
CS 450: Numerical Anlaysis1

Numerical Optimization

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).

http://heath.cs.illinois.edu/scicomp/notes/index.html

Numerical Optimization
▶ Our focus will be on continuous rather than combinatorial optimization:

min
x

f(x) subject to g(x) = 0 and h(x) ≤ 0

where f ∈ Rn → R is assumed to be differentiable.
▶ Without the constraints, i.e. with g = 0 and h = 0, the problem is

unconstrained.
▶ With constraints, the constrained optimization problem restricts the solution to

elements of the feasible region: {x : g(x) = 0 and h(x) ≤ 0}.

▶ We consider linear, quadratic, and general nonlinear optimization problems:
▶ If f , g, and h are affine (linear and constant terms only) then we have linear

programming problem.
▶ If f is quadratic while g and h are linear, then we have a quadratic

programming problem, for which specialized methods exist.
▶ Generally, we have a nonlinear programming problem.

Local Minima and Convexity
▶ Without knowledge of the analytical form of the function, numerical

optimization methods at best achieve convergence to a local rather than
global minimum:
If the input domain is infinite or the global minimum is in an infinitesimally
narrow trough, it may be impossible to find the global minimum in finite time.

▶ A set is convex if it includes all points on any line, while a function is convex
if it is greater or equal to points on any of its tangent lines:
▶ Set S is convex if

∀x,y ∈ S, α ∈ [0, 1], αx+ (1− α)y ∈ S.

▶ Function f is convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

▶ A twice-differentiable convex function always has nonnegative second
derivative, hence a local minima of a convex function is also a global minima.

Existence of Local Minima

▶ Level sets are all points for which f has a given value, sublevel sets are all
points for which the value of f is less than a given value:

L(z) = {x : f(x) = z}

S(z) = {x : f(x) ≤ z}

▶ If there exists a closed and bounded sublevel set in the domain of feasible
points, then f has has a global minimum in that set:
Need a value z such that S(z) has finite size, is contiguous, and includes its
own boundary.

Optimality Conditions

▶ If x is an interior point in the feasible domain and is a local minima,

∇f(x) =
[

df
dx1

(x) · · · df
dxn

(x)
]T

= 0 :

▶ If df
dxi

(x) < 0 an infinitesimal increment to xi improves the solution,
▶ if df

dxi
(x) > 0 an infinitesimal decrement to xi improves the solution.

▶ Critical points x satisfy ∇f(x) = 0 and can be minima, maxima, or saddle
points:
For scalar function f , can distinguish the three by considering sign of f ′′(x).

Hessian Matrix
▶ To ascertain whether a critical point x, for which ∇f(x) = 0, is a local

minima, consider the Hessian matrix:

Hf (x) = J∇f (x) =

d2f
dx2

1
(x) · · · d2f

dx1dxn
(x)

...
d2f

dxndx1
(x) · · · d2f

dx2
n
(x)

The Hessian matrix is always symmetric if f is twice differentiable.

▶ If x∗ is a minima of f , then Hf (x
∗) is positive semi-definite:

If Hf (x
∗) is not positive semi-definite, there exists normalized vector s such

that sTHf (x
∗)s < 0, which means that for a sufficiently small α, x̂ = x∗ + αs

will have be a better solution, f(x̂) < f(x∗), since the gradient is zero at x∗

and decreases for an infinitesimal perturbation of x∗ in the direction s.

Optimality on Feasible Region Border
▶ Given an equality constraint g(x) = 0, it is no longer necessarily the case

that ∇f(x∗) = 0. Instead, it may be that directions in which the gradient
decreases lead to points outside the feasible region:

∃λ ∈ Rn, −∇f(x∗) = JT
g (x

∗)λ

▶ λ are referred to as the Lagrange multipliers.
▶ This necessary condition implies that at x∗, the direction in which f decreases is

in the span of directions moving along which would exit the feasible region.

▶ Such constrained minima are critical points of the Lagrangian function
L(x,λ) = f(x) + λTg(x), so they satisfy:

∇L(x∗,λ) =

[
∇f(x∗) + JT

g (x
∗)λ

g(x∗)

]
= 0

Seeking λ∗ to obtain a function k(x) = L(x,λ∗) with maximum global
minimum is the dual optimization problem.

Sensitivity and Conditioning
▶ The condition number of solving a nonlinear equations is 1/f ′(x∗), however

for a minimizer x∗, we have f ′(x∗) = 0, so conditioning of optimization is
inherently bad:
Consider perturbation of function values for a function that changes slowly
near the minimum.

