶ For symmetric matrices y1 = x1, but for nonsymmetric, obtaining y1 may

require more work.
▶ Good alternative choice for nonsymmetric matrices is to deflate with Schur

vectors, which preserves the Schur decomposition, e.g.,

B = QTQT − λ1q1q
T
1 = Q(T − λ1Q

Tq1q
T
1 Q)QT = Q(T − λ1e1e

T
1 )Q

T .



Direct Matrix Reductions
▶ We can always compute an orthogonal similarity transformation to reduce a

general matrix to upper-Hessenberg (upper-triangular plus the first
subdiagonal) matrix H , i.e. A = QHQT :
We can perform successive two-sided application of Householder reflectors

A =

h11 a12 · · ·
a21 a22

... . . .

 = Q1

h11 a12 · · ·
h21 t22 · · ·

0
... . . .

 = Q1

h11 h12 · · ·
h21 h22 · · ·

0
... . . .

QT
1 = · · ·

subsequent columns can be reduced by induction, so we can always stably
reduce to upper-Hessenberg with roughly double the cost of QR.

▶ In the symmetric case, Hessenberg form implies tridiagonal:
If A = AT then H = QAQT = HT , and a symmetric upper-Hessenberg
matrix must be tridiagonal.

Demo: Householder Similarity Transforms

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/04-eigenvalues/Householder Similarity Transforms.html


Simultaneous and Orthogonal Iteration
▶ Simultaneous iteration provides the main idea for computing many

eigenvectors at once:
▶ Initialize X0 ∈ Rn×k to be random and perform

Xi+1 = AXi.

▶ Observe that limi→∞ span(Xi) = S where S is the subspace spanned by the k
eigenvectors of A with the largest eigenvalues in magnitude.

▶ Orthogonal iteration performs QR at each step to ensure stability
Qi+1Ri+1 = AQi

▶ Qi has the same span as Xi in orthogonal iteration.
▶ QR has cost O(nk2) while product has cost O(n2k) per iteration.
▶ Can use this to compute the right singular vectors of matrix M by using

A = MTM (no need to form A, just multiply Qi by MT then M ).
▶ Small number of iterations suffice to obtain reasonable low-rank approximation

of M , and ultimately Q converges to singular vectors in its truncated SVD.

Demo: Orthogonal Iteration

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/04-eigenvalues/Orthogonal Iteration.html


Orthogonal Iteration Convergence

▶ If A has distinct eigenvalues and Ri has positive decreasing diagonal, the
jth column of Qi converges to the jth Schur vector of A linearly with rate
max(|λj+1/λj |, |λj/λj−1|).
▶ Convergence of the first column of Qi follows by analogy to power iteration
▶ Span of first j columns of Qi converges to the span of the first j Schur vectors

with rate |λj+1/λj |
▶ Hence orthogonal iteration converges similarly to k instances of inverse

iteration with shifts chosen near the k largest magnitude eigenvalues



QR Iteration

▶ QR iteration reformulates orthogonal iteration for n = k to reduce cost/step,
▶ Orthogonal iteration computes Q̂i+1R̂i+1 = AQ̂i

▶ QR iteration computes Ai+1 = RiQi where Ai = QiRi at iteration i

▶ Hence Ai+1 is similar to A, as Ai+1 = QT
i AiQ

T
i =

(∏i−1
j=0 Qj

)T

A

(∏i−1
j=0 Qj

)
▶ If orthogonal iteration starts with Q̂1 = Q0, then Q̂i =

∏i−1
j=0Qj ,

▶ By induction, Q̂
T

i AQ̂i = Ai = QiRi

▶ Hence, the QR factorization of AQ̂i = Q̂iQiRi = Q̂i+1R̂i+1

▶ QR iteration converges to triangular Ai if the eigenvalues are distinct in
modulus, and in general converges to block-triangular form with a block for
each set of eigenvalues of equal modulus.



QR Iteration with Shift
▶ QR iteration can be accelerated using shifting:

QiRi = Ai − σiI, Ai+1 = RiQi + σiI

note that Ai+1 is similar to Ai, since we can reorganize the above as

RiQi = QT
i (Ai − σiI)Qi,

Qi(Ai+1 − σiI)Q
T
i = QiRi,

and observe that RiQi is similar to QiRi.
▶ The shift is selected to accelerate convergence to an eigenvalue (pair):
▶ We can select the shift as the bottom right element of Ai or last diagonal

entry adjacent to nonzero subdiagonal entry (Wilkinson shift)
▶ Wilkinson shift accelerates convergence (follows from analogy of orthogonal

iteration to inverse iteration)
▶ Complex eigenvalues require more sophisticated shifts, ”implicit double shift”

converges to real Schur form while avoiding complex arithmetic



QR Iteration Complexity
▶ QR iteration is accelerated by first reducing to upper-Hessenberg or

tridiagonal form:
Reduction to upper-Hessenberg or tridiagonal in the symmetric case, costs
O(n3) operations and can be done in a similar style to Householder QR.

