CS 450: Numerical Anlaysis¹ Eigenvalue Problems

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Eigenvalues and Eigenvectors

A matrix A has eigenvector-eigenvalue pair (eigenpair) (λ, x) if

$$Ax = \lambda x$$

- For any scalar α , αx is also an eigenvector of A with eigenvalue λ
- Generally, an eigenvalue λ is associated with an eigenspace X ⊆ Cⁿ such that each x ∈ X is an eigenvector of A with eigenvalue λ.
- The dimensionality of an eigenspace is at most the multiplicity of an eigenvalue (when less, matrix is defective, otherwise matrix is diagonalizable).

Each $n \times n$ matrix has up to n eigenvalues, which are either real or complex

- The conjugate of any complex eigenvalue of a real matrix is also an eigenvalue.
- The dimensionalities of all the eigenspaces (multiplicity associated with each eigenvalue) sum up to n for a diagonalizable matrix.
- If the matrix is real, real eigenvalues are associated with real eigenvectors, but complex eigenvalues may not be.

Eigenvalue Decomposition

▶ If a matrix A is diagonalizable, it has an *eigenvalue decomposition*

 $A = XDX^{-1}$

where X are the right eigenvectors, X^{-1} are the left eigenvectors and D are eigenvalues

$$oldsymbol{A}oldsymbol{X} = egin{bmatrix} oldsymbol{A}oldsymbol{x}_1 & \cdots & oldsymbol{A}oldsymbol{x}_n \end{bmatrix} = oldsymbol{X}oldsymbol{D} = egin{bmatrix} d_{11}oldsymbol{x}_1 & \cdots & d_{nn}oldsymbol{x}_n \end{bmatrix}.$$

- ► If A is Hermitian, its right and left singular vectors are the same by symmetry, hence in this case X⁻¹ = X^H.
- More generally, any normal matrix, $A^H A = A A^H$, has unitary eigenvectors.
- A and B are similar, if there exist Z such that $A = ZBZ^{-1}$
 - ▶ Normal matrices are unitarily similar ($Z^{-1} = Z^H$) to diagonal matrices
 - Symmetric real matrices are orthogonally similar (Z⁻¹ = Z^T) to real diagonal matrices
 - Hermitian matrices are unitarily similar to real diagonal matrices

Similarity of Matrices

Invertible similarity transformations $m{Y} = m{X} m{A} m{X}^{-1}$

matrix (A)	reduced form (Y)
arbitrary	bidiagonal
diagonalizable	diagonal

Unitary similarity transformations $Y = UAU^H$

matrix (A)	reduced form (Y)
arbitrary	triangular (Schur)
normal	diagonal
Hermitian	real diagonal

Orthogonal similarity transformations $oldsymbol{Y} = oldsymbol{Q} oldsymbol{A} oldsymbol{Q}^T$

matrix (A)	reduced form (Y)	
real	Hessenberg	
real symmetric	symmetric real diagonal	
SPD	real positive diagonal	

Canonical Forms

Any matrix is *similar* to a bidiagonal matrix, giving its *Jordan form*:

$$oldsymbol{A} = oldsymbol{X} egin{bmatrix} oldsymbol{J}_1 & & \ & \ddots & \ & \ddots & \ & & \ddots & 1\ & & & & & \ddots & 1\ \end{pmatrix}$$

the Jordan form is unique modulo ordering of the diagonal Jordan blocks.

- Any diagonalizable matrix is unitarily similar to a triangular matrix, giving its Schur form: A = QTQ^H where T is upper-triangular, so the eigenvalues of A is the diagonal of T. Columns of Q are the Schur vectors.
- ► Real matrices are *orthogonally similar* to a block-triangular real matrix with 1 × 1 or 2 × 2 blocks (real Schur form)

Eigenvectors from Schur Form

• Given the eigenvectors of one matrix, we seek those of a similar matrix: Suppose that $A = SBS^{-1}$ and $B = XDX^{-1}$ where D is diagonal,

