CS 450: Numerical Anlaysis ${ }^{1}$

Eigenvalue Problems

University of Illinois at Urbana-Champaign

[^0]
Eigenvalues and Eigenvectors

- A matrix \boldsymbol{A} has eigenvector-eigenvalue pair (eigenpair) $(\lambda, \boldsymbol{x})$ if

$$
\boldsymbol{A x}=\lambda \boldsymbol{x}
$$

- For any scalar $\alpha, \alpha \boldsymbol{x}$ is also an eigenvector of \boldsymbol{A} with eigenvalue λ
- Generally, an eigenvalue λ is associated with an eigenspace $\mathcal{X} \subseteq \mathbb{C}^{n}$ such that each $x \in \mathcal{X}$ is an eigenvector of \boldsymbol{A} with eigenvalue λ.
- The dimensionality of an eigenspace is at most the multiplicity of an eigenvalue (when less, matrix is defective, otherwise matrix is diagonalizable).
- Each $n \times n$ matrix has up to n eigenvalues, which are either real or complex
- The conjugate of any complex eigenvalue of a real matrix is also an eigenvalue.
- The dimensionalities of all the eigenspaces (multiplicity associated with each eigenvalue) sum up to n for a diagonalizable matrix.
- If the matrix is real, real eigenvalues are associated with real eigenvectors, but complex eigenvalues may not be.

Eigenvalue Decomposition

- If a matrix \boldsymbol{A} is diagonalizable, it has an eigenvalue decomposition

$$
\boldsymbol{A}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}
$$

where \boldsymbol{X} are the right eigenvectors, \boldsymbol{X}^{-1} are the left eigenvectors and \boldsymbol{D} are eigenvalues

$$
\boldsymbol{A} \boldsymbol{X}=\left[\begin{array}{ll}
\boldsymbol{A} \boldsymbol{x}_{1} & \cdots \boldsymbol{A} \boldsymbol{x}_{n}
\end{array}\right]=\boldsymbol{X} \boldsymbol{D}=\left[\begin{array}{lll}
d_{11} \boldsymbol{x}_{1} & \cdots & d_{n n} \boldsymbol{x}_{n}
\end{array}\right] .
$$

- If \boldsymbol{A} is Hermitian, its right and left singular vectors are the same by symmetry, hence in this case $\boldsymbol{X}^{-1}=\boldsymbol{X}^{H}$.
- More generally, any normal matrix, $\boldsymbol{A}^{H} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{A}^{H}$, has unitary eigenvectors.
- \boldsymbol{A} and \boldsymbol{B} are similar, if there exist \boldsymbol{Z} such that $\boldsymbol{A}=\boldsymbol{Z} \boldsymbol{B} \boldsymbol{Z}^{-1}$
- Normal matrices are unitarily similar $\left(\boldsymbol{Z}^{-1}=\boldsymbol{Z}^{H}\right)$ to diagonal matrices
- Symmetric real matrices are orthogonally similar $\left(Z^{-1}=Z^{T}\right)$ to real diagonal matrices
- Hermitian matrices are unitarily similar to real diagonal matrices

Similarity of Matrices

Invertible similarity transformations $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{A} \boldsymbol{X}^{-1}$

matrix (\boldsymbol{A})	reduced form (\boldsymbol{Y})
arbitrary	bidiagonal
diagonalizable	diagonal

Unitary similarity transformations $\boldsymbol{Y}=\boldsymbol{U} \boldsymbol{A} \boldsymbol{U}^{H}$

matrix (\boldsymbol{A})	reduced form (\boldsymbol{Y})
arbitrary	triangular (Schur)
normal	diagonal
Hermitian	real diagonal

Orthogonal similarity transformations $\boldsymbol{Y}=\boldsymbol{Q} \boldsymbol{A} \boldsymbol{Q}^{T}$

matrix (\boldsymbol{A})	reduced form (\boldsymbol{Y})
real	Hessenberg
real symmetric	real diagonal
SPD	real positive diagonal

Canonical Forms

- Any matrix is similar to a bidiagonal matrix, giving its Jordan form:

$$
\boldsymbol{A}=\boldsymbol{X}\left[\begin{array}{lll}
\boldsymbol{J}_{1} & & \\
& \ddots & \\
& & \boldsymbol{J}_{k}
\end{array}\right] \boldsymbol{X}^{-1}, \quad \forall i, \quad \boldsymbol{J}_{i}=\left[\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right]
$$

the Jordan form is unique modulo ordering of the diagonal Jordan blocks.

- Any diagonalizable matrix is unitarily similar to a triangular matrix, giving its Schur form: $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{T} \boldsymbol{Q}^{H}$ where \boldsymbol{T} is upper-triangular, so the eigenvalues of \boldsymbol{A} is the diagonal of \boldsymbol{T}. Columns of \boldsymbol{Q} are the Schur vectors.
- Real matrices are orthogonally similar to a block-triangular real matrix with 1×1 or 2×2 blocks (real Schur form)

