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Numerical Optimization
▶ Our focus will be on continuous rather than combinatorial optimization:

min
x

f(x) subject to g(x) = 0 and h(x) ≤ 0

where f ∈ Rn → R is assumed to be differentiable.
▶ Without the constraints, i.e. with g = 0 and h = 0, the problem is

unconstrained.
▶ With constraints, the constrained optimization problem restricts the solution to

elements of the feasible region: {x : g(x) = 0 and h(x) ≤ 0}.

▶ We consider linear, quadratic, and general nonlinear optimization problems:
▶ If f , g, and h are affine (linear and constant terms only) then we have linear

programming problem.
▶ If f is quadratic while g and h are linear, then we have a quadratic

programming problem, for which specialized methods exist.
▶ Generally, we have a nonlinear programming problem.



Local Minima and Convexity
▶ Without knowledge of the analytical form of the function, numerical

optimization methods at best achieve convergence to a local rather than
global minimum:
If the input domain is infinite or the global minimum is in an infinitesimally
narrow trough, it may be impossible to find the global minimum in finite time.

▶ A set is convex if it includes all points on any line, while a function is convex
if it is greater or equal to points on any of its tangent lines:
▶ Set S is convex if

∀x,y ∈ S, α ∈ [0, 1], αx+ (1− α)y ∈ S.

▶ Function f is convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

▶ A twice-differentiable convex function always has nonnegative second
derivative, hence a local minima of a convex function is also a global minima.



Existence of Local Minima

▶ Level sets are all points for which f has a given value, sublevel sets are all
points for which the value of f is less than a given value:

L(z) = {x : f(x) = z}

S(z) = {x : f(x) ≤ z}

▶ If there exists a closed and bounded sublevel set in the domain of feasible
points, then f has has a global minimum in that set:
Need a value z such that S(z) has finite size, is contiguous, and includes its
own boundary.



Optimality Conditions

▶ If x is an interior point in the feasible domain and is a local minima,

∇f(x) =
[

df
dx1

(x) · · · df
dxn

(x)
]T

= 0 :

▶ If df
dxi

(x) < 0 an infinitesimal increment to xi improves the solution,
▶ if df

dxi
(x) > 0 an infinitesimal decrement to xi improves the solution.

▶ Critical points x satisfy ∇f(x) = 0 and can be minima, maxima, or saddle
points:
For scalar function f , can distinguish the three by considering sign of f ′′(x).



Hessian Matrix
▶ To ascertain whether a critical point x, for which ∇f(x) = 0, is a local

minima, consider the Hessian matrix:

Hf (x) = J∇f (x) =


d2f
dx2

1
(x) · · · d2f

dx1dxn
(x)

... . . . ...
d2f

dxndx1
(x) · · · d2f

dx2
n
(x)


The Hessian matrix is always symmetric if f is twice differentiable.

▶ If x∗ is a minima of f , then Hf (x
∗) is positive semi-definite:

If Hf (x
∗) is not positive semi-definite, there exists normalized vector s such

that sTHf (x
∗)s < 0, which means that for a sufficiently small α, x̂ = x∗ + αs

will have be a better solution, f(x̂) < f(x∗), since the gradient is zero at x∗

and decreases for an infinitesimal perturbation of x∗ in the direction s.



Optimality on Feasible Region Border
▶ Given an equality constraint g(x) = 0, it is no longer necessarily the case

that ∇f(x∗) = 0. Instead, it may be that directions in which the gradient
decreases lead to points outside the feasible region:

∃λ ∈ Rn, −∇f(x∗) = JT
g (x

∗)λ

▶ λ are referred to as the Lagrange multipliers.
▶ This necessary condition implies that at x∗, the direction in which f decreases is

in the span of directions moving along which would exit the feasible region.

▶ Such constrained minima are critical points of the Lagrangian function
L(x,λ) = f(x) + λTg(x), so they satisfy:

∇L(x∗,λ) =

[
∇f(x∗) + JT

g (x
∗)λ

g(x∗)

]
= 0

Seeking λ∗ to obtain a function k(x) = L(x,λ∗) with maximum global
minimum is the dual optimization problem.



