
CS 450: Numerical Anlaysis1

Nonlinear Equations

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).

http://heath.cs.illinois.edu/scicomp/notes/index.html

Solving Nonlinear Equations
▶ Solving (systems of) nonlinear equations corresponds to root finding:

▶ f(x∗) = 0 univariate nonlinear function

▶ f(x∗) = 0 multivariate, vector-valued nonlinear function

▶ Algorithms for root-finding make it possible to solve systems of nonlinear
equations and employ a similar methodology to finding minima in optimization.

▶ Root finding is equivalent to solving, g(x) = h(x), since we can instead define
f(x) = g(x)− h(x) and solve f(x) = 0

▶ Solving nonlinear equations has many applications:
▶ Most physical models are nonlinear, e.g., the inverse square law for graviational

forces F = Gm1m2/r
2, or the force due to air resistance (drag), which is

quadratic in velocity.
▶ Nonlinear equations are closely related to optimization, since critical points of f

(incl., local minima, maxima) are defined by the nonlinear system of equations
∇f(x) = 0.

Solving Nonlinear Equations

Main algorithmic approach: find successive roots of local linear approximations
of f :
▶ Newton’s method for univariate functions starting at point xk finds root of

h(δx) = f(xk) + f ′(xk)δx ≈ f(xk + δx), so

xk+1 = xk + δx = xk − f(xk)/f
′(xk)

▶ Newton’s method for multivariate functions starting at point xk finds root of
h(δx) = f(xk) + Jf (xk)δx ≈ f(xk + δx), with Jacobian (Jf (x))ij =

δfi
δxj

(x),
so

xk+1 = xk + δx = xk − J−1
f (xk)f(xk)

Nonexistence and Nonuniqueness of Solutions

▶ Solutions do not generally exist and are not generally unique, even in the
univariate case:
Consider functions that are strictly greater than zero or have many zeros.

▶ Solutions in the multivariate case correspond to intersections of
hypersurfaces:
The zeros of each equation define a hypersurface in Rn, in the linear case,
these are hyperplanes. Intersections of hypersurfaces for many equations,
define the solutions, which are roots of all equations.
Consider that two curves can intersect at many points in space. Two
hypersurfaces in three-dimensional space may not intersect or may have
multiple curves of intersection.

Demo: Three quadratic functions

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/05-nonlinear-equations/Three quadratic functions.html

Conditions for Existence of Solution
▶ Intermediate value theorem for univariate problems:

If for a < b, sign(f(a)) ̸= sign(f(b)) and f is continuous, then [a, b] is a
bracket that contains a root,

∃x∗∈[a, b], f(x∗) = 0.

▶ A function has a unique fixed point g(x∗) = x∗ in a given closed domain if it
is contractive and contained in that domain,

||g(x)− g(z)|| ≤ γ||x− z||, 0 ≤ γ < 1

▶ Contained implies that in the domain S, for any x ∈ S, g(x) ∈ S, while
contractive implies that the function is Lipschitz continuous in S.

▶ When solving for a root of f , can define various fixed point functions g, so that
their solution g(x∗) = x∗ provides a root of f , f(x∗) = 0, the simplest being
g(x) = f(x) + x.

Conditioning of Nonlinear Equations
▶ Generally, we take interest in the absolute rather than relative conditioning

of solving f(x) = 0:
▶ The sensitivity of solving a nonlinear equation is the ratio of magnitudes of the

perturbation to the root and perturbation to the function values.
▶ It makes sense to consider absolute perturbations to f , since any nonzero

perturbation to function values is infinite in magnitude relative to f(x∗) = 0.

▶ The absolute condition number of finding a root x∗ of f is 1/|f ′(x∗)| and for a
root x∗ of f it is ||J−1

f (x∗)||:
▶ If we change the value of f by at most δf at any point in the function while

maintaining continuity, the root will shift by at most |δf |/|f ′(x∗)| assuming |δf |
is sufficiently small.

