CS 450: Numerical Analysis
Eigenvalue Problems

University of Illinois at Urbana-Champaign

These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).
Eigenvalues and Eigenvectors

- A matrix A has eigenvector-eigenvalue pair (eigenpair) (λ, x) if
 \[Ax = \lambda x \]

- For any scalar α, αx is also an eigenvector of A with eigenvalue λ

- Generally, an eigenvalue λ is associated with an eigenspace $\mathcal{X} \subseteq \mathbb{C}^n$ such that each $x \in \mathcal{X}$ is an eigenvector of A with eigenvalue λ.

- The dimensionality of an eigenspace is at most the multiplicity of an eigenvalue (when less, matrix is defective, otherwise matrix is diagonalizable).

- Each $n \times n$ matrix has up to n eigenvalues, which are either real or complex
 - The conjugate of any complex eigenvalue of a real matrix is also an eigenvalue.
 - The dimensionalities of all the eigenspaces (multiplicity associated with each eigenvalue) sum up to n for a diagonalizable matrix.
 - If the matrix is real, real eigenvalues are associated with real eigenvectors, but complex eigenvalues may not be.
Eigenvalue Decomposition

- If a matrix A is diagonalizable, it has an *eigenvalue decomposition*

 $\quad A = XDX^{-1}$

 where X are the right eigenvectors, X^{-1} are the left eigenvectors and D are eigenvalues

 $\quad AX = [Ax_1 \ldots Ax_n] = XD = [d_{11}x_1 \ldots d_{nn}x_n].$

- If A is Hermitian, its right and left singular vectors are the same by symmetry, hence in this case $X^{-1} = X^H$.

- More generally, any *normal* matrix, $A^H A = AA^H$, has unitary eigenvectors.

- A and B are *similar*, if there exist Z such that $A = ZBZ^{-1}$

 - Normal matrices are *unitarily similar* ($Z^{-1} = Z^H$) to diagonal matrices
 - Symmetric real matrices are *orthogonally similar* ($Z^{-1} = Z^T$) to real diagonal matrices
 - Hermitian matrices are unitarily similar to real diagonal matrices
Similarity of Matrices

Invertible similarity transformations $Y = XAX^{-1}$

<table>
<thead>
<tr>
<th>matrix (A)</th>
<th>reduced form (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>arbitrary</td>
<td>bidiagonal</td>
</tr>
<tr>
<td>diagonalizable</td>
<td>diagonal</td>
</tr>
</tbody>
</table>

Unitary similarity transformations $Y = UAU^H$

<table>
<thead>
<tr>
<th>matrix (A)</th>
<th>reduced form (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>arbitrary</td>
<td>triangular (Schur)</td>
</tr>
<tr>
<td>normal</td>
<td>diagonal</td>
</tr>
<tr>
<td>Hermitian</td>
<td>real diagonal</td>
</tr>
</tbody>
</table>

Orthogonal similarity transformations $Y = QAQ^T$

<table>
<thead>
<tr>
<th>matrix (A)</th>
<th>reduced form (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>real</td>
<td>Hessenberg</td>
</tr>
<tr>
<td>real symmetric</td>
<td>real diagonal</td>
</tr>
<tr>
<td>SPD</td>
<td>real positive diagonal</td>
</tr>
</tbody>
</table>
Canonical Forms

- Any matrix is *similar* to a bidiagonal matrix, giving its *Jordan form*:

 \[A = X \begin{bmatrix} J_1 & \cdots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \vdots & J_k \end{bmatrix} X^{-1}, \quad \forall i, \quad J_i = \begin{bmatrix} \lambda_i & 1 \\ \vdots & \ddots \\ & \ddots & \ddots \\ & & 1 \\ & & & \lambda_i \end{bmatrix} \]

 the Jordan form is unique modulo ordering of the diagonal Jordan blocks.

- Any diagonalizable matrix is *unitarily similar* to a triangular matrix, giving its *Schur form*:
 \[A = QTQ^H \]
 where \(T \) is upper-triangular, so the eigenvalues of \(A \) is the diagonal of \(T \). Columns of \(Q \) are the *Schur vectors*.