Sensitivity and Conditioning
▶ The condition number of solving a nonlinear equations is 1/f ′(x∗), however

for a minimizer x∗, we have f ′(x∗) = 0, so conditioning of optimization is
inherently bad:
Consider perturbation of function values for a function that changes slowly
near the minimum.

▶ To analyze worst case error, consider how far we have to move from a root x∗

to perturb the function value by ϵ:

ϵ = f(x∗ + h)− f(x∗) = f ′(x∗)h︸ ︷︷ ︸
0

+
1

2
f ′′(x∗)h2 +O(h3)

▶ so if the function value changes by a infinitesimal perturbation ϵ, we have the
error to the solution h, satisfies h = O(

√
ϵ/f ′′(x∗))

▶ a perturbation to the function value in the kth significant digit, could result in
the solution changing in the k/2th significant digit.



Golden Section Search
▶ Given bracket [a, b] with a unique local minimum (f is unimodal on the

interval), golden section search considers consider points f(x1), f(x2),
a < x1 < x2 < b and discards subinterval [a, x1] or [x2, b]:
▶ If a function is strictly convex and bounded on [a, b], it is unimodal on that

interval, but a unimodal function may be non-convex.
▶ Because the function is unimodal, if we have f(x1) < f(x2) then the unique local

minima f in [a, b] has to be in the interval [a, x2].
▶ So, if f(x1) < f(x2) can restrict search to [a, x2] and otherwise to [x1, b].

▶ Since one point remains in the interval, golden section search selects x1 and
x2 so one of them can be effectively reused in the next iteration:
▶ For example, when f(x1) > f(x2), x2 is inside [x1, b] and we would like x2 to

serve as the x1 for the next iteration.
▶ To ensure this, and minimize resulting interval length, we pick

x2 = a+ (b− a)(
√
5− 1)/2 and x1 = b− (b− a)(

√
5− 1)/2.

▶ Consequently, the convergence of golden secetion search is linear with constant
(
√
5− 1)/2 per function evaluation.

Demo: Golden Section Proportions

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Golden Section Proportions.html


Newton’s Method for Optimization

▶ At each iteration, approximate function by quadratic and find minimum of
quadratic function:
Pick quadratic function f̂ as first three terms of Taylor expansion of f about
xk, matching value and first two derivatives of f at xk.

▶ The new approximate guess will be given by xk+1 − xk = −f ′(xk)/f
′′(xk):

f(x) ≈ f̂(x) = f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)

2

since the function is quadratic, we can find its unique critical point to find its
minima,

f̂ ′(xk+1) = f ′(xk) + f ′′(xk)(xk+1 − xk) = 0.

Demo: Newton’s Method in 1D

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Newton's Method in 1D.html


Successive Parabolic Interpolation

▶ Interpolate f with a quadratic function at each step and find its minima:
Given three points, there is a unique quadratic function interpolating them.

▶ The convergence rate of the resulting method is roughly 1.324

By comparison, the convergence of golden section search is linear with a
constant of 0.618, while Newton’s method converges quadratically.



Safeguarded 1D Optimization

▶ Safeguarding can be done by bracketing via golden section search:
Combination of Newton and golden section search
▶ achieves quadratic convergence locally,
▶ is guaranteed convergence provided unimodality of function.

▶ Backtracking and step-size control:
▶ Can take smaller step xk+1 = xk − αkf

′(xk)/f
′′(xk) for some αk < 1.

▶ Can backtrack and choose smaller αk if f(xk+1) > f(xk).



General Multidimensional Optimization

▶ Direct search methods by simplex (Nelder-Mead):
▶ form a n+ 1-point polytope in n-dimensional space and adjust worst point

(highest function value) by moving it along a line passing through the centroid
of the remaining points,

▶ relies on function evaluations only, but can converge to nonstationary points
even for convex 2D functions.

▶ Steepest descent: find the minimizer in the direction of the negative gradient:

xk+1 = xk − αk∇f(xk)

such that f(xk+1) = minαk
f(xk − αk∇f(xk)), i.e. perform a line search

(solve 1D optimization problem) in the direction of the negative gradient.