• The eigenvalues of
$$oldsymbol{A}$$
 are $\{d_{11},\ldots,d_{nn}\}$

- $A = SBS^{-1} = SXDX^{-1}S^{-1}$ so SX are the eigenvectors of A
- ▶ Its easy to obtain eigenvectors of triangular matrix *T*:
 - One eigenvector is simply the first elementary vector.
 - The eigenvector associated with any diagonal entry (eigenvalue λ) may be obtaining by observing that

$$\mathbf{0} = (\boldsymbol{T} - \lambda \boldsymbol{I})\boldsymbol{x} = \begin{bmatrix} \boldsymbol{U}_{11} & \boldsymbol{u} & \boldsymbol{T}_{13} \\ & \boldsymbol{0} & \boldsymbol{v}^T \\ & & \boldsymbol{U}_{33} \end{bmatrix} \begin{bmatrix} -\boldsymbol{U}_{11}^{-1}\boldsymbol{u} \\ 1 \\ \mathbf{0} \end{bmatrix},$$

so it suffices to solve $U_{11}y = -u$ to obtain eigenvector x.

Rayleigh Quotient

For any vector x, the Rayleigh quotient provides an estimate for some eigenvalue of A:

$$\rho_{\boldsymbol{A}}(\boldsymbol{x}) = \frac{\boldsymbol{x}^H \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^H \boldsymbol{x}}.$$

- If x is an eigenvector of A, then $\rho_A(x)$ is the associated eigenvalue.
- Moreover, for y = Ax, the Rayleigh quotient is the best possible eigenvalue estimate given x and y, as it is the solution to $x\alpha \cong y$.
- The normal equations for this scalar-output least squares problem are

$$oldsymbol{x}^Toldsymbol{x}lpha=oldsymbol{x}^Toldsymbol{y} \ \Rightarrow \ lpha=oldsymbol{x}^Toldsymbol{y}=oldsymbol{x}^Toldsymbol{A}oldsymbol{x}$$

Perturbation Analysis of Eigenvalue Problems

For non-defective $A = XDX^{-1}$, the eigenvalues of $A + \delta A = \hat{X}(D + \delta D)X^{-1}$ satisfy $\|\delta D\| \le \kappa(X)\|\delta A\|$:

Note that the eigenvalues of $X^{-1}(A + \delta A)X = D + X^{-1}\delta AX$ are also $D + \delta D$. So if we have perturbation to the matrix $||\delta A||_F$, its effect on the eigenvalues corresponds to a (non-diagonal/arbitrary) perturbation $\delta \hat{A} = X^{-1}\delta AX$ of a diagonal matrix of eigenvalues D, with norm

$$||\boldsymbol{\delta}\hat{\boldsymbol{A}}||_F \leq ||\boldsymbol{X}^{-1}||_2||\boldsymbol{\delta}\boldsymbol{A}||_F||\boldsymbol{X}||_2 = \kappa(\boldsymbol{X})||\boldsymbol{\delta}\boldsymbol{A}||_F.$$

 Gershgorin's theorem allows us to bound the effect of the perturbation on the eigenvalues of a (diagonal) matrix:

Given a matrix $m{A} \in \mathbb{R}^{n imes n}$, let $r_i = \sum_{j
eq i} |a_{ij}|$, define the Gershgorin disks as

 $D_i = \{ z \in \mathbb{C} : |z - a_{ii}| \le r_i \}.$

The eigenvalues $\lambda_1, \ldots, \lambda_n$ of any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ are contained in the union of the Gershgorin disks, $\forall i \in \{1, \ldots, n\}, \lambda_i \in \bigcup_{j=1}^n D_j$.

Gershgorin Theorem Perturbation Visualization

▶ Top corresponds to Gershgorin disks on complex plane of 4-by-4 real matrix.

Bottom part corresponds to bounds on Gershgorin disks of $X^{-1}(A + \delta A)X$, which contain the eigenvalues D of A and the perturbed eigenvalues $D + \delta D$ of $A + \delta A$ provided that $||\delta A||$ is sufficiently small.

