# CS 450: Numerical Anlaysis ${ }^{1}$ 

## Numerical Optimization

University of Illinois at Urbana-Champaign

[^0]
## Numerical Optimization

- Our focus will be on continuous rather than combinatorial optimization:

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x}) \text { subject to } \boldsymbol{g}(\boldsymbol{x})=\mathbf{0} \quad \text { and } \quad \boldsymbol{h}(\boldsymbol{x}) \leq \mathbf{0}
$$

- We consider linear, quadratic, and general nonlinear optimization problems:


## Local Minima and Convexity

- Without knowledge of the analytical form of the function, numerical optimization methods at best achieve convergence to a local rather than global minimum:
- A set is convex if it includes all points on any line, while a function is convex if it is greater or equal to points on any of its tangent lines:


## Existence of Local Minima

- Level sets are all points for which $f$ has a given value, sublevel sets are all points for which the value of $f$ is less than a given value:
- If there exists a closed and bounded sublevel set in the domain of feasible points, then $f$ has has a global minimum in that set:


## Optimality Conditions

- If $x$ is an interior point in the feasible domain and is a local minima,

$$
\nabla f(\boldsymbol{x})=\left[\begin{array}{ll}
\frac{d f}{d x_{1}}(\boldsymbol{x}) & \cdots \frac{d f}{d x_{n}}(\boldsymbol{x})
\end{array}\right]^{T}=\mathbf{0}:
$$

- Critical points $\boldsymbol{x}$ satisfy $\nabla f(\boldsymbol{x})=\mathbf{0}$ and can be minima, maxima, or saddle points:


## Hessian Matrix

- To ascertain whether a critical point $\boldsymbol{x}$, for which $\nabla f(\boldsymbol{x})=\mathbf{0}$, is a local minima, consider the Hessian matrix:
- If $\boldsymbol{x}^{*}$ is a minima of $f$, then $\boldsymbol{H}_{f}\left(\boldsymbol{x}^{*}\right)$ is positive semi-definite:


## Optimality on Feasible Region Border

- Given an equality constraint $\boldsymbol{g}(\boldsymbol{x})=\mathbf{0}$, it is no longer necessarily the case that $\nabla f\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$. Instead, it may be that directions in which the gradient decreases lead to points outside the feasible region:

$$
\exists \boldsymbol{\lambda} \in \mathbb{R}^{n}, \quad-\nabla f\left(\boldsymbol{x}^{*}\right)=\boldsymbol{J}_{\boldsymbol{g}}^{T}\left(\boldsymbol{x}^{*}\right) \boldsymbol{\lambda}
$$

- Such constrained minima are critical points of the Lagrangian function $\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{T} \boldsymbol{g}(\boldsymbol{x})$, so they satisfy:

$$
\nabla \mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}\right)=\left[\begin{array}{c}
\nabla f\left(\boldsymbol{x}^{*}\right)+\boldsymbol{J}_{\boldsymbol{g}}^{T}\left(\boldsymbol{x}^{*}\right) \boldsymbol{\lambda} \\
\boldsymbol{g}\left(\boldsymbol{x}^{*}\right)
\end{array}\right]=\mathbf{0}
$$

## Sensitivity and Conditioning

- The condition number of solving a nonlinear equations is $1 / f^{\prime}\left(x^{*}\right)$, however for a minimizer $x^{*}$, we have $f^{\prime}\left(x^{*}\right)=0$, so conditioning of optimization is inherently bad:
- To analyze worst case error, consider how far we have to move from a root $\boldsymbol{x}^{*}$ to perturb the function value by $\epsilon$ :


## Golden Section Search

- Given bracket $[a, b]$ with a unique local minimum ( $f$ is unimodal on the interval), golden section search considers consider points $f\left(x_{1}\right), f\left(x_{2}\right)$, $a<x_{1}<x_{2}<b$ and discards subinterval [ $a, x_{1}$ ] or $\left[x_{2}, b\right]$ :
- Since one point remains in the interval, golden section search selects $x_{1}$ and $x_{2}$ so one of them can be effectively reused in the next iteration:


## Newton's Method for Optimization

- At each iteration, approximate function by quadratic and find minimum of quadratic function:
- The new approximate guess will be given by $x_{k+1}-x_{k}=-f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)$ :


## Successive Parabolic Interpolation

- Interpolate $f$ with a quadratic function at each step and find its minima:
- The convergence rate of the resulting method is roughly 1.324


## Safeguarded 1D Optimization

- Safeguarding can be done by bracketing via golden section search:
- Backtracking and step-size control:


## General Multidimensional Optimization

- Direct search methods by simplex (Nelder-Mead):
- Steepest descent: find the minimizer in the direction of the negative gradient:


## Convergence of Steepest Descent

- Steepest descent converges linearly with a constant that can be arbitrarily close to 1 :
- Given quadratic optimization problem $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x}$ where $\boldsymbol{A}$ is symmetric positive definite, consider the error $\boldsymbol{e}_{k}=\boldsymbol{x}_{k}-\boldsymbol{x}^{*}$ :


## Gradient Methods with Extrapolation

- We can improve the constant in the linear rate of convergence of steepest descent by leveraging extrapolation methods, which consider two previous iterates (maintain momentum in the direction $\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}$ ):
- The heavy ball method, which uses constant $\alpha_{k}=\alpha$ and $\beta_{k}=\beta$, achieves better convergence than steepest descent:


## Conjugate Gradient Method

- The conjugate gradient method is capable of making the optimal choice (for quadratic programs) of $\alpha_{k}$ and $\beta_{k}$ at each iteration:
- Parallel tangents implementation of the method in a general nonlinear setting proceeds as follows


## Nonlinear Conjugate Gradient

- Various formulations of conjugate gradient are possible for nonlinear objective functions, which differ in how they compute $\beta$ below
- Fletcher-Reeves is among the most common, computes the following at each iteration

1. Perform 1D minimization for $\alpha$ in $f\left(\boldsymbol{x}_{k}+\alpha \boldsymbol{s}_{k}\right)$
2. $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha \boldsymbol{s}_{k}$
3. Compute gradient $\boldsymbol{g}_{k+1}=\nabla f\left(\boldsymbol{x}_{k+1}\right)$
4. Compute $\beta=\boldsymbol{g}_{k+1}^{T} \boldsymbol{g}_{k+1} /\left(\boldsymbol{g}_{k}^{T} \boldsymbol{g}_{k+1}\right)$
5. $\boldsymbol{s}_{k+1}=-\boldsymbol{g}_{k+1}+\beta \boldsymbol{s}_{k}$

## Conjugate Gradient for Quadratic Optimization

- Conjugate gradient is an optimal iterative method for quadratic optimization, $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{T} \boldsymbol{x}$
- For such problems, it can be expressed in an efficient and succinct form, computing at each iteration

1. $\alpha=\boldsymbol{r}_{k}^{T} \boldsymbol{r}_{k} / \boldsymbol{s}_{k}^{T} \boldsymbol{A} \boldsymbol{s}_{k}$
2. $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha \boldsymbol{s}_{k}$
3. Compute gradient $\boldsymbol{r}_{k+1}=\boldsymbol{r}_{k}-\alpha_{k} \boldsymbol{A} \boldsymbol{s}_{k}$
4. Compute $\beta=\boldsymbol{r}_{k+1}^{T} \boldsymbol{r}_{k+1} /\left(\boldsymbol{r}_{k}^{T} \boldsymbol{r}_{k+1}\right)$
5. $\boldsymbol{s}_{k+1}=\boldsymbol{r}_{k+1}+\beta \boldsymbol{s}_{k}$

- Note that for quadratic optimization, the negative gradient - $\boldsymbol{g}$ corresponds to the residual $\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A x}$


## Krylov Optimization

- Conjugate Gradient finds the minimizer of $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{T} \boldsymbol{x}$ within the Krylov subspace of $\boldsymbol{A}$ :


## Newton's Method

Demo: Newton's Method in $n$ dimensions

- Newton's method in $n$ dimensions is given by finding minima of $n$-dimensional quadratic approximation:


## Quasi-Newton Methods

- Quasi-Newton methods compute approximations to the Hessian at each step:
- The BFGS method is a secant update method, similar to Broyden's method:


## Nonlinear Least Squares

- An important special case of multidimensional optimization is nonlinear least squares, the problem of fitting a nonlinear function $f_{\boldsymbol{x}}(t)$ so that $f_{\boldsymbol{x}}\left(t_{i}\right) \approx y_{i}$ :
- We can cast nonlinear least squares as an optimization problem and solve it by Newton's method:


## Gauss-Newton Method

- The Hessian for nonlinear least squares problems has the form:
- The Gauss-Newton method is Newton iteration with an approximate Hessian:


## Constrained Optimization Problems

- We now return to the general case of constrained optimization problems:
- Generally, we will seek to reduce constrained optimization problems to a series of unconstrained optimization problems:
- sequential quadratic programming:
- penalty-based methods:
- active set methods:


## Sequential Quadratic Programming

- Sequential quadratic programming (SQP) corresponds to using Newton's method to solve the equality constrained optimality conditions, by finding critical points of the Lagrangian function $\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{T} \boldsymbol{g}(\boldsymbol{x})$,
- At each iteration, SQP computes $\left[\begin{array}{l}\boldsymbol{x}_{k+1} \\ \boldsymbol{\lambda}_{k+1}\end{array}\right]=\left[\begin{array}{l}\boldsymbol{x}_{k} \\ \boldsymbol{\lambda}_{k}\end{array}\right]+\left[\begin{array}{l}s_{k} \\ \boldsymbol{\delta}_{k}\end{array}\right]$ by solving


## Inequality Constrained Optimality Conditions

- The Karush-Kuhn-Tucker (KKT) conditions are necessary coniditions for local minima of a problem with equality and inequality constraints, they include
- To use SQP for an inequality constrained optimization problem, consider at each iteration an active set of constraints:


## Penalty Functions

- Alternatively, we can reduce constrained optimization problems to unconstrained ones by modifying the objective function. Penalty functions are effective for equality constraints $\boldsymbol{g}(\boldsymbol{x})=0$ :
- The augmented Lagrangian function provides a more numerically robust approach:


## Barrier Functions

- Barrier functions (interior point methods) provide an effective way of working with inequality constraints $\boldsymbol{h}(\boldsymbol{x}) \leq \mathbf{0}$ :


[^0]:    ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