Demo: Nelder-Mead Method

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Nelder-Mead Method.html


Convergence of Steepest Descent
▶ Steepest descent converges linearly with a constant that can be arbitrarily

close to 1:
▶ Convergence is slow locally, in the worst case, and generally depends on the

Hessian near the minima.
▶ If the gradient is changing quickly, it serves as good approximation only within a

small local neighborhood, so the line search may result in arbitrarily small steps.
▶ Given quadratic optimization problem f(x) = 1

2x
TAx+ cTx where A is

symmetric positive definite, consider the error ek = xk − x∗:
▶ We can quantify the error using the norm, ||x||A = xTAx, as

lim
k→∞

||ek+1||A
||ek||A

=
σmax(A)− σmin(A)

σmax(A) + σmin(A)

▶ When sufficiently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.

▶ Convergence rate depends on the conditioning of A, since
σmax(A)− σmin(A)

σmax(A) + σmin(A)
=

κ(A)− 1

κ(A) + 1
.

Demo: Steepest Descent

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Steepest Descent.html


Gradient Methods with Extrapolation
▶ We can improve the constant in the linear rate of convergence of steepest

descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction xk − xk−1):

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1)

▶ The heavy ball method, which uses constant αk = α and βk = β, achieves
better convergence than steepest descent:
For a quadratic program defined by A, these exist α and β, such that the
convergence rate of the heavy ball method is

lim
k→∞

||ek+1||A
||ek||A

=

√
κ(A)− 1√
κ(A) + 1

Nesterov’s gradient optimization method is another instance of an
extrapolation method that provides further improved optimality guarantees.



Conjugate Gradient Method
▶ The conjugate gradient method is capable of making the optimal choice (for

quadratic programs) of αk and βk at each iteration:

(αk, βk) = argmin
αk,βk

[
f
(
xk − αk∇f(xk) + βk(xk − xk−1)

)]
▶ For SPD quadratic programming problems, conjugate gradient is an optimal 1st

order method, converging in n− 1 iterations.
▶ It implicitly computes Lanczos iteration, searching along A-orthogonal

directions at each step.

▶ Parallel tangents implementation of the method in a general nonlinear
setting proceeds as follows

1. Perform a step of steepest descent to generate x̂k from xk.
2. Generate xk+1 by minimizing over the line passing through xk−1 and x̂k.

Demo: Conjugate Gradient Method

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Conjugate Gradient Method.html


Nonlinear Conjugate Gradient

▶ Various formulations of conjugate gradient are possible for nonlinear
objective functions, which differ in how they compute β below

▶ Fletcher-Reeves is among the most common, computes the following at each
iteration

1. Perform 1D minimization for α in f(xk + αsk)

2. xk+1 = xk + αsk

3. Compute gradient gk+1 = ∇f(xk+1)

4. Compute β = gT
k+1gk+1/(g

T
k gk+1)

5. sk+1 = −gk+1 + βsk



Conjugate Gradient for Quadratic Optimization

▶ Conjugate gradient is an optimal iterative method for quadratic optimization,
f(x) = 1

2x
TAx− bTx

▶ For such problems, it can be expressed in an efficient and succinct form,
computing at each iteration

1. α = rTk rk/s
T
kAsk

2. xk+1 = xk + αsk

3. Compute gradient rk+1 = rk − αkAsk

4. Compute β = rTk+1rk+1/(r
T
k rk+1)

5. sk+1 = rk+1 + βsk

▶ Note that for quadratic optimization, the negative gradient −g corresponds
to the residual r = b−Ax



Krylov Optimization
▶ Conjugate Gradient finds the minimizer of f(x) = 1

2x
TAx− bTx within the

Krylov subspace of A:
▶ It constructs Krylov subspace Kk(A, b) = span(b,Ab, . . . ,Ar−1b).
▶ At the kth step conjugate gradient yields iterate

xk = ||b||2QkT
−1
k e1,

where Qk are the Lanczos vectors associated with Kk(A, b) and Tk = QT
kAQk.