Conditioning of Particular Eigenpairs

Consider the effect of a matrix perturbation on an eigenvalue λ associated with a right eigenvector x and a left eigenvector y, $\lambda = y^H A x / y^H x$ For a sufficiently small perturbation δA , the eigenvalue λ is perturbed to an eigenvalue $\hat{\lambda}$ of $\hat{A} = A + \delta A$. The eigenvalue perturbation, ignoring error due

to the change in eigenvectors, is

$$|\hat{\lambda}-\lambda|pprox|oldsymbol{y}^Holdsymbol{\delta}oldsymbol{A}oldsymbol{x}/oldsymbol{y}^Holdsymbol{x}|\leq rac{||oldsymbol{\delta}oldsymbol{A}||}{|oldsymbol{y}^Holdsymbol{x}||}.$$

This is small if x is near-parallel to y and large if they are near-perpendicular.

A more accurate eigenvalue approximation than Rayleigh quotient for a normalized perturbed eigenvector (e.g., iterative guess) $\hat{x} = x + \delta x$, can be obtained with an estimate of both eigenvectors (also $\hat{y} = y + \delta y$),

$$egin{aligned} &|\hat{\lambda}_{\mathsf{XAX}} - \lambda| pprox |oldsymbol{\delta x}^Holdsymbol{A} x + oldsymbol{x}^Holdsymbol{A} x + oldsymbol{x}^Holdsymbol{A} x + oldsymbol{x}^Holdsymbol{A} x + oldsymbol{y}^Holdsymbol{A} x + oldsymbol{y}^Hol$$

Google's PageRank

A well-known application of eigenproblems is the problem of ranking \boldsymbol{n} web-pages

- ► Based on web-data, we compute transition probability from webpage *i* to webpage *j* at a_{ij} , so $\sum_j a_{ij} = 1$
- ► We seek a measure of webpage popularity, which we can take to be the probability x_i of a web-surfer being on webpage i as opposed to the other n − 1 webpages
- This vector of probabilities, x, is given by the stationary probability vector, which satisfies

$$A^T x = x$$

For such a transition probability (stochastic) matrix A, all eigenvalues are at most 1 in absolute value

constant

Power Iteration

Power iteration can be used to compute the largest eigenvalue of a real symmetric matrix A:

 $m{x}^{(i)} = m{A}m{x}^{(i-1)}$ (typically with normalization of $m{x}^{(i)}$ at each step).

For a random $x^{(0)}$, power iteration converges eigenvalue of A with largest modulus, $\lim_{i\to\infty} \rho_A(x^{(i)}) = \lambda_{max}(A)$. If this eigenvalue has multiplicity one, power iteration converges to the dominant eigenvector.

The error of power iteration decreases at each step by the ratio of the largest eigenvalues:

Assuming $oldsymbol{A}$ is diagonalizable with eigenvectors $oldsymbol{U}$ and $oldsymbol{V}^H = oldsymbol{U}^{-1}$,

$$m{x}^{(k)} = m{A}^k m{x}^{(0)} = (m{U} m{D} m{V}^H)^k m{x}^{(0)} = m{U} m{D}^k m{V}^H m{x}^{(0)} = \sum_{i=1}^n m{u}_i \underbrace{\lambda_i^k m{v}_i^H m{x}^{(0)}}_{lpha^{(i,k)}}$$

The coefficient $\alpha^{(i,k)}$ associated with the maximum λ_i and dominant eigenvector u_i grows relatively, since $|\alpha^{(i,k)}/\alpha^{(j,k)}| = (|\lambda_i|/|\lambda_j|)^k \lfloor \alpha^{(i,0)}/\alpha^{(j,0)} \rfloor$.

Rates of Convergence

- ▶ If the error at the *k*th step with respect to the desired solution is e_k , *r*th order convergence implies that $\lim_{k\to\infty} ||e_k||/||e_{k-1}||^r \leq C$
 - Power iteration achieves linear convergence with $C = |\lambda_2|/|\lambda_1|$ assuming decreasing order, $|\lambda_i| \ge |\lambda_{i+1}|$ and that $|\lambda_1| > |\lambda_2|$.
 - Convergence of order r > 1 (superlinear) implies that the number of digits of correctness increases by a factor of r at each step.
 - For r > 1, error $e_k \le \epsilon$ is achieved after $O(\log_r(\log(1/\epsilon)))$ steps.
 - Having achieved superlinear convergence (r > 1), methods differ only by constant factors in complexity.