▶ This relationship is the converse of conditioning in function evalution, where a
perturbation to input x, results in a perturbation of at most κabs(f) = |f ′(x)|
larger to the function value.

Multiple Roots and Degeneracy
▶ If x∗ is a root of f with multiplicity m, its m− 1 derivatives are also zero at x∗,

f(x∗) = f ′(x∗) = f ′′(x∗) = · · · = f (m−1)(x∗) = 0.

Proof: for some function t(0)(x), we have that

f(x) = (x− x∗)mt(0)(x),

f ′(x) = m(x− x∗)m−1t(0)(x) + (x− x∗)mt(0)
′
(x)

≡ (x− x∗)m−1t(1)(x),

f (m−1)(x) = (x− x∗)t(m−1)(x),

where t(i) = (m− i+ 1)t(i−1)(x)− (x− x∗)t(i−1)′(x).
▶ Increased multiplicity affects conditioning and convergence:

▶ When a root x∗ not simple, i.e. m > 1, then f ′(x∗) = 0, so the problem of finding
that root is ill-conditioned as 1/|f ′(x∗)| = ∞.

▶ In practice, this means we have multiple roots at the same x∗ which are
impossible to distinguish and may need to reformulate problem/algorithms.

Bisection Algorithm
▶ Assume we know the desired root exists in a bracket [a, b] and

sign(f(a)) ̸= sign(f(b)):
▶ if f is continuous, by the intermediate value theorem, the bracket contains a

root
▶ can proceed to narrow interval to find a root
▶ one caveat is that multiple roots may exist in [a, b]

▶ another caveat is that we’ve imposed a restrictive condition, it can be difficult to
find two points where the function has opposite sign

▶ Bisection subdivides the interval by a factor of two at each step by
considering f(ck) at ck = (ak + bk)/2:

[ak+1, bk+1] =

{
[ck, bk] : sign(f(ak)) = sign(f(ck))

[ak, ck] : sign(f(bk)) = sign(f(ck))

Demo: Bisection Method

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/05-nonlinear-equations/Bisection Method.html

Convergence of Fixed Point Iteration
▶ Fixed point iteration: xk+1 = g(xk) is locally linearly convergent to fixed point

x∗ if g is continuously differentiable near x∗ and |g′(x∗)| < 1:
Note that,

ek+1 = xk+1 − x∗ = g(xk)− g(x∗).

By taking the Taylor expansion of g at x∗ to represent g(xk), we can observe

ek+1 = g′(x∗)(xk − x∗) +O((xk − x∗)2)

= g′(x∗)ek +O((xk − x∗)2),

where the asymptotic term decreases as xk approaches x∗.
▶ It is quadratically convergent if g is twice continuously differentiable and

g′(x∗) = 0:
Taking the same Taylor expansion, the leading term is now zero and we obtain

ek+1 = g′′(x∗)(xk − x∗)2/2 +O((xk − x∗)3)

= g′′(x∗)e2k/2 +O((xk − x∗)3).

Newton’s Method

▶ Newton’s method is derived from a Taylor series expansion of f at xk:

f(x) = f(xk) + f ′(xk)(x− xk)︸ ︷︷ ︸
secant line approximation

+(1/2!)f ′′(xk)(x− xk)
2 + · · ·

▶ Newton’s method is quadratically convergent if started sufficiently close to
x∗ so long as f ′(x∗) ̸= 0 and f is twice continuously differentiable in the
neighborhood of x∗:
▶ Newton’s method corresponds to the fixed point function g(x) = x− f(x)/f ′(x).
▶ It achieves quadratic convergence since g′(x∗) = 0,

g′(x∗) = 1− f ′(x∗)/f ′(x∗)︸ ︷︷ ︸
1

+ f(x∗)︸ ︷︷ ︸
0

f ′′(x∗)/f ′(x∗)2.

Demo: Newton’s Method
Demo: Convergence of Newton’s Method

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/05-nonlinear-equations/Newton's Method.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/05-nonlinear-equations/Convergence of Newton's Method.html

Secant Method
▶ The Secant method approximates f ′(xk) ≈ f(xk)−f(xk−1)

xk−xk−1
:

▶ Usually, this method is the cheapest approximation possible, since function
values f(xk) and f(xk−1) are already available.