▶ This choice of xk minimizes f(x) since

min
x∈Kk(A,c)

f(x) = min
y∈Rk

f(Qky)

= min
y∈Rk

yTQT
kAQky − bTQky

= min
y∈Rk

yTTky − ||b||2eT1 y

is minimized by y = ||b||2T−1
k e1.

▶ Since Tk differs from Tk−1 only in addition of a single row and column, by
Sherman-Morrison-Woodbury, efficient updates exist to solve for each y.

Demo: Conjugate Gradient Parallel Tangents as Krylov Subspace Method

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Conjugate Gradient Parallel Tangents as Krylov Subspace Method.html


Newton’s Method
▶ Newton’s method in n dimensions is given by finding minima of

n-dimensional quadratic approximation:

f(xk + s) ≈ f̂(s) = f(xk) + sT∇f(xk) +
1

2
sTHf (xk)s.

The existence of second derivatives of f at xk (Hf (xk)) is needed.
The minima of this function can be determined by identifying critical points

0 = ∇f̂(s) = ∇f(xk) +Hf (xk)s,

thus to determine s we solve the linear system,

Hf (xk)s = −∇f(xk).

Assuming invertibility of the Hessian, Newton’s method iteration is

xk+1 = xk −Hf (xk)
−1∇f(xk)︸ ︷︷ ︸
sk

.

Quadratic convergence follows by equivalence to Newton’s method for solving
nonlinear system of optimality equations ∇f(x) = 0.

Demo: Newton’s Method in n dimensions

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Newton's Method in n dimensions.html


Quasi-Newton Methods
▶ Quasi-Newton methods compute approximations to the Hessian at each step:

xk+1 = xk − αkB
−1
k ∇f(xk)

where αk is a line search parameter. Quasi-Newton methods can be more
robust than Newton’s method, as the Newton’s method step can lead to a
direction in which the objective function is strictly increasing.

▶ The BFGS method is a secant update method, similar to Broyden’s method:
▶ At each iteration, perform a rank-2 update to Bk using sk = xk+1 − xk and

yk = ∇f(xk+1)−∇f(xk):

Bk+1 = Bk +
yky

T
k

yT
k sk

− Bksks
T
kBk

sTkBksk

▶ Can update inverse with O(n2) work, but its more stable and efficient to update
a symmetric indefinite factorization.

▶ The BFGS method also preserves symmetry of the Hessian approximation.



Nonlinear Least Squares
▶ An important special case of multidimensional optimization is nonlinear least

squares, the problem of fitting a nonlinear function fx(t) so that fx(ti) ≈ yi:
For example, consider fitting f[x1,x2](t) = x1 sin(x2t) so thatf[x1,x2](1.5)

f[x1,x2](1.9)

f[x1,x2](3.2)

 ≈

−1.2
4.5
7.3

 .

▶ We can cast nonlinear least squares as an optimization problem and solve it
by Newton’s method:
Define residual vector function r(x) so that ri(x) = yi − fx(ti) and minimize

ϕ(x) =
1

2
||r(x)||22 =

1

2
r(x)Tr(x).

Now the gradient is ∇ϕ(x) = JT
r (x)r(x) and the Hessian is

Hϕ(x) = JT
r (x)Jr(x) +

m∑
i=1

ri(x)Hri(x).



Gauss-Newton Method
▶ The Hessian for nonlinear least squares problems has the form:

Hϕ(x) = JT
r (x)Jr(x) +

m∑
i=1

ri(x)Hri(x).

The second term is small when the residual function r(x) is small, so
approximate

Hϕ(x) ≈ Ĥϕ(x) = JT
r (x)Jr(x).

▶ The Gauss-Newton method is Newton iteration with an approximate Hessian:

xk+1 = xk − Ĥϕ(xk)
−1∇ϕ(xk) = xk − (JT

r (xk)Jr(xk))
−1JT

r (xk)r(xk).

▶ recognizing the normal equations, we interpret the Gauss-Newton method as
solving linear least squares problems Jr(xk)sk ∼= r(xk),xk+1 = xk + sk.

▶ Gauss-Newton can also be derived by taking a linear approximation of f at xk.
▶ Tykhonov regularization is often incorporated, yielding Levenberg-Marquardt.