Eigenvectors from Schur Form

- Given the eigenvectors of one matrix, we seek those of a similar matrix: Suppose that $\boldsymbol{A}=\boldsymbol{S} \boldsymbol{B} \boldsymbol{S}^{-1}$ and $\boldsymbol{B}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$ where \boldsymbol{D} is diagonal,
- The eigenvalues of \boldsymbol{A} are $\left\{d_{11}, \ldots, d_{n n}\right\}$
- $\boldsymbol{A}=\boldsymbol{S B} \boldsymbol{S}^{-1}=\boldsymbol{S} \boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1} \boldsymbol{S}^{-1}$ so $\boldsymbol{S} \boldsymbol{X}$ are the eigenvectors of \boldsymbol{A}
- Its easy to obtain eigenvectors of triangular matrix T :
- One eigenvector is simply the first elementary vector.
- The eigenvector associated with any diagonal entry (eigenvalue λ) may be obtaining by observing that

$$
\mathbf{0}=(\boldsymbol{T}-\lambda \boldsymbol{I}) \boldsymbol{x}=\left[\begin{array}{ccc}
\boldsymbol{U}_{11} & \boldsymbol{u} & \boldsymbol{T}_{13} \\
& 0 & \boldsymbol{v}^{T} \\
& & \boldsymbol{U}_{33}
\end{array}\right]\left[\begin{array}{c}
-\boldsymbol{U}_{11}^{-1} \boldsymbol{u} \\
1 \\
\mathbf{0}
\end{array}\right],
$$

so it suffices to solve $\boldsymbol{U}_{11} \boldsymbol{y}=-\boldsymbol{u}$ to obtain eigenvector \boldsymbol{x}.

Rayleigh Quotient

- For any vector \boldsymbol{x}, the Rayleigh quotient provides an estimate for some eigenvalue of \boldsymbol{A} :

$$
\rho_{\boldsymbol{A}}(\boldsymbol{x})=\frac{\boldsymbol{x}^{H} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{H} \boldsymbol{x}} .
$$

- If x is an eigenvector of \boldsymbol{A}, then $\rho_{\boldsymbol{A}}(\boldsymbol{x})$ is the associated eigenvalue.
- Moreover, for $\boldsymbol{y}=\boldsymbol{A x}$, the Rayleigh quotient is the best possible eigenvalue estimate given \boldsymbol{x} and \boldsymbol{y}, as it is the solution to $\boldsymbol{x} \alpha \cong \boldsymbol{y}$.
- The normal equations for this scalar-output least squares problem are

$$
\boldsymbol{x}^{T} \boldsymbol{x} \alpha=\boldsymbol{x}^{T} \boldsymbol{y} \quad \Rightarrow \quad \alpha=\frac{\boldsymbol{x}^{T} \boldsymbol{y}}{\boldsymbol{x}^{T} \boldsymbol{x}}=\frac{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}}
$$

Perturbation Analysis of Eigenvalue Problems

- For non-defective $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$, the eigenvalues of $\boldsymbol{A}+\boldsymbol{\delta} \boldsymbol{A}=\hat{\boldsymbol{X}}(\boldsymbol{D}+\boldsymbol{\delta} \boldsymbol{D}) \boldsymbol{X}^{-1}$ satisfy $\|\boldsymbol{\delta} \boldsymbol{D}\| \leq \kappa(X)\|\boldsymbol{\delta} \boldsymbol{A}\|$:
Note that the eigenvalues of $\boldsymbol{X}^{-1}(\boldsymbol{A}+\boldsymbol{\delta} \boldsymbol{A}) \boldsymbol{X}=\boldsymbol{D}+\boldsymbol{X}^{-1} \boldsymbol{\delta} \boldsymbol{A} \boldsymbol{X}$ are also $D+\boldsymbol{\delta} \boldsymbol{D}$. So if we have perturbation to the matrix $\|\boldsymbol{\delta} \boldsymbol{A}\|_{F}$, its effect on the eigenvalues corresponds to a (non-diagonal/arbitrary) perturbation $\boldsymbol{\delta} \hat{\boldsymbol{A}}=\boldsymbol{X}^{-1} \boldsymbol{\delta} \boldsymbol{A} \boldsymbol{X}$ of a diagonal matrix of eigenvalues \boldsymbol{D}, with norm

$$
\|\boldsymbol{\delta} \hat{\boldsymbol{A}}\|_{F} \leq\left\|\boldsymbol{X}^{-1}\right\|_{2}\|\boldsymbol{\delta} \boldsymbol{A}\|_{F}\|\boldsymbol{X}\|_{2}=\kappa(\boldsymbol{X})\|\boldsymbol{\delta} \boldsymbol{A}\|_{F}
$$

- Gershgorin's theorem allows us to bound the effect of the perturbation on the eigenvalues of a (diagonal) matrix:
Given a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, let $r_{i}=\sum_{j \neq i}\left|a_{i j}\right|$, define the Gershgorin disks as

$$
D_{i}=\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq r_{i}\right\}
$$

The eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of any matrix $A \in \mathbb{R}^{n \times n}$ are contained in the union of the Gershgorin disks, $\forall i \in\{1, \ldots, n\}, \lambda_{i} \in \bigcup_{j=1}^{n} D_{j}$.

Gershgorin Theorem Perturbation Visualization

- Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.
- Bottom part corresponds to bounds on Gershgorin disks of $\boldsymbol{X}^{-1}(\boldsymbol{A}+\boldsymbol{\delta} \boldsymbol{A}) \boldsymbol{X}$, which contain the eigenvalues \boldsymbol{D} of \boldsymbol{A} and the perturbed eigenvalues $D+\delta D$ of $\boldsymbol{A}+\boldsymbol{\delta} \boldsymbol{A}$ provided that $\|\boldsymbol{\delta} \boldsymbol{A}\|$ is sufficiently small.