▶ Approximation quality depends on magnitude f(xk)− f(xk−1) and xk − xk−1.
▶ If the two points are far apart, the derivative approximation may be bad locally,

while if they are very close we have to take care in handling cancellation.
▶ A well-chosen finite-difference step at each xk provides a more robust

approximation, but requires another function evaluation.
▶ The convergence of the Secant method is superlinear but not quadratic:

▶ The error will now depend on the previous two errors, since we are using the
previous two points.

▶ In simplified form, the error at the kth iteration satisfies ek ≤ ek−1ek−2.

▶ Note that log(ek) = log(ek−1) + log(ek−2) is the Fibonacci sequence, which
grows at a rate of r = (1 +

√
5)/2.

▶ Thus the (negative) exponent of the error increases by roughly a factor of r at
each step, i.e. the order of convergence is r.

Demo: Secant Method
Demo: Convergence of the Secant Method

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/05-nonlinear-equations/Secant Method.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/05-nonlinear-equations/Convergence of the Secant Method.html

Nonlinear Tangential Interpolants

▶ Secant method uses a linear interpolant based on points f(xk), f(xk−1),
could use more points and higher-order interpolant:
Have points (x0, f(x0)), . . . , (xk, f(xk)) can fit polynomial to p(xi) = f(xi) for
some subset of points xi ∈ S ⊆ {x0, . . . xk}.

▶ Quadratic interpolation (Muller’s method) can achieve a convergence order
of r ≈ 1.84:
Quadratic interpolation requires three points xk−2, xk−1, and xk.

▶ Inverse quadratic interpolation resolves the problem of
nonexistence/nonuniqueness of roots of polynomial interpolants:
▶ Interpolate quadratic polynomial q so that q(f(xi)) = xi for i ∈ {k, k− 1, k− 2}.
▶ Approximate root simply computed by evaluating interpolant at zero

xk+1 = q(0).

Achieving Global Convergence

▶ Hybrid bisection/Newton methods:
Given a bracket (interval), can proceed with bisection until bracket is small
then switch to Newton. Alternatively, can attempt Newton, check if it stays
within bracket (safeguard) and proceed with change only if it does.

▶ Bounded (damped) step-size:
Newton’s method gives us a direction. Decreasing the step size in that
direction trades off convergence rate for reliability. We will study how step
sizes can be chosen in more detail in the context of optimization.

Systems of Nonlinear Equations
▶ Given f(x) =

[
f1(x) · · · fm(x)

]T for x ∈ Rn, seek x∗ so that f(x∗) = 0

▶ x∗ must simultaneously set to zero all components of f :
f1(x

∗) = · · · = fm(x∗) = 0.
▶ We focus on the case of m = n, so that the number of equations matches the

number of unknowns.

▶ At a particular point x, the Jacobian of f , describes how f changes in a
given direction of change in x,

Jf (x) =


df1
dx1

(x) · · · df1
dxn

(x)
...

...
dfm
dx1

(x) · · · dfm
dxn

(x)


Our local linear approximation is given by

f(x+ δx) ≈ f(x) + Jf (x)δx,

note that when m = 1 the Jacobian corresponds to the gradient of f .

Multivariate Newton Iteration
▶ Fixed-point iteration xk+1 = g(xk) achieves local convergence if (in addition

to contraints on differentiability of g) we have |λmax(Jg(x
∗))| < 1 and

quadratic convergence if Jg(x
∗) = O:

Taking a multivariate Taylor expansion of g(xk) at center x∗ we get

ek = x∗ − xk+1

= g(x∗)− g(xk)

= Jg(x
∗)︸ ︷︷ ︸

O

(x∗ − xk)

+
1

2

[
Hg1(x

∗) · (x∗ − xk) · · · Hgn(x
∗) · (x∗ − xk)

]
(x∗ − xk)

||ek+1|| = O(max
i

||Hgi(x
∗)|| · ||x∗ − xk︸ ︷︷ ︸

ek

||2)

= O(||ek||2)

where Hgi is the Hessian of gi.