Inverse and Rayleigh Quotient Iteration

- Inverse iteration uses LU/QR/SVD of A to run power iteration on A^{-1}
 - For a randomly chosen $m{x}^{(0)}$, solving

 $Ax^{(i)} = x^{(i-1)}$ (typically with normalization of $x^{(i)}$ at each step).

converges to $\lim_{i\to\infty} \rho_A(x^{(i)}) = \lambda_{\min}(A)$ provided there is a unique eigenvalue with minimum magnitude.

- Inverse iteration on A σI converges to the eigenvalue closes to σ, since all eigenvalues are shifted by σ.
- Rayleigh quotient iteration provides rapid convergence to an eigenpair

$$(A - \rho_A(x^{(i-1)})I)x^{(i)} = x^{(i-1)},$$

since at each step the relative magnitude largest eigenvalue of $(A - \rho_A(x^{(i-1)})I)^{-1}$ grows. Formally, it achieves cubic convergence, but requires matrix refactorization at each step.

Deflation

- Power, inverse, and Rayleigh-quotient iteration compute a single eigenpair, to obtain further eigenpairs, can perform *deflation*
 - Given eigenvalue λ_1 and right eigenvector x_1 , seek v so that $B = A \lambda_1 u v^T$ has eigenvalues $0, \lambda_2, \ldots, \lambda_n$, where

$$oldsymbol{A} = oldsymbol{X} oldsymbol{D} \underbrace{oldsymbol{Y}^T}_{oldsymbol{X}^{-1}} = \sum_{i=1}^n \lambda_i oldsymbol{x}_i oldsymbol{y}_i^T$$

- Ideal choice would be $v = y_1^T$, i.e., the left eigenvector associated with λ_1 , as then the n 1 other eigenvectors of B would be the same as those of A.
- For symmetric matrices $y_1 = x_1$, but for nonsymmetric, obtaining y_1 may require more work.
- Good alternative choice for nonsymmetric matrices is to deflate with Schur vectors, which preserves the Schur decomposition, e.g.,

$$\boldsymbol{B} = \boldsymbol{Q} \boldsymbol{T} \boldsymbol{Q}^T - \lambda_1 \boldsymbol{q}_1 \boldsymbol{q}_1^T = \boldsymbol{Q} (\boldsymbol{T} - \lambda_1 \boldsymbol{Q}^T \boldsymbol{q}_1 \boldsymbol{q}_1^T \boldsymbol{Q}) \boldsymbol{Q}^T = \boldsymbol{Q} (\boldsymbol{T} - \lambda_1 \boldsymbol{e}_1 \boldsymbol{e}_1^T) \boldsymbol{Q}^T.$$

Direct Matrix Reductions

We can always compute an orthogonal similarity transformation to reduce a general matrix to *upper-Hessenberg* (upper-triangular plus the first subdiagonal) matrix *H*, i.e. *A* = *QHQ*^T:

We can perform successive two-sided application of Householder reflectors

$$\boldsymbol{A} = \begin{bmatrix} h_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \\ \vdots & & \ddots \end{bmatrix} = \boldsymbol{Q}_1 \begin{bmatrix} h_{11} & a_{12} & \cdots \\ h_{21} & t_{22} & \cdots \\ \mathbf{0} & \vdots & \ddots \end{bmatrix} = \boldsymbol{Q}_1 \begin{bmatrix} h_{11} & h_{12} & \cdots \\ h_{21} & h_{22} & \cdots \\ \mathbf{0} & \vdots & \ddots \end{bmatrix} \boldsymbol{Q}_1^T = \cdots$$

subsequent columns can be reduced by induction, so we can always stably reduce to upper-Hessenberg with roughly double the cost of QR.

In the symmetric case, Hessenberg form implies tridiagonal:
 If A = A^T then H = QAQ^T = H^T, and a symmetric upper-Hessenberg matrix must be tridiagonal.