Conditioning of Particular Eigenpairs

- Consider the effect of a matrix perturbation on an eigenvalue λ associated with a right eigenvector \boldsymbol{x} and a left eigenvector $\boldsymbol{y}, \lambda=\boldsymbol{y}^{H} \boldsymbol{A} \boldsymbol{x} / \boldsymbol{y}^{H} \boldsymbol{x}$ For a sufficiently small perturbation $\boldsymbol{\delta} \boldsymbol{A}$, the eigenvalue λ is perturbed to an eigenvalue $\hat{\lambda}$ of $\hat{\boldsymbol{A}}=\boldsymbol{A}+\boldsymbol{\delta} \boldsymbol{A}$. The eigenvalue perturbation, ignoring error due to the change in eigenvectors, is

$$
|\hat{\lambda}-\lambda| \approx\left|\boldsymbol{y}^{H} \boldsymbol{\delta} \boldsymbol{A} \boldsymbol{x} / \boldsymbol{y}^{H} \boldsymbol{x}\right| \leq \frac{\|\boldsymbol{\delta} \boldsymbol{A}\|}{\left|\boldsymbol{y}^{H} \boldsymbol{x}\right|}
$$

This is small if \boldsymbol{x} is near-parallel to \boldsymbol{y} and large if they are near-perpendicular.

- A more accurate eigenvalue approximation than Rayleigh quotient for a normalized perturbed eigenvector (e.g., iterative guess) $\hat{\boldsymbol{x}}=\boldsymbol{x}+\boldsymbol{\delta} \boldsymbol{x}$, can be obtained with an estimate of both eigenvectors (also $\hat{\boldsymbol{y}}=\boldsymbol{y}+\boldsymbol{\delta} \boldsymbol{y}$),

$$
\begin{aligned}
& \left|\hat{\lambda}_{x A x}-\lambda\right| \approx\left|\boldsymbol{\delta} \boldsymbol{x}^{H} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{x}^{H} \boldsymbol{A} \boldsymbol{\delta} \boldsymbol{x}\right| \leq|\lambda|\left\|\boldsymbol{\delta} \boldsymbol{x}| |+\left(\left|\lambda\left\|\boldsymbol{y}^{H} \boldsymbol{x}\left|+\left|1-\boldsymbol{y}^{H} \boldsymbol{x}\right| \cdot\|\boldsymbol{A}\|\right)\right\| \boldsymbol{\delta} \boldsymbol{x} \|\right.\right.\right. \\
& \left|\hat{\lambda}_{y A x}-\lambda\right| \approx\left|\frac{\boldsymbol{\delta} \boldsymbol{y}^{H} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{y}^{H} \boldsymbol{A} \boldsymbol{\delta} \boldsymbol{x}}{\boldsymbol{y}^{H} \boldsymbol{x}}\right| \leq|\lambda| \frac{\|\boldsymbol{\delta} \boldsymbol{x}\|+\|\boldsymbol{\delta} \boldsymbol{y}\|}{\left|\boldsymbol{y}^{H} \boldsymbol{x}\right|}
\end{aligned}
$$

Google's PageRank

A well-known application of eigenproblems is the problem of ranking n web-pages

- Based on web-data, we compute transition probability from webpage ito webpage j at $a_{i j}$, so $\sum_{j} a_{i j}=1$
- We seek a measure of webpage popularity, which we can take to be the probability x_{i} of a web-surfer being on webpage i as opposed to the other $n-1$ webpages
- This vector of probabilities, \boldsymbol{x}, is given by the stationary probability vector, which satisfies

$$
\boldsymbol{A}^{T} \boldsymbol{x}=\boldsymbol{x}
$$

- For such a transition probability (stochastic) matrix A, all eigenvalues are at most 1 in absolute value

Power Iteration

- Power iteration can be used to compute the largest eigenvalue of a real symmetric matrix A :

$$
\boldsymbol{x}^{(i)}=\boldsymbol{A} \boldsymbol{x}^{(i-1)} \quad \text { (typically with normalization of } \boldsymbol{x}^{(i)} \text { at each step). }
$$

For a random $\boldsymbol{x}^{(0)}$, power iteration converges eigenvalue of \boldsymbol{A} with largest modulus, $\lim _{i \rightarrow \infty} \rho_{\boldsymbol{A}}\left(\boldsymbol{x}^{(i)}\right)=\lambda_{\max }(\boldsymbol{A})$. If this eigenvalue has multiplicity one, power iteration converges to the dominant eigenvector.

- The error of power iteration decreases at each step by the ratio of the largest eigenvalues:
Assuming \boldsymbol{A} is diagonalizable with eigenvectors \boldsymbol{U} and $\boldsymbol{V}^{H}=\boldsymbol{U}^{-1}$,

$$
\boldsymbol{x}^{(k)}=\boldsymbol{A}^{k} \boldsymbol{x}^{(0)}=\left(\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{H}\right)^{k} \boldsymbol{x}^{(0)}=\boldsymbol{U} \boldsymbol{D}^{k} \boldsymbol{V}^{H} \boldsymbol{x}^{(0)}=\sum_{i=1}^{n} \boldsymbol{u}_{i} \underbrace{\lambda_{i}^{k} \boldsymbol{v}_{i}^{H} \boldsymbol{x}^{(0)}}_{\alpha^{(i, k)}}
$$

The coefficient $\alpha^{(i, k)}$ associated with the maximum λ_{i} and dominant eigenvector \boldsymbol{u}_{i} grows relatively, since $\left|\alpha^{(i, k)} / \alpha^{(j, k)}\right|=\left(\left|\lambda_{i}\right| /\left|\lambda_{j}\right|\right)^{k} \underbrace{\left|\alpha^{(i, 0)} / \alpha^{(j, 0)}\right|}_{\text {constant }}$.