Given an upper-Hessenberg matrix, Hi = Ai

▶ reduction to upper-triangular requires n− 1 Givens rotations, if Gi rotates the
(i+ 1)th row into the ith to eliminate the ith element on the first subdiagonal,
Ri = GT

1 · · ·GT
n−1Hi

▶ computation of Hi+1 = RQ can be done by application of the n− 1 Givens
rotations to R from the right Hi+1 = RiGn−1 · · ·G1.

Both cost O(n2), for O(n3) overall if QR iteration converges in O(n) steps.

Given a tridiagonal matrix, the same two general steps are required, but now
each step costs O(n), so overall the eigenvalues and eigenvectors of a
tridiagonal matrix can be computed with O(n2) work.



Solving Tridiagonal Symmetric Eigenproblems

A variety of methods exists for the tridiagonal eigenproblem:
▶ QR iteration requires O(1) QR factorizations per eigenvalue, O(n2) cost to get

eigenvalues, O(n3) for eigenvectors. The last cost is not optimal.
▶ Divide and conquer

▶ partition tridiagonal matrix as

T =

[
T̂1

T̂2

]
+ tn/2+1,n/2

[
en/2
e1

] [
eTn/2 eT1

]
▶ solve two independent eigenvalue problems recursively, recover eigenvalues of

T via solving ”secular equation”

▶ Major alternatives to divide and conquer include spectral bisection and the
MRRR algorithm.



Introduction to Krylov Subspace Methods
▶ Krylov subspace methods work with information contained in the n× k matrix

Kk =
[
x0 Ax0 · · · Ak−1x0

]
We seek to best use the information from the matrix vector product results
(columns of Kk) to solve eigenvalue problems.

▶ Assuming Kn is invertible, the matrix K−1
n AKn is a companion matrix C:

Letting k
(i)
n = Ai−1x, we observe that

AKn =
[
Ak

(1)
n · · · Ak

(n−1)
n Ak

(n)
n

]
=

[
k
(2)
n · · · k

(n)
n Ak

(n)
n

]
,

therefore premultiplying by K−1
m transforms the first n− 1 columns of AKn

into the last n− 1 columns of I,

K−1
n AKn =

[
K−1

n k
(2)
n · · · K−1

n k
(n)
n K−1

n Ak
(n)
n

]
=

[
e2 · · · en K−1

n Ak
(n)
n

]



Krylov Subspaces

▶ Given QkRk = Kk, we obtain an orthonormal basis for the Krylov subspace,

Kk(A,x0) = span(Qk) = {p(A)x0 : deg(p) < k},

where p is any polynomial of degree less than k.
▶ The Krylov subspace includes the k − 1 approximate dominant eigenvectors

generated by k − 1 steps of power iteration:
▶ The approximation obtained from k − 1 steps of power iteration starting from x0

is given by the Rayleigh-quotient of y = Akx0.
▶ This vector is within the Krylov subspace, y ∈ Kk(A,x0).
▶ Consequently, Krylov subspace methods will generally obtain strictly better

approximations of the dominant eigenpair than power iteration.



Krylov Subspace Methods

▶ The k × k matrix Hk = QT
kAQk minimizes ∥AQk −QkHk∥2:

Let M = AQk −QkHk, then

∥M∥2 ≥ max(∥(I −QkQ
T
k )M∥2, ∥QkQ

T
kM∥2)

Since (I −QkQ
T
k )M = (I −QkQ

T
k )AQk, the first term is independent of Hk.

The second term is minimized (zero) with the choice Hk = QT
kAQk.

▶ Hk is Hessenberg, because the companion matrix Ck is Hessenberg:

Hk = QT
kAQk = RkK

−1
k AKkR

−1
k = RkCkR

−1
k

is a product of three matrices: upper-triangular Rk, upper-Hessenberg Ck ,
and upper-triangular R−1

k , which results in upper-Hessenberg Hk.