- Real matrices are *orthogonally similar* to a block-triangular real matrix with 1 × 1 or 2 × 2 blocks (real Schur form)
Eigenvectors from Schur Form

Given the eigenvectors of one matrix, we seek those of a similar matrix: Suppose that $A = SBS^{-1}$ and $B = XDX^{-1}$ where D is diagonal,

1. The eigenvalues of A are $\{d_{11}, \ldots, d_{nn}\}$
2. $A = SBS^{-1} = SXDX^{-1}S^{-1}$ so SX are the eigenvectors of A

Its easy to obtain eigenvectors of triangular matrix T:

1. One eigenvector is simply the first elementary vector.
2. The eigenvector associated with any diagonal entry (eigenvalue λ) may be obtaining by observing that

$$0 = (T - \lambda I)x = \begin{bmatrix} U_{11} & u & T_{13} \\ 0 & v^T & 1 \\ U_{33} & 0 & 0 \end{bmatrix} \begin{bmatrix} -U_{11}^{-1}u \\ 1 \\ 0 \end{bmatrix},$$

so it suffices to solve $U_{11}y = -u$ to obtain eigenvector x.
For any vector x, the \textit{Rayleigh quotient} provides an estimate for some eigenvalue of A:

$$\rho_A(x) = \frac{x^H Ax}{x^H x}.$$

If x is an eigenvector of A, then $\rho_A(x)$ is the associated eigenvalue.

Moreover, for $y = Ax$, the Rayleigh quotient is the best possible eigenvalue estimate given x and y, as it is the solution to $x\alpha \approx y$.

The normal equations for this scalar-output least squares problem are

$$x^T x\alpha = x^T y \quad \Rightarrow \quad \alpha = \frac{x^T y}{x^T x} = \frac{x^T Ax}{x^T x}.$$
Perturbation Analysis of Eigenvalue Problems

- For non-defective \(A = XDX^{-1} \), the eigenvalues of \(A + \delta A = \hat{X}(D + \delta D)X^{-1} \) satisfy \(\|\delta D\| \leq \kappa(X)\|\delta A\| \):

 Note that the eigenvalues of \(X^{-1}(A + \delta A)X = D + X^{-1}\delta AX \) are also \(D + \delta D \). So if we have perturbation to the matrix \(\|\delta A\|_F \), its effect on the eigenvalues corresponds to a (non-diagonal/arbitrary) perturbation \(\delta \hat{A} = X^{-1}\delta AX \) of a diagonal matrix of eigenvalues \(D \), with norm

 \[
 \|\delta \hat{A}\|_F \leq \|X^{-1}\|_2\|\delta A\|_F\|X\|_2 = \kappa(X)\|\delta A\|_F.
 \]

- Gershgorin’s theorem allows us to bound the effect of the perturbation on the eigenvalues of a (diagonal) matrix:

 Given a matrix \(A \in \mathbb{R}^{n \times n} \), let \(r_i = \sum_{j \neq i} |a_{ij}| \), define the Gershgorin disks as

 \[
 D_i = \{ z \in \mathbb{C} : |z - a_{ii}| \leq r_i \}.
 \]

 The eigenvalues \(\lambda_1, \ldots, \lambda_n \) of any matrix \(A \in \mathbb{R}^{n \times n} \) are contained in the union of the Gershgorin disks, \(\forall i \in \{1, \ldots, n\} \), \(\lambda_i \in \bigcup_{j=1}^{n} D_j \).
Gershgorin Theorem Perturbation Visualization

- Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.
- Bottom part corresponds to bounds on Gershgorin disks of $X^{-1}(A + \delta A)X$, which contain the eigenvalues D of A and the perturbed eigenvalues $D + \delta D$ of $A + \delta A$ provided that $||\delta A||$ is sufficiently small.
Conditioning of Particular Eigenpairs

Consider the effect of a matrix perturbation on an eigenvalue λ associated with a right eigenvector x and a left eigenvector y, $\lambda = y^H Ax / y^H x$

For a sufficiently small perturbation δA, the eigenvalue λ is perturbed to an eigenvalue $\hat{\lambda}$ of $\hat{A} = A + \delta A$. The eigenvalue perturbation, ignoring error due to the change in eigenvectors, is

$$|\hat{\lambda} - \lambda| \approx |y^H \delta Ax / y^H x| \leq \frac{||\delta A||}{|y^H x|}.$$

This is small if x is near-parallel to y and large if they are near-perpendicular.