Rates of Convergence

- If the error at the k th step with respect to the desired solution is e_{k}, r th order convergence implies that $\lim _{k \rightarrow \infty}\left\|\boldsymbol{e}_{k}\right\| /\left\|\boldsymbol{e}_{k-1}\right\|^{r} \leq C$
- Power iteration achieves linear convergence with $C=\left|\lambda_{2}\right| /\left|\lambda_{1}\right|$ assuming decreasing order, $\left|\lambda_{i}\right| \geq\left|\lambda_{i+1}\right|$ and that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$.
- Convergence of order $r>1$ (superlinear) implies that the number of digits of correctness increases by a factor of r at each step.
- For $r>1$, error $e_{k} \leq \epsilon$ is achieved after $O\left(\log _{r}(\log (1 / \epsilon))\right)$ steps.
- Having achieved superlinear convergence ($r>1$), methods differ only by constant factors in complexity.

Inverse and Rayleigh Quotient Iteration

- Inverse iteration uses LU/QR/SVD of \boldsymbol{A} to run power iteration on \boldsymbol{A}^{-1}
- For a randomly chosen $\boldsymbol{x}^{(0)}$, solving

$$
\boldsymbol{A} \boldsymbol{x}^{(i)}=\boldsymbol{x}^{(i-1)} \quad \text { (typically with normalization of } \boldsymbol{x}^{(i)} \text { at each step). }
$$

converges to $\lim _{i \rightarrow \infty} \rho_{\boldsymbol{A}}\left(\boldsymbol{x}^{(i)}\right)=\lambda_{\text {min }}(\boldsymbol{A})$ provided there is a unique eigenvalue with minimum magnitude.

- Inverse iteration on $\boldsymbol{A}-\sigma \boldsymbol{I}$ converges to the eigenvalue closes to σ, since all eigenvalues are shifted by σ.
- Rayleigh quotient iteration provides rapid convergence to an eigenpair

$$
\left(\boldsymbol{A}-\rho_{\boldsymbol{A}}\left(\boldsymbol{x}^{(i-1)}\right) \boldsymbol{I}\right) \boldsymbol{x}^{(i)}=\boldsymbol{x}^{(i-1)}
$$

since at each step the relative magnitude largest eigenvalue of $\left(\boldsymbol{A}-\rho_{\boldsymbol{A}}\left(\boldsymbol{x}^{(i-1)}\right) \boldsymbol{I}\right)^{-1}$ grows. Formally, it achieves cubic convergence, but requires matrix refactorization at each step.

Deflation

- Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair, to obtain further eigenpairs, can perform deflation
- Given eigenvalue λ_{1} and right eigenvector \boldsymbol{x}_{1}, seek \boldsymbol{v} so that $\boldsymbol{B}=\boldsymbol{A}-\lambda_{1} \boldsymbol{u} \boldsymbol{v}^{T}$ has eigenvalues $0, \lambda_{2}, \ldots, \lambda_{n}$, where

$$
\boldsymbol{A}=\boldsymbol{X} \boldsymbol{D} \underbrace{\boldsymbol{Y}^{T}}_{\boldsymbol{X}^{-1}}=\sum_{i=1}^{n} \lambda_{i} \boldsymbol{x}_{i} \boldsymbol{y}_{i}^{T}
$$

- Ideal choice would be $\boldsymbol{v}=\boldsymbol{y}_{1}^{T}$, i.e., the left eigenvector associated with λ_{1}, as then the $n-1$ other eigenvectors of \boldsymbol{B} would be the same as those of \boldsymbol{A}.
- For symmetric matrices $\boldsymbol{y}_{1}=\boldsymbol{x}_{1}$, but for nonsymmetric, obtaining \boldsymbol{y}_{1} may require more work.
- Good alternative choice for nonsymmetric matrices is to deflate with Schur vectors, which preserves the Schur decomposition, e.g.,

$$
\boldsymbol{B}=\boldsymbol{Q} \boldsymbol{T} \boldsymbol{Q}^{T}-\lambda_{1} \boldsymbol{q}_{1} \boldsymbol{q}_{1}^{T}=\boldsymbol{Q}\left(\boldsymbol{T}-\lambda_{1} \boldsymbol{Q}^{T} \boldsymbol{q}_{1} \boldsymbol{q}_{1}^{T} \boldsymbol{Q}\right) \boldsymbol{Q}^{T}=\boldsymbol{Q}\left(\boldsymbol{T}-\lambda_{1} \boldsymbol{e}_{1} \boldsymbol{e}_{1}^{T}\right) \boldsymbol{Q}^{T} .
$$

Direct Matrix Reductions

- We can always compute an orthogonal similarity transformation to reduce a general matrix to upper-Hessenberg (upper-triangular plus the first subdiagonal) matrix \boldsymbol{H}, i.e. $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{H} \boldsymbol{Q}^{T}$:
We can perform successive two-sided application of Householder reflectors

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
h_{11} & a_{12} & \cdots \\
a_{21} & a_{22} & \\
\vdots & & \ddots
\end{array}\right]=\boldsymbol{Q}_{1}\left[\begin{array}{ccc}
h_{11} & a_{12} & \cdots \\
h_{21} & t_{22} & \cdots \\
0 & \vdots & \ddots
\end{array}\right]=\boldsymbol{Q}_{1}\left[\begin{array}{ccc}
h_{11} & h_{12} & \cdots \\
h_{21} & h_{22} & \cdots \\
\mathbf{0} & \vdots & \ddots
\end{array}\right] \boldsymbol{Q}_{1}^{T}=\cdots
$$

subsequent columns can be reduced by induction, so we can always stably reduce to upper-Hessenberg with roughly double the cost of $Q R$.

- In the symmetric case, Hessenberg form implies tridiagonal:

If $\boldsymbol{A}=\boldsymbol{A}^{T}$ then $\boldsymbol{H}=\boldsymbol{Q} \boldsymbol{A} \boldsymbol{Q}^{T}=\boldsymbol{H}^{T}$, and a symmetric upper-Hessenberg matrix must be tridiagonal.