Rayleigh-Ritz Procedure
▶ The eigenvalues/eigenvectors of Hk are the Ritz values/vectors:

Hk = XDX−1

eigenvalue approximations based on Ritz vectors X are given by QkX.
▶ The Ritz vectors and values are the ideal approximations of the actual

eigenvalues and eigenvectors based on only Hk and Qk:
Assuming A is a symmetric matrix with positive eigenvalues, the largest Ritz
value λmax(Hk) will be the maximum Rayleigh quotient of any vector in
Kk = span(Qk),

max
x∈span(Qk)

xTAx

xTx
= max

y ̸=0

yTQT
kAQky

yTy
= max

y ̸=0

yTHky

yTy
= λmax(Hk),

which is the best approximation to λmax(A) = maxx̸=0
xTAx
xTx

available in Kk.
The quality of the approximation can also be shown to be optimal for other
eigenvalues/eigenvectors.

Demo: Arnoldi vs Power Iteration

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/04-eigenvalues/Arnoldi vs Power Iteration.html


Arnoldi Iteration

▶ Arnoldi iteration computes the ith column of Hn, hi and the ith column of
Qn directly using the recurrence Aqi = Qnhi =

∑i+1
j=1 hjiqj

▶ Note that
qT
i Aqj = qT

i (QnHnQ
T
n )qj = eTi Hnej = hij .

▶ The Arnoldi algorithm computes qi+1 from q1, . . . , qi by first computing
ui = Aqi then orthogonalizing,

qi+1hi+1,i = ui −
i∑

j=1

qjhji, hji = qT
j ui

then computing the norm of the vector to obtain hi+1,i, yielding the ith column
of Hn.

Demo: Arnoldi Iteration
Demo: Arnoldi Iteration with Complex Eigenvalues

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/04-eigenvalues/Arnoldi Iteration.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/04-eigenvalues/Arnoldi Iteration with Complex Eigenvalues.html


Lanczos Iteration

▶ Lanczos iteration provides a method to reduce a symmetric matrix to a
tridiagonal matrix:
Arnoldi iteration on a symmetric matrix will result in an upper-Hessenberg
matrix Hn as before, except that it must also be symmetric, since

HT
n = (QT

nAQn)
T = QT

nA
TQn = QT

nAQn = Hn,

which implies that Hn must be tridiagonal.
▶ After each matrix-vector product, it suffices to orthogonalize with respect to

two previous vectors:
Since hji = 0 if j − i > 1, given ui = Aqi, it suffices to compute only
hii = qTi ui and hi+1,i = hi,i+1 = ∥ui − qihii∥2.



Cost Krylov Subspace Methods

▶ The cost of matrix-vector multiplication when the matrix has m nonzeros is
m multiplications and at most m additions, so roughly 2m in total.

▶ The cost of orthogonalization at the kth iteration of a Krylov subspace
method is
▶ O(nk) for k inner products in Arnoldi,
▶ O(n) in Lanczos, since only 2 orthogonalizations needed.
▶ For Arnoldi with k-dimensional subspace, in total, orthogonalization costs

O(nk2), matrix-vector products cost O(mk), so generally desire nk < m.



Restarting Krylov Subspace Methods
▶ In finite precision, Lanczos generally loses orthogonality, while

orthogonalization in Arnoldi can become prohibitively expensive:
▶ Arnoldi cost of orthogonalization dominates if k > m/n.
▶ In Lanczos, reorthogonalizing iterate to previous guesses can ensure

orthogonality in the presence of round-off error.
▶ Selective orthogonalization strategies control when and with respect to what

previous columns of Q, each new iterate uj = Aqj should be orthogonalized.

▶ Consequently, in practice, low-dimensional Krylov subspace methods are
constructed repeatedly using carefully selected new starting vectors:
If we wish to find a particular eigenvector isolate some eigenspaces,
restarting is beneficial
▶ can orthogonalize to previous eigenvector estimates to perform deflation,
▶ can pick starting vector as Ritz vector estimate associated with desired

eigenpair,
▶ given new starting vector, can discard previous Krylov subspace, which helps

make storing the needed parts of Q possible.



Generalized Eigenvalue Problem
▶ A generalized eigenvalue problem has the form Ax = λBx,

AX = BXD

B−1A = XDX−1

Generalized eigenvalue problems arise frequently, especially in solving partial
differential equations.

▶ When A and B are symmetric and B is SPD, we can perform Cholesky on B,
multiply A by the inverted factors, and diagonalize it:

AX = LLTXD

L−1AL−T︸ ︷︷ ︸
Ã

LTX︸ ︷︷ ︸
X̃

= LTX︸ ︷︷ ︸
X̃

D

▶ Specialized canonical forms and methods exist for the generalized
eigenproblem with fewer constraints on B and better cost/stability.
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