A more accurate eigenvalue approximation than Rayleigh quotient for a normalized perturbed eigenvector (e.g., iterative guess) $\hat{x} = x + \delta x$, can be obtained with an estimate of both eigenvectors (also $\hat{y} = y + \delta y$),

$$|\hat{\lambda}_{xAx} - \lambda| \approx |\delta x^H Ax + x^H A \delta x| \leq |\lambda||\delta x| + \left(|\lambda||y^H x| + |1 - y^H x \cdot ||A|| \right)||\delta x||$$

$$|\hat{\lambda}_{yAx} - \lambda| \approx \frac{|\delta y^H Ax + y^H A \delta x|}{y^H x} \leq |\lambda||\delta x|| \frac{1}{|y^H x|} + ||\delta y||.$$
Google's PageRank

A well-known application of eigenproblems is the problem of ranking n web-pages

- Based on web-data, we compute transition probability from webpage i to webpage j at a_{ij}, so $\sum_j a_{ij} = 1$

- We seek a measure of webpage popularity, which we can take to be the probability x_i of a web-surfer being on webpage i as opposed to the other $n - 1$ webpages

- This vector of probabilities, x, is given by the stationary probability vector, which satisfies

 \[A^T x = x \]

- For such a transition probability (stochastic) matrix A, all eigenvalues are at most 1 in absolute value
Power Iteration

- **Power iteration** can be used to compute the largest eigenvalue of a real symmetric matrix A:

$$x^{(i)} = Ax^{(i-1)} \quad \text{(typically with normalization of } x^{(i)} \text{ at each step).}$$

For a random $x^{(0)}$, power iteration converges eigenvalue of A with largest modulus, $\lim_{i \to \infty} \rho_A(x^{(i)}) = \lambda_{\max}(A)$. If this eigenvalue has multiplicity one, power iteration converges to the dominant eigenvector.

- The error of power iteration decreases at each step by the ratio of the largest eigenvalues:

Assuming A is diagonalizable with eigenvectors U and $V^H = U^{-1}$,

$$x^{(k)} = A^k x^{(0)} = (UDV^H)^k x^{(0)} = UD^k V^H x^{(0)} = \sum_{i=1}^{n} u_i \lambda_i^k v_i^H x^{(0)}.$$

The coefficient $\alpha^{(i,k)}$ associated with the maximum λ_i and dominant eigenvector u_i grows relatively, since $|\alpha^{(i,k)}/\alpha^{(j,k)}| = (|\lambda_i|/|\lambda_j|)^k \left[\alpha^{(i,0)}/\alpha^{(j,0)}\right]$.

Demo: Power iteration and its Variants
If the error at the kth step with respect to the desired solution is e_k, rth order convergence implies that $\lim_{k \to \infty} \|e_k\|/\|e_{k-1}\|^r \leq C$.

- Power iteration achieves linear convergence with $C = |\lambda_2|/|\lambda_1|$ assuming decreasing order, $|\lambda_i| \geq |\lambda_{i+1}|$ and that $|\lambda_1| > |\lambda_2|$.
- Convergence of order $r > 1$ (superlinear) implies that the number of digits of correctness increases by a factor of r at each step.
- For $r > 1$, error $e_k \leq \epsilon$ is achieved after $O(\log_r(\log(1/\epsilon)))$ steps.
- Having achieved superlinear convergence ($r > 1$), methods differ only by constant factors in complexity.
Inverse and Rayleigh Quotient Iteration

- **Inverse iteration** uses LU/QR/SVD of A to run power iteration on A^{-1}
 - For a randomly chosen $x^{(0)}$, solving

 $$Ax^{(i)} = x^{(i-1)} \text{ (typically with normalization of } x^{(i)} \text{ at each step).}$$

 converges to $\lim_{i \to \infty} \rho_A(x^{(i)}) = \lambda_{\text{min}}(A)$ provided there is a unique eigenvalue with minimum magnitude.