Demo: Newton’s method in n dimensions

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/05-nonlinear-equations/Newton's method in n dimensions.html

Multidimensional Newton’s Method
▶ Newton’s method corresponds to the fixed-point iteration

g(x) = x− J−1
f (x)f(x)

▶ Note that generally Newton’s method iteration has a fixed-point x̄ whenever
f(x̄) = 0, i.e. we have found a root of f , namely x∗ = x̄.

▶ Generally, we require that Jf (x
∗) is nonsingular, otherwise we can find nonzero

solutions y to Jf (x
∗)y = f(x∗) = 0.

▶ Quadratic convergence is achieved when the Jacobian of a fixed-point
iteration is zero at the solution, which is true for Newton’s method:

g(x∗) = x∗ − J−1
f (x∗)f(x∗)

Jg(x
∗) = I − J−1

f (x∗)Jf (x
∗)−

∑
i

fi(x
∗)︸ ︷︷ ︸

0

Hfi(x
∗)

= I − I −O = O

where Hfi is the Hessian of fi.

Estimating the Jacobian using Finite Differences

▶ To obtain Jf (xk) at iteration k, can use finite differences:
▶ If Jf (x) ∈ Rm×1 (single-variate but vector-valued f), we can estimate

Jf (xk) ≈ (1/h)(f(xk + h)− f(xk)).

▶ More generally, the ith column of ji of the Jacobian Jf (xk) can be estimated by

ji ≈ (1/h)(f(xk + hei)− f(xk)).

▶ n+ 1 function evaluations are needed: f(x) and f(x+ hei),∀i ∈ {1, . . . , n},
which correspond to m(n+ 1) scalar function evaluations if Jf (xk) ∈ Rm×n.

Cost of Multivariate Newton Iteration

▶ What is the cost of solving Jf (xk)sk = f(xk)?
O(n3)

▶ What is the cost of Newton’s iteration overall?
For k steps, O(n3k + kn2γfunc-eval).

Quasi-Newton Methods
In solving a nonlinear equation, seek approximate Jacobian Jf (xk) for each xk

▶ Find Bk+1 = Bk + δBk ≈ Jf (xk+1), so as to approximate secant equation

Bk+1(xk+1 − xk︸ ︷︷ ︸
δx

) = f(xk+1)− f(xk)︸ ︷︷ ︸
δf

Generally, the secant equation is underdetermined, as we usually need n
finite-difference formulas to determine Jf (xk), so the secant updating
methods find only approximate Bk+1, usually as a modification of Bk.

▶ Broyden’s method solves the secant equation and minimizes ||δBk||F :

δBk =
δf −Bkδx

||δx||2
δxT

Note that δBk is rank-1. Consequently, we can use the Sherman-Morrison
formula to update B−1

k+1 with O(n2) work. Various other variants exist.

Safeguarding Methods

▶ Can dampen step-size to improve reliability of Newton or Broyden iteration:

xk+1 = xk + αksk where αk ≤ 1

can pick αk so to ensure ||f(xk+1)|| < ||f(xk)|| or by doing a line-search to
minimize ||f(xk + αksk)||.

▶ Trust region methods provide general step-size control:
Establish/maintain/update region within which step is expected to be
accurate. Pick each step to stay within trust region while minimizing
||f(xk+1)||. Observe that the Newton-like generally seek to progress to a
minima of ||f(xk+1)||, and indeed much of the theory of these methods
targets optimization.

	Problem and Approach
	Existence, Uniqueness, and Conditioning
	Multiple Roots and Conditioning
	Algorithms for Single-Variate Problems
	Bisection
	Convergence Rates
	Newton's Algorithm
	Quasi-Newton Algorithms

	Global Convergence
	Systems of Nonlinear Equations
	Jacobian
	Newton's Algorithm
	Quasi-Newton Algorithms