Demo: Orthogonal Iteration

Simultaneous and Orthogonal Iteration

- Simultaneous iteration provides the main idea for computing many eigenvectors at once:
 - Initialize $oldsymbol{X}_0 \in \mathbb{R}^{n imes k}$ to be random and perform

$$\boldsymbol{X}_{i+1} = \boldsymbol{A}\boldsymbol{X}_i.$$

- ▶ Observe that $\lim_{i\to\infty} \operatorname{span}(X_i) = \mathbb{S}$ where \mathbb{S} is the subspace spanned by the k eigenvectors of A with the largest eigenvalues in magnitude.
- Orthogonal iteration performs QR at each step to ensure stability

$$\boldsymbol{Q}_{i+1} \boldsymbol{R}_{i+1} = \boldsymbol{A} \boldsymbol{Q}_i$$

- Q_i has the same span as X_i in orthogonal iteration.
- QR has cost $O(nk^2)$ while product has cost $O(n^2k)$ per iteration.
- Can use this to compute the right singular vectors of matrix M by using $A = M^T M$ (no need to form A, just multiply Q_i by M^T then M).
- Small number of iterations suffice to obtain reasonable low-rank approximation of M, and ultimately Q converges to singular vectors in its truncated SVD.

Orthogonal Iteration Convergence

- ► If A has distinct eigenvalues and R_i has positive decreasing diagonal, the *j*th column of Q_i converges to the *j*th Schur vector of A linearly with rate max(|λ_{j+1}/λ_j|, |λ_j/λ_{j-1}|).
 - \blacktriangleright Convergence of the first column of Q_i follows by analogy to power iteration
 - Span of first j columns of Q_i converges to the span of the first j Schur vectors with rate |λ_{j+1}/λ_j|
 - Hence orthogonal iteration converges similarly to k instances of inverse iteration with shifts chosen near the k largest magnitude eigenvalues

QR Iteration

- ▶ QR iteration reformulates orthogonal iteration for n = k to reduce cost/step,
 - Orthogonal iteration computes $\hat{m{Q}}_{i+1}\hat{m{R}}_{i+1}=m{A}\hat{m{Q}}_i$
 - ▶ QR iteration computes $A_{i+1} = R_i Q_i$ where $A_i = Q_i R_i$ at iteration i

 $\blacktriangleright \text{ Hence } \boldsymbol{A}_{i+1} \text{ is similar to } \boldsymbol{A} \text{, as } \boldsymbol{A}_{i+1} = \boldsymbol{Q}_i^T \boldsymbol{A}_i \boldsymbol{Q}_i^T = \left(\prod_{j=0}^{i-1} \boldsymbol{Q}_j\right)^T \boldsymbol{A} \left(\prod_{j=0}^{i-1} \boldsymbol{Q}_j\right)$

▶ If orthogonal iteration starts with $\hat{Q}_1 = Q_0$, then $\hat{Q}_i = \prod_{j=0}^{i-1} Q_j$,

b By induction, $\hat{oldsymbol{Q}}_i^T oldsymbol{A} \hat{oldsymbol{Q}}_i = oldsymbol{A}_i = oldsymbol{Q}_i oldsymbol{R}_i$

▶ Hence, the QR factorization of $A\hat{Q}_i = \hat{Q}_i Q_i R_i = \hat{Q}_{i+1} \hat{R}_{i+1}$

QR iteration converges to triangular A_i if the eigenvalues are distinct in modulus, and in general converges to block-triangular form with a block for each set of eigenvalues of equal modulus.

QR Iteration with Shift

QR iteration can be accelerated using shifting:

$$Q_i R_i = A_i - \sigma_i I,$$
 $A_{i+1} = R_i Q_i + \sigma_i I$

note that A_{i+1} is similar to A_i , since we can reorganize the above as

$$oldsymbol{R}_i oldsymbol{Q}_i = oldsymbol{Q}_i^T (oldsymbol{A}_i - \sigma_i oldsymbol{I}) oldsymbol{Q}_i,$$

 $oldsymbol{Q}_i (oldsymbol{A}_{i+1} - \sigma_i oldsymbol{I}) oldsymbol{Q}_i^T = oldsymbol{Q}_i oldsymbol{R}_i,$

and observe that $R_i Q_i$ is similar to $Q_i R_i$.