Simultaneous and Orthogonal Iteration

- Simultaneous iteration provides the main idea for computing many eigenvectors at once:
- Initialize $\boldsymbol{X}_{0} \in \mathbb{R}^{n \times k}$ to be random and perform

$$
\boldsymbol{X}_{i+1}=\boldsymbol{A} \boldsymbol{X}_{i} .
$$

- Observe that $\lim _{i \rightarrow \infty} \operatorname{span}\left(\boldsymbol{X}_{i}\right)=\mathbb{S}$ where \mathbb{S} is the subspace spanned by the k eigenvectors of \boldsymbol{A} with the largest eigenvalues in magnitude.
- Orthogonal iteration performs QR at each step to ensure stability

$$
\boldsymbol{Q}_{i+1} \boldsymbol{R}_{i+1}=\boldsymbol{A} \boldsymbol{Q}_{i}
$$

- \boldsymbol{Q}_{i} has the same span as \boldsymbol{X}_{i} in orthogonal iteration.
- QR has cost $O\left(n k^{2}\right)$ while product has cost $O\left(n^{2} k\right)$ per iteration.
- Can use this to compute the right singular vectors of matrix M by using $\boldsymbol{A}=\boldsymbol{M}^{T} \boldsymbol{M}$ (no need to form \boldsymbol{A}, just multiply \boldsymbol{Q}_{i} by \boldsymbol{M}^{T} then \boldsymbol{M}).
- Small number of iterations suffice to obtain reasonable low-rank approximation of M, and ultimately Q converges to singular vectors in its truncated SVD.

Orthogonal Iteration Convergence

- If \boldsymbol{A} has distinct eigenvalues and \boldsymbol{R}_{i} has positive decreasing diagonal, the j th column of \boldsymbol{Q}_{i} converges to the j th Schur vector of \boldsymbol{A} linearly with rate $\max \left(\left|\lambda_{j+1} / \lambda_{j}\right|,\left|\lambda_{j} / \lambda_{j-1}\right|\right)$.
- Convergence of the first column of Q_{i} follows by analogy to power iteration
- Span of first j columns of Q_{i} converges to the span of the first j Schur vectors with rate $\left|\lambda_{j+1} / \lambda_{j}\right|$
- Hence orthogonal iteration converges similarly to k instances of inverse iteration with shifts chosen near the k largest magnitude eigenvalues

QR Iteration

- QR iteration reformulates orthogonal iteration for $n=k$ to reduce cost/step,
- Orthogonal iteration computes $\hat{Q}_{i+1} \hat{R}_{i+1}=A \hat{Q}_{i}$
- QR iteration computes $\boldsymbol{A}_{i+1}=\boldsymbol{R}_{i} \boldsymbol{Q}_{i}$ where $\boldsymbol{A}_{i}=\boldsymbol{Q}_{i} \boldsymbol{R}_{i}$ at iteration i
- Hence \boldsymbol{A}_{i+1} is similar to \boldsymbol{A}, as $\boldsymbol{A}_{i+1}=\boldsymbol{Q}_{i}^{T} \boldsymbol{A}_{i} \boldsymbol{Q}_{i}^{T}=\left(\prod_{j=0}^{i-1} \boldsymbol{Q}_{j}\right)^{T} \boldsymbol{A}\left(\prod_{j=0}^{i-1} \boldsymbol{Q}_{j}\right)$
- If orthogonal iteration starts with $\hat{Q}_{1}=\boldsymbol{Q}_{0}$, then $\hat{Q}_{i}=\prod_{j=0}^{i-1} \boldsymbol{Q}_{j}$,
- By induction, $\hat{Q}_{i}^{T} \boldsymbol{A} \hat{Q}_{i}=\boldsymbol{A}_{i}=\boldsymbol{Q}_{i} \boldsymbol{R}_{i}$
- Hence, the $Q R$ factorization of $A \hat{Q}_{i}=\hat{Q}_{i} \boldsymbol{Q}_{i} \boldsymbol{R}_{i}=\hat{Q}_{i+1} \hat{R}_{i+1}$
- QR iteration converges to triangular \boldsymbol{A}_{i} if the eigenvalues are distinct in modulus, and in general converges to block-triangular form with a block for each set of eigenvalues of equal modulus.

QR Iteration with Shift

- QR iteration can be accelerated using shifting:

$$
\boldsymbol{Q}_{i} \boldsymbol{R}_{i}=\boldsymbol{A}_{i}-\sigma_{i} \boldsymbol{I}, \quad \boldsymbol{A}_{i+1}=\boldsymbol{R}_{i} \boldsymbol{Q}_{i}+\sigma_{i} \boldsymbol{I}
$$

note that \boldsymbol{A}_{i+1} is similar to \boldsymbol{A}_{i}, since we can reorganize the above as

$$
\begin{aligned}
\boldsymbol{R}_{i} \boldsymbol{Q}_{i} & =\boldsymbol{Q}_{i}^{T}\left(\boldsymbol{A}_{i}-\sigma_{i} \boldsymbol{I}\right) \boldsymbol{Q}_{i} \\
\boldsymbol{Q}_{i}\left(\boldsymbol{A}_{i+1}-\sigma_{i} \boldsymbol{I}\right) \boldsymbol{Q}_{i}^{T} & =\boldsymbol{Q}_{i} \boldsymbol{R}_{i}
\end{aligned}
$$

and observe that $\boldsymbol{R}_{i} \boldsymbol{Q}_{i}$ is similar to $\boldsymbol{Q}_{i} \boldsymbol{R}_{i}$.