- Inverse iteration on $A - \sigma I$ converges to the eigenvalue closest to σ, since all eigenvalues are shifted by σ.

- **Rayleigh quotient iteration** provides rapid convergence to an eigenpair

 $$\left(A - \rho_A(x^{(i-1)})I\right)x^{(i)} = x^{(i-1)},$$

 since at each step the relative magnitude largest eigenvalue of $(A - \rho_A(x^{(i-1)})I)^{-1}$ grows. Formally, it achieves cubic convergence, but requires matrix refactorization at each step.
Deflation

- Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair, to obtain further eigenpairs, can perform deflation.

- Given eigenvalue λ_1 and right eigenvector x_1, seek v so that $B = A - \lambda_1 uv^T$ has eigenvalues $0, \lambda_2, \ldots, \lambda_n$, where

 $$A = XD Y^T = \sum_{i=1}^{n} \lambda_i x_i y_i^T.$$

- Ideal choice would be $v = y_1^T$, i.e., the left eigenvector associated with λ_1, as then the $n - 1$ other eigenvectors of B would be the same as those of A.

- For symmetric matrices $y_1 = x_1$, but for nonsymmetric, obtaining y_1 may require more work.

- Good alternative choice for nonsymmetric matrices is to deflate with Schur vectors, which preserves the Schur decomposition, e.g.,

 $$B = QTQ^T - \lambda_1 q_1 q_1^T = Q(T - \lambda_1 Q^T q_1 q_1^T Q)Q^T = Q(T - \lambda_1 e_1 e_1^T)Q^T.$$
We can always compute an orthogonal similarity transformation to reduce a general matrix to **upper-Hessenberg** (upper-triangular plus the first subdiagonal) matrix H, i.e. $A = QHQ^T$:

We can perform successive two-sided application of Householder reflectors

$$
A = \begin{bmatrix}
 h_{11} & a_{12} & \cdots \\
 a_{21} & a_{22} & \\
 \vdots & \ddots & \\
\end{bmatrix} = Q_1 \begin{bmatrix}
 h_{11} & a_{12} & \cdots \\
 h_{21} & t_{22} & \\
 0 & \ddots & \\
\end{bmatrix} = Q_1 \begin{bmatrix}
 h_{11} & h_{12} & \cdots \\
 h_{21} & h_{22} & \\
 0 & \ddots & \\
\end{bmatrix} Q_1^T = \cdots
$$

Subsequent columns can be reduced by induction, so we can always stably reduce to upper-Hessenberg with roughly double the cost of QR.

In the symmetric case, Hessenberg form implies tridiagonal:

If $A = A^T$ then $H = QAQ^T = H^T$, and a symmetric upper-Hessenberg matrix must be tridiagonal.
Simultaneous and Orthogonal Iteration

- **Simultaneous iteration** provides the main idea for computing many eigenvectors at once:
 - Initialize $X_0 \in \mathbb{R}^{n \times k}$ to be random and perform
 $$X_{i+1} = AX_i.$$
 - Observe that $\lim_{i \to \infty} \text{span}(X_i) = S$ where S is the subspace spanned by the k eigenvectors of A with the largest eigenvalues in magnitude.

- Orthogonal iteration performs QR at each step to ensure stability
 $$Q_{i+1}R_{i+1} = AQ_i$$
 - Q_i has the same span as X_i in orthogonal iteration.
 - QR has cost $O(nk^2)$ while product has cost $O(n^2k)$ per iteration.
 - Can use this to compute the right singular vectors of matrix M by using $A = M^T M$ (no need to form A, just multiply Q_i by M^T then M).
 - Small number of iterations suffice to obtain reasonable low-rank approximation of M, and ultimately Q converges to singular vectors in its truncated SVD.
If A has distinct eigenvalues and R_i has positive decreasing diagonal, the jth column of Q_i converges to the jth Schur vector of A linearly with rate $\max(|\lambda_{j+1}/\lambda_j|, |\lambda_j/\lambda_{j-1}|)$.