- ► The shift is selected to accelerate convergence to an eigenvalue (pair):
- We can select the shift as the bottom right element of A_i or last diagonal entry adjacent to nonzero subdiagonal entry (Wilkinson shift)
- Wilkinson shift accelerates convergence (follows from analogy of orthogonal iteration to inverse iteration)
- Complex eigenvalues require more sophisticated shifts, "implicit double shift" converges to real Schur form while avoiding complex arithmetic

QR Iteration Complexity

QR iteration is accelerated by first reducing to upper-Hessenberg or tridiagonal form:

Reduction to upper-Hessenberg or tridiagonal in the symmetric case, costs $O(n^3)$ operations and can be done in a similar style to Householder QR.

Given an upper-Hessenberg matrix, $oldsymbol{H}_i = oldsymbol{A}_i$

- ► reduction to upper-triangular requires n-1 Givens rotations, if G_i rotates the (i+1)th row into the *i*th to eliminate the *i*th element on the first subdiagonal, $R_i = G_1^T \cdots G_{n-1}^T H_i$
- ► computation of $H_{i+1} = RQ$ can be done by application of the n-1 Givens rotations to R from the right $H_{i+1} = R_i G_{n-1} \cdots G_1$.

Both cost $O(n^2)$, for $O(n^3)$ overall if QR iteration converges in O(n) steps.

Given a tridiagonal matrix, the same two general steps are required, but now each step costs O(n), so overall the eigenvalues and eigenvectors of a tridiagonal matrix can be computed with $O(n^2)$ work.

Solving Tridiagonal Symmetric Eigenproblems

A variety of methods exists for the tridiagonal eigenproblem:

- ▶ QR iteration requires O(1) QR factorizations per eigenvalue, $O(n^2)$ cost to get eigenvalues, $O(n^3)$ for eigenvectors. The last cost is not optimal.
- Divide and conquer
 - partition tridiagonal matrix as

$$oldsymbol{T} = egin{bmatrix} \hat{oldsymbol{T}}_1 & \ & \hat{oldsymbol{T}}_2 \end{bmatrix} + t_{n/2+1,n/2} egin{bmatrix} oldsymbol{e}_{n/2} & oldsymbol{e}_{1} \end{bmatrix} egin{bmatrix} oldsymbol{e}_{n/2} & oldsymbol{e}_{1} \end{bmatrix}$$

solve two independent eigenvalue problems recursively, recover eigenvalues of T via solving "secular equation"

Major alternatives to divide and conquer include spectral bisection and the MRRR algorithm.

Introduction to Krylov Subspace Methods

• *Krylov subspace methods* work with information contained in the $n \times k$ matrix

$$oldsymbol{K}_k = egin{bmatrix} oldsymbol{x_0} & Aoldsymbol{x_0} & \cdots & oldsymbol{A}^{k-1}oldsymbol{x_0} \end{bmatrix}$$

We seek to best use the information from the matrix vector product results (columns of K_k) to solve eigenvalue problems.

Assuming K_n is invertible, the matrix $K_n^{-1}AK_n$ is a *companion matrix* C: Letting $k_n^{(i)} = A^{i-1}x$, we observe that

$$oldsymbol{A}oldsymbol{K}_n = egin{bmatrix} oldsymbol{A}oldsymbol{k}_n^{(1)} & \cdots & oldsymbol{A}oldsymbol{k}_n^{(n-1)} & oldsymbol{A}oldsymbol{k}_n^{(n)} \end{bmatrix} = egin{bmatrix} oldsymbol{k}_n^{(2)} & \cdots & oldsymbol{k}_n^{(n)} & oldsymbol{A}oldsymbol{k}_n^{(n)} \end{bmatrix},$$

therefore premultiplying by K_m^{-1} transforms the first n-1 columns of AK_n into the last n-1 columns of I,

$$egin{aligned} oldsymbol{K}_n^{-1}oldsymbol{A}oldsymbol{K}_n &= egin{bmatrix} oldsymbol{K}_n^{-1}oldsymbol{k}_n^{(n)} & \cdots & oldsymbol{K}_n^{-1}oldsymbol{k}_n^{(n)} \end{bmatrix} \ &= egin{bmatrix} oldsymbol{e}_2 & \cdots & oldsymbol{e}_n & oldsymbol{K}_n^{-1}oldsymbol{A}oldsymbol{k}_n^{(n)} \end{bmatrix} \end{aligned}$$