- The shift is selected to accelerate convergence to an eigenvalue (pair):
- We can select the shift as the bottom right element of \boldsymbol{A}_{i} or last diagonal entry adjacent to nonzero subdiagonal entry (Wilkinson shift)
- Wilkinson shift accelerates convergence (follows from analogy of orthogonal iteration to inverse iteration)
- Complex eigenvalues require more sophisticated shifts, "implicit double shift" converges to real Schur form while avoiding complex arithmetic

QR Iteration Complexity

- QR iteration is accelerated by first reducing to upper-Hessenberg or tridiagonal form:
Reduction to upper-Hessenberg or tridiagonal in the symmetric case, costs $O\left(n^{3}\right)$ operations and can be done in a similar style to Householder QR.

Given an upper-Hessenberg matrix, $\boldsymbol{H}_{i}=\boldsymbol{A}_{i}$

- reduction to upper-triangular requires $n-1$ Givens rotations, if \boldsymbol{G}_{i} rotates the $(i+1)$ th row into the ith to eliminate the ith element on the first subdiagonal, $\boldsymbol{R}_{i}=\boldsymbol{G}_{1}^{T} \cdots \boldsymbol{G}_{n-1}^{T} \boldsymbol{H}_{i}$
- computation of $\boldsymbol{H}_{i+1}=\boldsymbol{R Q}$ can be done by application of the $n-1$ Givens rotations to \boldsymbol{R} from the right $\boldsymbol{H}_{i+1}=\boldsymbol{R}_{i} \boldsymbol{G}_{n-1} \cdots \boldsymbol{G}_{1}$.
Both cost $O\left(n^{2}\right)$, for $O\left(n^{3}\right)$ overall if QR iteration converges in $O(n)$ steps.
Given a tridiagonal matrix, the same two general steps are required, but now each step costs $O(n)$, so overall the eigenvalues and eigenvectors of a tridiagonal matrix can be computed with $O\left(n^{2}\right)$ work.

Solving Tridiagonal Symmetric Eigenproblems

A variety of methods exists for the tridiagonal eigenproblem:

- QR iteration requires $O(1) Q R$ factorizations per eigenvalue, $O\left(n^{2}\right)$ cost to get eigenvalues, $O\left(n^{3}\right)$ for eigenvectors. The last cost is not optimal.
- Divide and conquer
- partition tridiagonal matrix as

$$
\boldsymbol{T}=\left[\begin{array}{ll}
\hat{\boldsymbol{T}}_{1} & \\
& \hat{\boldsymbol{T}}_{2}
\end{array}\right]+t_{n / 2+1, n / 2}\left[\begin{array}{c}
e_{n / 2} \\
\boldsymbol{e}_{1}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{e}_{n / 2}^{T} & \boldsymbol{e}_{1}^{T}
\end{array}\right]
$$

- solve two independent eigenvalue problems recursively, recover eigenvalues of T via solving "secular equation"
- Major alternatives to divide and conquer include spectral bisection and the MRRR algorithm.

Introduction to Krylov Subspace Methods

- Krylov subspace methods work with information contained in the $n \times k$ matrix

$$
\boldsymbol{K}_{k}=\left[\begin{array}{llll}
\boldsymbol{x}_{\mathbf{0}} & \boldsymbol{A} \boldsymbol{x}_{\mathbf{0}} & \cdots & \boldsymbol{A}^{k-1} \boldsymbol{x}_{\mathbf{0}}
\end{array}\right]
$$

We seek to best use the information from the matrix vector product results (columns of \boldsymbol{K}_{k}) to solve eigenvalue problems.

- Assuming \boldsymbol{K}_{n} is invertible, the matrix $\boldsymbol{K}_{n}^{-1} \boldsymbol{A} \boldsymbol{K}_{n}$ is a companion matrix \boldsymbol{C} : Letting $\boldsymbol{k}_{n}^{(i)}=\boldsymbol{A}^{i-1} \boldsymbol{x}$, we observe that

$$
\boldsymbol{A} \boldsymbol{K}_{n}=\left[\begin{array}{llll}
\boldsymbol{A} \boldsymbol{k}_{n}^{(1)} & \cdots & \boldsymbol{A} \boldsymbol{k}_{n}^{(n-1)} & \boldsymbol{A} \boldsymbol{k}_{n}^{(n)}
\end{array}\right]=\left[\begin{array}{llll}
\boldsymbol{k}_{n}^{(2)} & \cdots & \boldsymbol{k}_{n}^{(n)} & \boldsymbol{A} \boldsymbol{k}_{n}^{(n)}
\end{array}\right],
$$

therefore premultiplying by \boldsymbol{K}_{m}^{-1} transforms the first $n-1$ columns of $\boldsymbol{A} \boldsymbol{K}_{n}$ into the last $n-1$ columns of \boldsymbol{I},

$$
\begin{aligned}
\boldsymbol{K}_{n}^{-1} \boldsymbol{A} \boldsymbol{K}_{n} & =\left[\begin{array}{llll}
\boldsymbol{K}_{n}^{-1} \boldsymbol{k}_{n}^{(2)} & \cdots & \boldsymbol{K}_{n}^{-1} \boldsymbol{k}_{n}^{(n)} & \boldsymbol{K}_{n}^{-1} \boldsymbol{A} \boldsymbol{k}_{n}^{(n)}
\end{array}\right] \\
& =\left[\begin{array}{llll}
\boldsymbol{e}_{2} & \cdots & \boldsymbol{e}_{n} & \boldsymbol{K}_{n}^{-1} \boldsymbol{A} \boldsymbol{k}_{n}^{(n)}
\end{array}\right]
\end{aligned}
$$

Krylov Subspaces

- Given $\boldsymbol{Q}_{k} \boldsymbol{R}_{k}=\boldsymbol{K}_{k}$, we obtain an orthonormal basis for the Krylov subspace,

$$
\mathcal{K}_{k}\left(\boldsymbol{A}, \boldsymbol{x}_{0}\right)=\operatorname{span}\left(\boldsymbol{Q}_{k}\right)=\left\{p(\boldsymbol{A}) \boldsymbol{x}_{0}: \operatorname{deg}(p)<k\right\}
$$

where p is any polynomial of degree less than k.