▶ To analyze worst case error, consider how far we have to move from a root x∗

to perturb the function value by ϵ:

ϵ = f(x∗ + h)− f(x∗) = f ′(x∗)h︸ ︷︷ ︸
0

+
1

2
f ′′(x∗)h2 +O(h3)

▶ so if the function value changes by a infinitesimal perturbation ϵ, we have the
error to the solution h, satisfies h = O(

√
ϵ/f ′′(x∗))

▶ a perturbation to the function value in the kth significant digit, could result in
the solution changing in the k/2th significant digit.

Golden Section Search
▶ Given bracket [a, b] with a unique local minimum (f is unimodal on the

interval), golden section search considers consider points f(x1), f(x2),
a < x1 < x2 < b and discards subinterval [a, x1] or [x2, b]:
▶ If a function is strictly convex and bounded on [a, b], it is unimodal on that

interval, but a unimodal function may be non-convex.
▶ Because the function is unimodal, if we have f(x1) < f(x2) then the unique local

minima f in [a, b] has to be in the interval [a, x2].
▶ So, if f(x1) < f(x2) can restrict search to [a, x2] and otherwise to [x1, b].

▶ Since one point remains in the interval, golden section search selects x1 and
x2 so one of them can be effectively reused in the next iteration:
▶ For example, when f(x1) > f(x2), x2 is inside [x1, b] and we would like x2 to

serve as the x1 for the next iteration.
▶ To ensure this, and minimize resulting interval length, we pick

x2 = a+ (b− a)(
√
5− 1)/2 and x1 = b− (b− a)(

√
5− 1)/2.

▶ Consequently, the convergence of golden secetion search is linear with constant
(
√
5− 1)/2 per function evaluation.

Demo: Golden Section Proportions

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Golden Section Proportions.html

Newton’s Method for Optimization

▶ At each iteration, approximate function by quadratic and find minimum of
quadratic function:
Pick quadratic function f̂ as first three terms of Taylor expansion of f about
xk, matching value and first two derivatives of f at xk.

▶ The new approximate guess will be given by xk+1 − xk = −f ′(xk)/f
′′(xk):

f(x) ≈ f̂(x) = f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)

2

since the function is quadratic, we can find its unique critical point to find its
minima,

f̂ ′(xk+1) = f ′(xk) + f ′′(xk)(xk+1 − xk) = 0.

Demo: Newton’s Method in 1D

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Newton's Method in 1D.html

Successive Parabolic Interpolation

▶ Interpolate f with a quadratic function at each step and find its minima:
Given three points, there is a unique quadratic function interpolating them.

▶ The convergence rate of the resulting method is roughly 1.324

By comparison, the convergence of golden section search is linear with a
constant of 0.618, while Newton’s method converges quadratically.

Safeguarded 1D Optimization

▶ Safeguarding can be done by bracketing via golden section search:
Combination of Newton and golden section search
▶ achieves quadratic convergence locally,
▶ is guaranteed convergence provided unimodality of function.

▶ Backtracking and step-size control:
▶ Can take smaller step xk+1 = xk − αkf

′(xk)/f
′′(xk) for some αk < 1.

▶ Can backtrack and choose smaller αk if f(xk+1) > f(xk).

General Multidimensional Optimization

▶ Direct search methods by simplex (Nelder-Mead):
▶ form a n+ 1-point polytope in n-dimensional space and adjust worst point

(highest function value) by moving it along a line passing through the centroid
of the remaining points,

▶ relies on function evaluations only, but can converge to nonstationary points
even for convex 2D functions.

▶ Steepest descent: find the minimizer in the direction of the negative gradient:

xk+1 = xk − αk∇f(xk)

such that f(xk+1) = minαk
f(xk − αk∇f(xk)), i.e. perform a line search

(solve 1D optimization problem) in the direction of the negative gradient.

Demo: Nelder-Mead Method

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Nelder-Mead Method.html

Convergence of Steepest Descent
▶ Steepest descent converges linearly with a constant that can be arbitrarily

close to 1:
▶ Convergence is slow locally, in the worst case, and generally depends on the

Hessian near the minima.
▶ If the gradient is changing quickly, it serves as good approximation only within a

small local neighborhood, so the line search may result in arbitrarily small steps.
▶ Given quadratic optimization problem f(x) = 1

2x
TAx+ cTx where A is

symmetric positive definite, consider the error ek = xk − x∗:
▶ We can quantify the error using the norm, ||x||A = xTAx, as

lim
k→∞

||ek+1||A
||ek||A

=
σmax(A)− σmin(A)

σmax(A) + σmin(A)

▶ When sufficiently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.