- Convergence of the first column of Q_i follows by analogy to power iteration
- Span of first j columns of Q_i converges to the span of the first j Schur vectors with rate $|\lambda_{j+1}/\lambda_j|$
- Hence orthogonal iteration converges similarly to k instances of inverse iteration with shifts chosen near the k largest magnitude eigenvalues
QR Iteration

- QR iteration reformulates orthogonal iteration for \(n = k \) to reduce cost/step,
 - Orthogonal iteration computes \(\hat{Q}_{i+1} \hat{R}_{i+1} = A \hat{Q}_i \)
 - QR iteration computes \(A_{i+1} = R_i Q_i \) where \(A_i = Q_i R_i \) at iteration \(i \)
 - Hence \(A_{i+1} \) is similar to \(A \), as \(A_{i+1} = Q_i^T A_i Q_i = \left(\prod_{j=0}^{i-1} Q_j \right)^T A \left(\prod_{j=0}^{i-1} Q_j \right) \)

- If orthogonal iteration starts with \(\hat{Q}_1 = Q_0 \), then \(\hat{Q}_i = \prod_{j=0}^{i-1} Q_j \),
 - By induction, \(\hat{Q}_i^T A \hat{Q}_i = A_i = Q_i R_i \)
 - Hence, the QR factorization of \(A \hat{Q}_i = \hat{Q}_i Q_i R_i = \hat{Q}_{i+1} \hat{R}_{i+1} \)

- QR iteration converges to triangular \(A_i \) if the eigenvalues are distinct in modulus, and in general converges to block-triangular form with a block for each set of eigenvalues of equal modulus.
QR Iteration with Shift

QR iteration can be accelerated using shifting:

\[Q_i R_i = A_i - \sigma_i I, \quad A_{i+1} = R_i Q_i + \sigma_i I \]

note that \(A_{i+1} \) is similar to \(A_i \), since we can reorganize the above as

\[R_i Q_i = Q_i^T (A_i - \sigma_i I) Q_i, \]

\[Q_i (A_{i+1} - \sigma_i I) Q_i^T = Q_i R_i, \]

and observe that \(R_i Q_i \) is similar to \(Q_i R_i \).

The shift is selected to accelerate convergence to an eigenvalue (pair):

We can select the shift as the bottom right element of \(A_i \) or last diagonal entry adjacent to nonzero subdiagonal entry (Wilkinson shift)

Wilkinson shift accelerates convergence (follows from analogy of orthogonal iteration to inverse iteration)

Complex eigenvalues require more sophisticated shifts, ”implicit double shift” converges to real Schur form while avoiding complex arithmetic
QR Iteration Complexity

- QR iteration is accelerated by first reducing to upper-Hessenberg or tridiagonal form:

 Reduction to upper-Hessenberg or tridiagonal in the symmetric case, costs $O(n^3)$ operations and can be done in a similar style to Householder QR.

Given an upper-Hessenberg matrix, $H_i = A_i$

- reduction to upper-triangular requires $n - 1$ Givens rotations, if G_i rotates the $(i + 1)$th row into the ith to eliminate the ith element on the first subdiagonal, $R_i = G_1^T \cdots G_{n-1}^T H_i$

- computation of $H_{i+1} = RQ$ can be done by application of the $n - 1$ Givens rotations to R from the right $H_{i+1} = R_i G_{n-1} \cdots G_1$.

 Both cost $O(n^2)$, for $O(n^3)$ overall if QR iteration converges in $O(n)$ steps.

Given a tridiagonal matrix, the same two general steps are required, but now each step costs $O(n)$, so overall the eigenvalues and eigenvectors of a tridiagonal matrix can be computed with $O(n^2)$ work.
A variety of methods exists for the tridiagonal eigenproblem:

- **QR iteration** requires $O(1)$ QR factorizations per eigenvalue, $O(n^2)$ cost to get eigenvalues, $O(n^3)$ for eigenvectors. The last cost is not optimal.