Krylov Subspaces

• Given $Q_k R_k = K_k$, we obtain an orthonormal basis for the Krylov subspace,

 $\mathcal{K}_k(\boldsymbol{A}, \boldsymbol{x}_0) = span(\boldsymbol{Q}_k) = \{p(\boldsymbol{A})\boldsymbol{x}_0 : deg(p) < k\},\$

where p is any polynomial of degree less than k.

- The Krylov subspace includes the k 1 approximate dominant eigenvectors generated by k 1 steps of power iteration:
 - The approximation obtained from k 1 steps of power iteration starting from x₀ is given by the Rayleigh-quotient of y = A^kx₀.
 - This vector is within the Krylov subspace, $y \in \mathcal{K}_k(A, x_0)$.
 - Consequently, Krylov subspace methods will generally obtain strictly better approximations of the dominant eigenpair than power iteration.

Krylov Subspace Methods

► The $k \times k$ matrix $H_k = Q_k^T A Q_k$ minimizes $||AQ_k - Q_k H_k||_2$: Let $M = AQ_k - Q_k H_k$, then

$$\|oldsymbol{M}\|_2 \geq \max(\|(oldsymbol{I} - oldsymbol{Q}_k oldsymbol{Q}_k^T)oldsymbol{M}\|_2, \|oldsymbol{Q}_k oldsymbol{Q}_k^Toldsymbol{M}\|_2)$$

Since $(I - Q_k Q_k^T)M = (I - Q_k Q_k^T)AQ_k$, the first term is independent of H_k . The second term is minimized (zero) with the choice $H_k = Q_k^T AQ_k$.

 \blacktriangleright H_k is Hessenberg, because the companion matrix C_k is Hessenberg:

$$oldsymbol{H}_k = oldsymbol{Q}_k^T oldsymbol{A} oldsymbol{Q}_k = oldsymbol{R}_k oldsymbol{K}_k^{-1} oldsymbol{A} oldsymbol{K}_k oldsymbol{R}_k^{-1} = oldsymbol{R}_k oldsymbol{C}_k oldsymbol{R}_k^{-1}$$

is a product of three matrices: upper-triangular R_k , upper-Hessenberg C_k , and upper-triangular R_k^{-1} , which results in upper-Hessenberg H_k .

Rayleigh-Ritz Procedure

• The eigenvalues/eigenvectors of H_k are the *Ritz values/vectors*:

 $\boldsymbol{H}_k = \boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$

eigenvalue approximations based on Ritz vectors X are given by $Q_k X$.

The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q_k:

Assuming A is a symmetric matrix with positive eigenvalues, the largest Ritz value $\lambda_{max}(H_k)$ will be the maximum Rayleigh quotient of any vector in $\mathcal{K}_k = span(Q_k)$,

$$\max_{\boldsymbol{x} \in span(\boldsymbol{Q}_k)} \frac{\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}} = \max_{\boldsymbol{y} \neq 0} \frac{\boldsymbol{y}^T \boldsymbol{Q}_k^T \boldsymbol{A} \boldsymbol{Q}_k \boldsymbol{y}}{\boldsymbol{y}^T \boldsymbol{y}} = \max_{\boldsymbol{y} \neq 0} \frac{\boldsymbol{y}^T \boldsymbol{H}_k \boldsymbol{y}}{\boldsymbol{y}^T \boldsymbol{y}} = \lambda_{\textit{max}}(\boldsymbol{H}_k),$$

which is the best approximation to $\lambda_{max}(A) = \max_{x \neq 0} \frac{x^T A x}{x^T x}$ available in \mathcal{K}_k . The quality of the approximation can also be shown to be optimal for other eigenvalues/eigenvectors.