Constrained Optimization Problems
▶ We now return to the general case of constrained optimization problems:

min
x

f(x) subject to g(x) = 0 and h(x) ≤ 0

When f is quadratic, while h, g is linear, this is a quadratic optimization
problem.

▶ Generally, we will seek to reduce constrained optimization problems to a
series of unconstrained optimization problems:
▶ sequential quadratic programming: solve an unconstrained quadratic

optimization problem at each iteration,
▶ penalty-based methods: solve a series of more complicated (more

ill-conditioned) unconstrained optimization problems,
▶ active set methods: define sequence of optimization problems with inequality

constrains ignored or treated as equality constraints.



Sequential Quadratic Programming
▶ Sequential quadratic programming (SQP) corresponds to using Newton’s

method to solve the equality constrained optimality conditions, by finding
critical points of the Lagrangian function L(x,λ) = f(x) + λTg(x),

∇L(x,λ) =
[
∇f(x) + JT

g (x)λ

g(x)

]
= 0

▶ At each iteration, SQP computes
[
xk+1

λk+1

]
=

[
xk

λk

]
+

[
sk
δk

]
by solving

HL(xk,λk)

[
sk
δk

]
= −∇L(xk,λk)

where

HL(xk,λk) =

[
B(xk,λk) JT

g (xk)

Jg(xk) 0

]
with B(x,λ) = Hf (x)+

m∑
i=1

λiHgi(x)

Demo: Sequential Quadratic Programming

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Sequential Quadratic Programming.html


Inequality Constrained Optimality Conditions
▶ The Karush-Kuhn-Tucker (KKT) conditions are necessary coniditions for local

minima of a problem with equality and inequality constraints, they include
▶ First, any minima x∗ must be a feasible point, so g(x∗) = 0 and h(x∗) ≤ 0.
▶ We say the ith inequality constraint is active at a minima x∗ if hi(x

∗) = 0.
▶ The collection of equality constraints and active inequality constraints

q(x) =
[
g(x) h(x)

]T , satisfies q(x∗) = 0.
▶ The negative gradient of the objective function at the minima must be in the row

span of the Jacobian of this collection of constraints:

−∇f(x∗) = JT
q (x∗)λ∗ where λ∗ =

[
λ1 λ2

]T and λ2 ≤ 0.

▶ To use SQP for an inequality constrained optimization problem, consider at
each iteration an active set of constraints:
▶ Active set qk contains all equality constraints and all inequality constraints that

are exactly satisfied or violated at xk.
▶ Active set method: perform one step of Newton’s method to minimize

Lk(x,λ) = f(x) + λTqk(x) with respect to x and λ, then update active set.



Penalty Functions

▶ Alternatively, we can reduce constrained optimization problems to
unconstrained ones by modifying the objective function. Penalty functions
are effective for equality constraints g(x) = 0:

ϕρ(x) = f(x) +
1

2
ρg(x)Tg(x)

is a simple merit function, and its solutions x∗
ρ satisfy limρ→∞ x∗

ρ = x∗.
However, the Hessian of ϕρ becomes increasingly ill-conditioned for large ρ,
leading to slow convergence.

▶ The augmented Lagrangian function provides a more numerically robust
approach:

Lρ(x,λ) = f(x) + λTg(x) +
1

2
ρg(x)Tg(x)



Barrier Functions
▶ Barrier functions (interior point methods) provide an effective way of working

with inequality constraints h(x) ≤ 0:
▶ Provided we start at a feasible point, modify objective function so it diverges to

∞ when approaching border of feasible region.
▶ Inverse barrier function:

ϕµ(x) = f(x)− µ

m∑
i=1

1

hi(x)
.

▶ Logarithmic barrier function:

ϕµ(x) = f(x)− µ

m∑
i=1

log(−hi(x)).

▶ When using sufficiently small steps, we have x∗
µ → x∗ as µ → 0.

▶ Barrier and penality methods solve a sequence of unconstrained problems (for
changing ρ or µ), requiring multiple executions of e.g., Newton’s method.

▶ Primal-dual interior point methods can also be derived from the KKT conditions.
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