- **Divide and conquer**
 - partition tridiagonal matrix as
 \[T = \begin{bmatrix} \hat{T}_1 & \hat{T}_2 \\ \end{bmatrix} + t_{n/2+1,n/2} \begin{bmatrix} e_{n/2} \\ e_1 \end{bmatrix} \begin{bmatrix} e_{n/2}^T \\ e_1^T \end{bmatrix} \]
 - solve two independent eigenvalue problems recursively, recover eigenvalues of T via solving "secular equation"

- **Major alternatives to divide and conquer** include spectral bisection and the MRRR algorithm.
Krylov subspace methods work with information contained in the $n \times k$ matrix

$$K_k = \begin{bmatrix} x_0 & Ax_0 & \cdots & A^{k-1}x_0 \end{bmatrix}$$

We seek to best use the information from the matrix vector product results (columns of K_k) to solve eigenvalue problems.

Assuming K_n is invertible, the matrix $K_n^{-1}AK_n$ is a companion matrix C:

Letting $k_n^{(i)} = A^{i-1}x$, we observe that

$$AK_n = \begin{bmatrix} Ak_n^{(1)} & \cdots & Ak_n^{(n-1)} & Ak_n^{(n)} \end{bmatrix} = \begin{bmatrix} k_n^{(2)} & \cdots & k_n^{(n)} & Ak_n^{(n)} \end{bmatrix},$$

therefore premultiplying by K_n^{-1} transforms the first $n - 1$ columns of AK_n into the last $n - 1$ columns of I,

$$K_n^{-1}AK_n = \begin{bmatrix} K_n^{-1}k_n^{(2)} & \cdots & K_n^{-1}k_n^{(n)} & K_n^{-1}Ak_n^{(n)} \end{bmatrix} = \begin{bmatrix} e_2 & \cdots & e_n & K_n^{-1}Ak_n^{(n)} \end{bmatrix}$$
Krylov Subspaces

Given $Q_k R_k = K_k$, we obtain an orthonormal basis for the Krylov subspace,

$$K_k(A, x_0) = \text{span}(Q_k) = \{p(A)x_0 : \text{deg}(p) < k\},$$

where p is any polynomial of degree less than k.

The Krylov subspace includes the $k - 1$ approximate dominant eigenvectors generated by $k - 1$ steps of power iteration:

- The approximation obtained from $k - 1$ steps of power iteration starting from x_0 is given by the Rayleigh-quotient of $y = A^k x_0$.
- This vector is within the Krylov subspace, $y \in K_k(A, x_0)$.
- Consequently, Krylov subspace methods will generally obtain strictly better approximations of the dominant eigenpair than power iteration.
The $k \times k$ matrix $H_k = Q_k^T A Q_k$ minimizes $\|A Q_k - Q_k H_k\|_2$:

Let $M = A Q_k - Q_k H_k$, then

$$\|M\|_2 \geq \max(\| (I - Q_k Q_k^T) M \|_2, \| Q_k Q_k^T M \|_2)$$

Since $(I - Q_k Q_k^T) M = (I - Q_k Q_k^T) A Q_k$, the first term is independent of H_k. The second term is minimized (zero) with the choice $H_k = Q_k^T A Q_k$.

H_k is Hessenberg, because the companion matrix C_k is Hessenberg:

$$H_k = Q_k^T A Q_k = R_k K_k^{-1} A K_k R_k^{-1} = R_k C_k R_k^{-1}$$

is a product of three matrices: upper-triangular R_k, upper-Hessenberg C_k, and upper-triangular R_k^{-1}, which results in upper-Hessenberg H_k.
Rayleigh-Ritz Procedure

The eigenvalues/eigenvectors of H_k are the Ritz values/vectors:

$$H_k = XDX^{-1}$$

eigenvalue approximations based on Ritz vectors X are given by Q_kX.

The Ritz vectors and values are the ideal approximations of the actual eigenvalues and eigenvectors based on only H_k and Q_k:

Assuming A is a symmetric matrix with positive eigenvalues, the largest Ritz value $\lambda_{\text{max}}(H_k)$ will be the maximum Rayleigh quotient of any vector in $K_k = \text{span}(Q_k)$,

$$\max_{x \in \text{span}(Q_k)} \frac{x^T A x}{x^T x} = \max_{y \neq 0} \frac{y^T Q_k^T A Q_k y}{y^T y} = \max_{y \neq 0} \frac{y^T H_k y}{y^T y} = \lambda_{\text{max}}(H_k),$$

which is the best approximation to $\lambda_{\text{max}}(A) = \max_{x \neq 0} \frac{x^T A x}{x^T x}$ available in K_k. The quality of the approximation can also be shown to be optimal for other eigenvalues/eigenvectors.