- The Krylov subspace includes the $k-1$ approximate dominant eigenvectors generated by $k-1$ steps of power iteration:
- The approximation obtained from $k-1$ steps of power iteration starting from x_{0} is given by the Rayleigh-quotient of $\boldsymbol{y}=\boldsymbol{A}^{k} \boldsymbol{x}_{0}$.
- This vector is within the Krylov subspace, $\boldsymbol{y} \in \mathcal{K}_{k}\left(\boldsymbol{A}, \boldsymbol{x}_{0}\right)$.
- Consequently, Krylov subspace methods will generally obtain strictly better approximations of the dominant eigenpair than power iteration.

Krylov Subspace Methods

- The $k \times k$ matrix $\boldsymbol{H}_{k}=\boldsymbol{Q}_{k}^{T} \boldsymbol{A} \boldsymbol{Q}_{k}$ minimizes $\left\|\boldsymbol{A} \boldsymbol{Q}_{k}-\boldsymbol{Q}_{k} \boldsymbol{H}_{k}\right\|_{2}$:

Let $\boldsymbol{M}=\boldsymbol{A} \boldsymbol{Q}_{k}-\boldsymbol{Q}_{k} \boldsymbol{H}_{k}$, then

$$
\|\boldsymbol{M}\|_{2} \geq \max \left(\left\|\left(\boldsymbol{I}-\boldsymbol{Q}_{k} \boldsymbol{Q}_{k}^{T}\right) \boldsymbol{M}\right\|_{2},\left\|\boldsymbol{Q}_{k} \boldsymbol{Q}_{k}^{T} \boldsymbol{M}\right\|_{2}\right)
$$

Since $\left(\boldsymbol{I}-\boldsymbol{Q}_{k} \boldsymbol{Q}_{k}^{T}\right) \boldsymbol{M}=\left(\boldsymbol{I}-\boldsymbol{Q}_{k} \boldsymbol{Q}_{k}^{T}\right) \boldsymbol{A} \boldsymbol{Q}_{k}$, the first term is independent of \boldsymbol{H}_{k}. The second term is minimized (zero) with the choice $\boldsymbol{H}_{k}=\boldsymbol{Q}_{k}^{T} \boldsymbol{A} \boldsymbol{Q}_{k}$.

- \boldsymbol{H}_{k} is Hessenberg, because the companion matrix C_{k} is Hessenberg:

$$
\boldsymbol{H}_{k}=\boldsymbol{Q}_{k}^{T} \boldsymbol{A} \boldsymbol{Q}_{k}=\boldsymbol{R}_{k} \boldsymbol{K}_{k}^{-1} \boldsymbol{A} \boldsymbol{K}_{k} \boldsymbol{R}_{k}^{-1}=\boldsymbol{R}_{k} \boldsymbol{C}_{k} \boldsymbol{R}_{k}^{-1}
$$

is a product of three matrices: upper-triangular \boldsymbol{R}_{k}, upper-Hessenberg \boldsymbol{C}_{k}, and upper-triangular \boldsymbol{R}_{k}^{-1}, which results in upper-Hessenberg \boldsymbol{H}_{k}.

Rayleigh-Ritz Procedure

- The eigenvalues/eigenvectors of \boldsymbol{H}_{k} are the Ritz values/vectors:

$$
\boldsymbol{H}_{k}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}
$$

eigenvalue approximations based on Ritz vectors \boldsymbol{X} are given by $\boldsymbol{Q}_{k} \boldsymbol{X}$.

- The Ritz vectors and values are the ideal approximations of the actual eigenvalues and eigenvectors based on only \boldsymbol{H}_{k} and \boldsymbol{Q}_{k} :
Assuming \boldsymbol{A} is a symmetric matrix with positive eigenvalues, the largest Ritz value $\lambda_{\max }\left(\boldsymbol{H}_{k}\right)$ will be the maximum Rayleigh quotient of any vector in $\mathcal{K}_{k}=\operatorname{span}\left(\boldsymbol{Q}_{k}\right)$,

$$
\max _{\boldsymbol{x} \in \operatorname{span}\left(\boldsymbol{Q}_{k}\right)} \frac{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}}=\max _{\boldsymbol{y} \neq 0} \frac{\boldsymbol{y}^{T} \boldsymbol{Q}_{k}^{T} \boldsymbol{A} \boldsymbol{Q}_{k} \boldsymbol{y}}{\boldsymbol{y}^{T} \boldsymbol{y}}=\max _{\boldsymbol{y} \neq 0} \frac{\boldsymbol{y}^{T} \boldsymbol{H}_{k} \boldsymbol{y}}{\boldsymbol{y}^{T} \boldsymbol{y}}=\lambda_{\max }\left(\boldsymbol{H}_{k}\right)
$$

which is the best approximation to $\lambda_{\max }(\boldsymbol{A})=\max _{\boldsymbol{x} \neq 0} \frac{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}}$ available in \mathcal{K}_{k}. The quality of the approximation can also be shown to be optimal for other eigenvalues/eigenvectors.