Arnoldi Iteration

▶ Arnoldi iteration computes the *i*th column of H_n , h_i and the *i*th column of Q_n directly using the recurrence $Aq_i = Q_nh_i = \sum_{j=1}^{i+1} h_{ji}q_j$

Note that

$$\boldsymbol{q}_i^T \boldsymbol{A} \boldsymbol{q}_j = \boldsymbol{q}_i^T (\boldsymbol{Q}_n \boldsymbol{H}_n \boldsymbol{Q}_n^T) \boldsymbol{q}_j = \boldsymbol{e}_i^T \boldsymbol{H}_n \boldsymbol{e}_j = h_{ij}.$$

The Arnoldi algorithm computes q_{i+1} from q₁,..., q_i by first computing u_i = Aq_i then orthogonalizing,

$$\boldsymbol{q}_{i+1}h_{i+1,i} = \boldsymbol{u}_i - \sum_{j=1}^i \boldsymbol{q}_j h_{ji}, \quad h_{ji} = \boldsymbol{q}_j^T \boldsymbol{u}_i$$

then computing the norm of the vector to obtain $h_{i+1,i}$, yielding the *i*th column of H_n .

Lanczos Iteration

Lanczos iteration provides a method to reduce a symmetric matrix to a tridiagonal matrix:

Arnoldi iteration on a symmetric matrix will result in an upper-Hessenberg matrix H_n as before, except that it must also be symmetric, since

$$oldsymbol{H}_n^T = (oldsymbol{Q}_n^T oldsymbol{A} oldsymbol{Q}_n)^T = oldsymbol{Q}_n^T oldsymbol{A}^T oldsymbol{Q}_n = oldsymbol{Q}_n^T oldsymbol{A} oldsymbol{Q}_n = oldsymbol{H}_n,$$

which implies that H_n must be tridiagonal.

After each matrix-vector product, it suffices to orthogonalize with respect to two previous vectors:

Since
$$h_{ji} = 0$$
 if $j - i > 1$, given $u_i = Aq_i$, it suffices to compute only $h_{ii} = q_i^T u_i$ and $h_{i+1,i} = h_{i,i+1} = ||u_i - q_i h_{ii}||_2$.

Cost Krylov Subspace Methods

- The cost of matrix-vector multiplication when the matrix has m nonzeros is m multiplications and at most m additions, so roughly 2m in total.
- The cost of orthogonalization at the kth iteration of a Krylov subspace method is
 - ▶ *O*(*nk*) for *k* inner products in Arnoldi,
 - \triangleright O(n) in Lanczos, since only 2 orthogonalizations needed.
 - For Arnoldi with k-dimensional subspace, in total, orthogonalization costs $O(nk^2)$, matrix-vector products cost O(mk), so generally desire nk < m.

Restarting Krylov Subspace Methods

- In finite precision, Lanczos generally loses orthogonality, while orthogonalization in Arnoldi can become prohibitively expensive:
 - Arnoldi cost of orthogonalization dominates if k > m/n.
 - In Lanczos, reorthogonalizing iterate to previous guesses can ensure orthogonality in the presence of round-off error.
 - Selective orthogonalization strategies control when and with respect to what previous columns of Q, each new iterate u_j = Aq_j should be orthogonalized.
- Consequently, in practice, low-dimensional Krylov subspace methods are constructed repeatedly using carefully selected new starting vectors: If we wish to find a particular eigenvector isolate some eigenspaces, restarting is beneficial
 - can orthogonalize to previous eigenvector estimates to perform deflation,
 - can pick starting vector as Ritz vector estimate associated with desired eigenpair,
 - given new starting vector, can discard previous Krylov subspace, which helps make storing the needed parts of Q possible.

Generalized Eigenvalue Problem

A generalized eigenvalue problem has the form $Ax = \lambda Bx$,

Generalized eigenvalue problems arise frequently, especially in solving partial differential equations.

When A and B are symmetric and B is SPD, we can perform Cholesky on B, multiply A by the inverted factors, and diagonalize it:

$$AX = LL^T X D \ L^{-1}AL^{-T} \underbrace{L^T X}_{ ilde{X}} = \underbrace{L^T X}_{ ilde{X}} D$$

Specialized canonical forms and methods exist for the generalized eigenproblem with fewer constraints on B and better cost/stability.