Demo: Arnoldi vs Power Iteration
Arnoldi iteration computes the ith column of H_n, h_i and the ith column of Q_n directly using the recurrence $Aq_i = Q_nh_i = \sum_{j=1}^{i+1} h_{ji}q_j$

Note that

$$q_i^TAq_j = q_i^T(Q_nH_nQ_n^T)q_j = e_i^TH_ne_j = h_{ij}.$$

The Arnoldi algorithm computes q_{i+1} from q_1, \ldots, q_i by first computing $u_i = Aq_i$ then orthogonalizing,

$$q_{i+1}h_{i+1,i} = u_i - \sum_{j=1}^{i} q_jh_{ji}, \quad h_{ji} = q_j^Tu_i$$

then computing the norm of the vector to obtain $h_{i+1,i}$, yielding the ith column of H_n.

Demo: Arnoldi Iteration

Demo: Arnoldi Iteration with Complex Eigenvalues
Lanczos Iteration

- Lanczos iteration provides a method to reduce a symmetric matrix to a tridiagonal matrix:

 Arnoldi iteration on a symmetric matrix will result in an upper-Hessenberg matrix H_n as before, except that it must also be symmetric, since

 $$H_n^T = (Q_n^T A Q_n)^T = Q_n^T A^T Q_n = Q_n^T A Q_n = H_n,$$

 which implies that H_n must be tridiagonal.

- After each matrix-vector product, it suffices to orthogonalize with respect to two previous vectors:

 Since $h_{ji} = 0$ if $j - i > 1$, given $u_i = A q_i$, it suffices to compute only $h_{ii} = q_i^T u_i$ and $h_{i+1,i} = h_{i,i+1} = \| u_i - q_i h_{ii} \|_2$.
The cost of matrix-vector multiplication when the matrix has \(m \) nonzeros is \(m \) multiplications and at most \(m \) additions, so roughly \(2m \) in total.

The cost of orthogonalization at the \(k \)th iteration of a Krylov subspace method is

- \(O(nk) \) for \(k \) inner products in Arnoldi,
- \(O(n) \) in Lanczos, since only 2 orthogonalizations needed.
- For Arnoldi with \(k \)-dimensional subspace, in total, orthogonalization costs \(O(nk^2) \), matrix-vector products cost \(O(mk) \), so generally desire \(nk < m \).
Restarting Krylov Subspace Methods

- In finite precision, Lanczos generally loses orthogonality, while orthogonalization in Arnoldi can become prohibitively expensive:
 - Arnoldi cost of orthogonalization dominates if $k > m/n$.
 - In Lanczos, reorthogonalizing iterate to previous guesses can ensure orthogonality in the presence of round-off error.
 - Selective orthogonalization strategies control when and with respect to what previous columns of Q, each new iterate $u_j = Aq_j$ should be orthogonalized.

- Consequently, in practice, low-dimensional Krylov subspace methods are constructed repeatedly using carefully selected new starting vectors:
 \[\text{If we wish to find a particular eigenvector isolate some eigenspaces, restarting is beneficial}\]
 - can orthogonalize to previous eigenvector estimates to perform deflation,
 - can pick starting vector as Ritz vector estimate associated with desired eigenpair,
 - given new starting vector, can discard previous Krylov subspace, which helps make storing the needed parts of Q possible.
A generalized eigenvalue problem has the form $Ax = \lambda Bx$,

$$AX = BXD$$

$$B^{-1}A = XDX^{-1}$$

Generalized eigenvalue problems arise frequently, especially in solving partial differential equations.

When A and B are symmetric and B is SPD, we can perform Cholesky on B, multiply A by the inverted factors, and diagonalize it:

$$AX = LL^TXD$$

$$L^{-1}AL^{-T}L^TX = \hat{L}^T\hat{X}D$$

Specialized canonical forms and methods exist for the generalized eigenproblem with fewer constraints on B and better cost/stability.