▶ Convergence rate depends on the conditioning of A, since
σmax(A)− σmin(A)

σmax(A) + σmin(A)
=

κ(A)− 1

κ(A) + 1
.

Demo: Steepest Descent

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Steepest Descent.html

Gradient Methods with Extrapolation
▶ We can improve the constant in the linear rate of convergence of steepest

descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction xk − xk−1):

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1)

▶ The heavy ball method, which uses constant αk = α and βk = β, achieves
better convergence than steepest descent:
For a quadratic program defined by A, these exist α and β, such that the
convergence rate of the heavy ball method is

lim
k→∞

||ek+1||A
||ek||A

=

√
κ(A)− 1√
κ(A) + 1

Nesterov’s gradient optimization method is another instance of an
extrapolation method that provides further improved optimality guarantees.

Conjugate Gradient Method
▶ The conjugate gradient method is capable of making the optimal choice (for

quadratic programs) of αk and βk at each iteration:

(αk, βk) = argmin
αk,βk

[
f
(
xk − αk∇f(xk) + βk(xk − xk−1)

)]
▶ For SPD quadratic programming problems, conjugate gradient is an optimal 1st

order method, converging in n− 1 iterations.
▶ It implicitly computes Lanczos iteration, searching along A-orthogonal

directions at each step.

▶ Parallel tangents implementation of the method in a general nonlinear
setting proceeds as follows

1. Perform a step of steepest descent to generate x̂k from xk.
2. Generate xk+1 by minimizing over the line passing through xk−1 and x̂k.

Demo: Conjugate Gradient Method

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Conjugate Gradient Method.html

Nonlinear Conjugate Gradient

▶ Various formulations of conjugate gradient are possible for nonlinear
objective functions, which differ in how they compute β below

▶ Fletcher-Reeves is among the most common, computes the following at each
iteration

1. Perform 1D minimization for α in f(xk + αsk)

2. xk+1 = xk + αsk

3. Compute gradient gk+1 = ∇f(xk+1)

4. Compute β = gT
k+1gk+1/(g

T
k gk+1)

5. sk+1 = −gk+1 + βsk

Conjugate Gradient for Quadratic Optimization

▶ Conjugate gradient is an optimal iterative method for quadratic optimization,
f(x) = 1

2x
TAx− bTx

▶ For such problems, it can be expressed in an efficient and succinct form,
computing at each iteration

1. α = rTk rk/s
T
kAsk

2. xk+1 = xk + αsk

3. Compute gradient rk+1 = rk − αkAsk

4. Compute β = rTk+1rk+1/(r
T
k rk+1)

5. sk+1 = rk+1 + βsk

▶ Note that for quadratic optimization, the negative gradient −g corresponds
to the residual r = b−Ax

Krylov Optimization
▶ Conjugate Gradient finds the minimizer of f(x) = 1

2x
TAx− bTx within the

Krylov subspace of A:
▶ It constructs Krylov subspace Kk(A, b) = span(b,Ab, . . . ,Ar−1b).
▶ At the kth step conjugate gradient yields iterate

xk = ||b||2QkT
−1
k e1,

where Qk are the Lanczos vectors associated with Kk(A, b) and Tk = QT
kAQk.

▶ This choice of xk minimizes f(x) since

min
x∈Kk(A,c)

f(x) = min
y∈Rk

f(Qky)

= min
y∈Rk

yTQT
kAQky − bTQky

= min
y∈Rk

yTTky − ||b||2eT1 y

is minimized by y = ||b||2T−1
k e1.

▶ Since Tk differs from Tk−1 only in addition of a single row and column, by
Sherman-Morrison-Woodbury, efficient updates exist to solve for each y.

Demo: Conjugate Gradient Parallel Tangents as Krylov Subspace Method

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Conjugate Gradient Parallel Tangents as Krylov Subspace Method.html

Newton’s Method
▶ Newton’s method in n dimensions is given by finding minima of

n-dimensional quadratic approximation:

f(xk + s) ≈ f̂(s) = f(xk) + sT∇f(xk) +
1

2
sTHf (xk)s.

The existence of second derivatives of f at xk (Hf (xk)) is needed.
The minima of this function can be determined by identifying critical points

0 = ∇f̂(s) = ∇f(xk) +Hf (xk)s,

thus to determine s we solve the linear system,

Hf (xk)s = −∇f(xk).