- Arnoldi iteration computes the i th column of $\boldsymbol{H}_{n}, \boldsymbol{h}_{i}$ and the i th column of \boldsymbol{Q}_{n} directly using the recurrence $\boldsymbol{A} \boldsymbol{q}_{i}=\boldsymbol{Q}_{n} \boldsymbol{h}_{i}=\sum_{j=1}^{i+1} h_{j i} \boldsymbol{q}_{j}$
- Note that

$$
\boldsymbol{q}_{i}^{T} \boldsymbol{A} \boldsymbol{q}_{j}=\boldsymbol{q}_{i}^{T}\left(\boldsymbol{Q}_{n} \boldsymbol{H}_{n} \boldsymbol{Q}_{n}^{T}\right) \boldsymbol{q}_{j}=\boldsymbol{e}_{i}^{T} \boldsymbol{H}_{n} \boldsymbol{e}_{j}=h_{i j} .
$$

- The Arnoldi algorithm computes \boldsymbol{q}_{i+1} from $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{i}$ by first computing $\boldsymbol{u}_{i}=\boldsymbol{A} \boldsymbol{q}_{i}$ then orthogonalizing,

$$
\boldsymbol{q}_{i+1} h_{i+1, i}=\boldsymbol{u}_{i}-\sum_{j=1}^{i} \boldsymbol{q}_{j} h_{j i}, \quad h_{j i}=\boldsymbol{q}_{j}^{T} \boldsymbol{u}_{i}
$$

then computing the norm of the vector to obtain $h_{i+1, i}$, yielding the ith column of \boldsymbol{H}_{n}.

Lanczos Iteration

- Lanczos iteration provides a method to reduce a symmetric matrix to a tridiagonal matrix:
Arnoldi iteration on a symmetric matrix will result in an upper-Hessenberg matrix H_{n} as before, except that it must also be symmetric, since

$$
\boldsymbol{H}_{n}^{T}=\left(\boldsymbol{Q}_{n}^{T} \boldsymbol{A} \boldsymbol{Q}_{n}\right)^{T}=\boldsymbol{Q}_{n}^{T} \boldsymbol{A}^{T} \boldsymbol{Q}_{n}=\boldsymbol{Q}_{n}^{T} \boldsymbol{A} \boldsymbol{Q}_{n}=\boldsymbol{H}_{n}
$$

which implies that \boldsymbol{H}_{n} must be tridiagonal.

- After each matrix-vector product, it suffices to orthogonalize with respect to two previous vectors:
Since $h_{j i}=0$ if $j-i>1$, given $\boldsymbol{u}_{i}=\boldsymbol{A} \boldsymbol{q}_{i}$, it suffices to compute only $h_{i i}=\boldsymbol{q}_{i}^{T} \boldsymbol{u}_{i}$ and $h_{i+1, i}=h_{i, i+1}=\left\|\boldsymbol{u}_{i}-\boldsymbol{q}_{i} h_{i i}\right\|_{2}$.

Cost Krylov Subspace Methods

- The cost of matrix-vector multiplication when the matrix has m nonzeros is m multiplications and at most m additions, so roughly $2 m$ in total.
- The cost of orthogonalization at the k th iteration of a Krylov subspace method is
- $O(n k)$ for k inner products in Arnoldi,
- $O(n)$ in Lanczos, since only 2 orthogonalizations needed.
- For Arnoldi with k-dimensional subspace, in total, orthogonalization costs $O\left(n k^{2}\right)$, matrix-vector products cost $O(m k)$, so generally desire $n k<m$.

Restarting Krylov Subspace Methods

- In finite precision, Lanczos generally loses orthogonality, while orthogonalization in Arnoldi can become prohibitively expensive:
- Arnoldi cost of orthogonalization dominates if $k>m / n$.
- In Lanczos, reorthogonalizing iterate to previous guesses can ensure orthogonality in the presence of round-off error.
- Selective orthogonalization strategies control when and with respect to what previous columns of \boldsymbol{Q}, each new iterate $\boldsymbol{u}_{j}=\boldsymbol{A} \boldsymbol{q}_{j}$ should be orthogonalized.
- Consequently, in practice, low-dimensional Krylov subspace methods are constructed repeatedly using carefully selected new starting vectors: If we wish to find a particular eigenvector isolate some eigenspaces, restarting is beneficial
- can orthogonalize to previous eigenvector estimates to perform deflation,
- can pick starting vector as Ritz vector estimate associated with desired eigenpair,
- given new starting vector, can discard previous Krylov subspace, which helps make storing the needed parts of Q possible.

Generalized Eigenvalue Problem

- A generalized eigenvalue problem has the form $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{B} \boldsymbol{x}$,

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{X} & =\boldsymbol{B} \boldsymbol{X} \boldsymbol{D} \\
\boldsymbol{B}^{-1} \boldsymbol{A} & =\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}
\end{aligned}
$$

Generalized eigenvalue problems arise frequently, especially in solving partial differential equations.

- When \boldsymbol{A} and \boldsymbol{B} are symmetric and \boldsymbol{B} is SPD, we can perform Cholesky on \boldsymbol{B}, multiply \boldsymbol{A} by the inverted factors, and diagonalize it:

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{X} & =\boldsymbol{L} \boldsymbol{L}^{T} \boldsymbol{X} \boldsymbol{D} \\
\underbrace{\boldsymbol{L}^{-1} \boldsymbol{A} \boldsymbol{L}^{-T}}_{\tilde{\boldsymbol{A}}} \underbrace{\boldsymbol{L}^{T} \boldsymbol{X}}_{\tilde{\boldsymbol{X}}} & =\underbrace{\boldsymbol{L}^{T} \boldsymbol{X}}_{\tilde{\boldsymbol{X}}} \boldsymbol{D}
\end{aligned}
$$

- Specialized canonical forms and methods exist for the generalized eigenproblem with fewer constraints on B and better cost/stability.

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

