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Numerical Optimization
▶ Our focus will be on continuous rather than combinatorial optimization:

min
x

f(x) subject to g(x) = 0 and h(x) ≤ 0

▶ We consider linear, quadratic, and general nonlinear optimization problems:



Local Minima and Convexity
▶ Without knowledge of the analytical form of the function, numerical

optimization methods at best achieve convergence to a local rather than
global minimum:

▶ A set is convex if it includes all points on any line, while a function is convex
if it is greater or equal to points on any of its tangent lines:



Existence of Local Minima
▶ Level sets are all points for which f has a given value, sublevel sets are all

points for which the value of f is less than a given value:

▶ If there exists a closed and bounded sublevel set in the domain of feasible
points, then f has has a global minimum in that set:



Optimality Conditions
▶ If x is an interior point in the feasible domain and is a local minima,

∇f(x) =
[

df
dx1

(x) · · · df
dxn

(x)
]T

= 0 :

▶ Critical points x satisfy ∇f(x) = 0 and can be minima, maxima, or saddle
points:



Hessian Matrix
▶ To ascertain whether a critical point x, for which ∇f(x) = 0, is a local

minima, consider the Hessian matrix:

▶ If x∗ is a minima of f , then Hf (x
∗) is positive semi-definite:



Optimality on Feasible Region Border
▶ Given an equality constraint g(x) = 0, it is no longer necessarily the case

that ∇f(x∗) = 0. Instead, it may be that directions in which the gradient
decreases lead to points outside the feasible region:

∃λ ∈ Rn, −∇f(x∗) = JT
g (x

∗)λ

▶ Such constrained minima are critical points of the Lagrangian function
L(x,λ) = f(x) + λTg(x), so they satisfy:

∇L(x∗,λ) =

[
∇f(x∗) + JT

g (x
∗)λ

g(x∗)

]
= 0



Sensitivity and Conditioning
▶ The condition number of solving a nonlinear equations is 1/f ′(x∗), however

for a minimizer x∗, we have f ′(x∗) = 0, so conditioning of optimization is
inherently bad:

▶ To analyze worst case error, consider how far we have to move from a root x∗

to perturb the function value by ϵ:



Golden Section Search
▶ Given bracket [a, b] with a unique local minimum (f is unimodal on the

interval), golden section search considers consider points f(x1), f(x2),
a < x1 < x2 < b and discards subinterval [a, x1] or [x2, b]:

▶ Since one point remains in the interval, golden section search selects x1 and
x2 so one of them can be effectively reused in the next iteration:

Demo: Golden Section Proportions

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Golden Section Proportions.html


Newton’s Method for Optimization
▶ At each iteration, approximate function by quadratic and find minimum of

quadratic function:

▶ The new approximate guess will be given by xk+1 − xk = −f ′(xk)/f
′′(xk):

Demo: Newton’s Method in 1D

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Newton's Method in 1D.html


Successive Parabolic Interpolation
▶ Interpolate f with a quadratic function at each step and find its minima:

▶ The convergence rate of the resulting method is roughly 1.324



Safeguarded 1D Optimization
▶ Safeguarding can be done by bracketing via golden section search:

▶ Backtracking and step-size control:



General Multidimensional Optimization
▶ Direct search methods by simplex (Nelder-Mead):

▶ Steepest descent: find the minimizer in the direction of the negative gradient:

Demo: Nelder-Mead Method

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Nelder-Mead Method.html


Convergence of Steepest Descent
▶ Steepest descent converges linearly with a constant that can be arbitrarily

close to 1:

▶ Given quadratic optimization problem f(x) = 1
2x

TAx+ cTx where A is
symmetric positive definite, consider the error ek = xk − x∗:

Demo: Steepest Descent

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Steepest Descent.html


Gradient Methods with Extrapolation
▶ We can improve the constant in the linear rate of convergence of steepest

descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction xk − xk−1):

▶ The heavy ball method, which uses constant αk = α and βk = β, achieves
better convergence than steepest descent:



Conjugate Gradient Method
▶ The conjugate gradient method is capable of making the optimal choice (for

quadratic programs) of αk and βk at each iteration:

▶ Parallel tangents implementation of the method in a general nonlinear
setting proceeds as follows

Demo: Conjugate Gradient Method

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Conjugate Gradient Method.html


Nonlinear Conjugate Gradient

▶ Various formulations of conjugate gradient are possible for nonlinear
objective functions, which differ in how they compute β below

▶ Fletcher-Reeves is among the most common, computes the following at each
iteration

1. Perform 1D minimization for α in f(xk + αsk)

2. xk+1 = xk + αsk

3. Compute gradient gk+1 = ∇f(xk+1)

4. Compute β = gT
k+1gk+1/(g

T
k gk+1)

5. sk+1 = −gk+1 + βsk



Conjugate Gradient for Quadratic Optimization

▶ Conjugate gradient is an optimal iterative method for quadratic optimization,
f(x) = 1

2x
TAx− bTx

▶ For such problems, it can be expressed in an efficient and succinct form,
computing at each iteration

1. α = rTk rk/s
T
kAsk

2. xk+1 = xk + αsk

3. Compute gradient rk+1 = rk − αkAsk

4. Compute β = rTk+1rk+1/(r
T
k rk+1)

5. sk+1 = rk+1 + βsk

▶ Note that for quadratic optimization, the negative gradient −g corresponds
to the residual r = b−Ax



Krylov Optimization
▶ Conjugate Gradient finds the minimizer of f(x) = 1

2x
TAx− bTx within the

Krylov subspace of A:

Demo: Conjugate Gradient Parallel Tangents as Krylov Subspace Method

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Conjugate Gradient Parallel Tangents as Krylov Subspace Method.html


Newton’s Method
▶ Newton’s method in n dimensions is given by finding minima of

n-dimensional quadratic approximation:

Demo: Newton’s Method in n dimensions

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Newton's Method in n dimensions.html


Quasi-Newton Methods
▶ Quasi-Newton methods compute approximations to the Hessian at each step:

▶ The BFGS method is a secant update method, similar to Broyden’s method:



Nonlinear Least Squares
▶ An important special case of multidimensional optimization is nonlinear least

squares, the problem of fitting a nonlinear function fx(t) so that fx(ti) ≈ yi:

▶ We can cast nonlinear least squares as an optimization problem and solve it
by Newton’s method:



Gauss-Newton Method
▶ The Hessian for nonlinear least squares problems has the form:

▶ The Gauss-Newton method is Newton iteration with an approximate Hessian:



Constrained Optimization Problems
▶ We now return to the general case of constrained optimization problems:

▶ Generally, we will seek to reduce constrained optimization problems to a
series of unconstrained optimization problems:
▶ sequential quadratic programming:

▶ penalty-based methods:

▶ active set methods:



Sequential Quadratic Programming
▶ Sequential quadratic programming (SQP) corresponds to using Newton’s

method to solve the equality constrained optimality conditions, by finding
critical points of the Lagrangian function L(x,λ) = f(x) + λTg(x),

▶ At each iteration, SQP computes
[
xk+1

λk+1

]
=

[
xk

λk

]
+

[
sk
δk

]
by solving

Demo: Sequential Quadratic Programming

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Sequential Quadratic Programming.html


Inequality Constrained Optimality Conditions
▶ The Karush-Kuhn-Tucker (KKT) conditions are necessary coniditions for local

minima of a problem with equality and inequality constraints, they include

▶ To use SQP for an inequality constrained optimization problem, consider at
each iteration an active set of constraints:



Penalty Functions
▶ Alternatively, we can reduce constrained optimization problems to

unconstrained ones by modifying the objective function. Penalty functions
are effective for equality constraints g(x) = 0:

▶ The augmented Lagrangian function provides a more numerically robust
approach:



Barrier Functions
▶ Barrier functions (interior point methods) provide an effective way of working

with inequality constraints h(x) ≤ 0:
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