Assuming invertibility of the Hessian, Newton’s method iteration is

xk+1 = xk −Hf (xk)
−1∇f(xk)︸ ︷︷ ︸
sk

.

Quadratic convergence follows by equivalence to Newton’s method for solving
nonlinear system of optimality equations ∇f(x) = 0.

Demo: Newton’s Method in n dimensions

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Newton's Method in n dimensions.html

Quasi-Newton Methods
▶ Quasi-Newton methods compute approximations to the Hessian at each step:

xk+1 = xk − αkB
−1
k ∇f(xk)

where αk is a line search parameter. Quasi-Newton methods can be more
robust than Newton’s method, as the Newton’s method step can lead to a
direction in which the objective function is strictly increasing.

▶ The BFGS method is a secant update method, similar to Broyden’s method:
▶ At each iteration, perform a rank-2 update to Bk using sk = xk+1 − xk and

yk = ∇f(xk+1)−∇f(xk):

Bk+1 = Bk +
yky

T
k

yT
k sk

− Bksks
T
kBk

sTkBksk

▶ Can update inverse with O(n2) work, but its more stable and efficient to update
a symmetric indefinite factorization.

▶ The BFGS method also preserves symmetry of the Hessian approximation.

Nonlinear Least Squares
▶ An important special case of multidimensional optimization is nonlinear least

squares, the problem of fitting a nonlinear function fx(t) so that fx(ti) ≈ yi:
For example, consider fitting f[x1,x2](t) = x1 sin(x2t) so thatf[x1,x2](1.5)

f[x1,x2](1.9)

f[x1,x2](3.2)

 ≈

−1.2
4.5
7.3

 .

▶ We can cast nonlinear least squares as an optimization problem and solve it
by Newton’s method:
Define residual vector function r(x) so that ri(x) = yi − fx(ti) and minimize

ϕ(x) =
1

2
||r(x)||22 =

1

2
r(x)Tr(x).

Now the gradient is ∇ϕ(x) = JT
r (x)r(x) and the Hessian is

Hϕ(x) = JT
r (x)Jr(x) +

m∑
i=1

ri(x)Hri(x).

Gauss-Newton Method
▶ The Hessian for nonlinear least squares problems has the form:

Hϕ(x) = JT
r (x)Jr(x) +

m∑
i=1

ri(x)Hri(x).

The second term is small when the residual function r(x) is small, so
approximate

Hϕ(x) ≈ Ĥϕ(x) = JT
r (x)Jr(x).

▶ The Gauss-Newton method is Newton iteration with an approximate Hessian:

xk+1 = xk − Ĥϕ(xk)
−1∇ϕ(xk) = xk − (JT

r (xk)Jr(xk))
−1JT

r (xk)r(xk).

▶ recognizing the normal equations, we interpret the Gauss-Newton method as
solving linear least squares problems Jr(xk)sk ∼= r(xk),xk+1 = xk + sk.

▶ Gauss-Newton can also be derived by taking a linear approximation of f at xk.
▶ Tykhonov regularization is often incorporated, yielding Levenberg-Marquardt.

Constrained Optimization Problems
▶ We now return to the general case of constrained optimization problems:

min
x

f(x) subject to g(x) = 0 and h(x) ≤ 0

When f is quadratic, while h, g is linear, this is a quadratic optimization
problem.

▶ Generally, we will seek to reduce constrained optimization problems to a
series of unconstrained optimization problems:
▶ sequential quadratic programming: solve an unconstrained quadratic

optimization problem at each iteration,
▶ penalty-based methods: solve a series of more complicated (more

ill-conditioned) unconstrained optimization problems,
▶ active set methods: define sequence of optimization problems with inequality

constrains ignored or treated as equality constraints.

Sequential Quadratic Programming
▶ Sequential quadratic programming (SQP) corresponds to using Newton’s

method to solve the equality constrained optimality conditions, by finding
critical points of the Lagrangian function L(x,λ) = f(x) + λTg(x),

∇L(x,λ) =
[
∇f(x) + JT

g (x)λ

g(x)

]
= 0

▶ At each iteration, SQP computes
[
xk+1

λk+1

]
=

[
xk

λk

]
+

[
sk
δk

]
by solving

HL(xk,λk)

[
sk
δk

]
= −∇L(xk,λk)

where

HL(xk,λk) =

[
B(xk,λk) JT

g (xk)

Jg(xk) 0

]
with B(x,λ) = Hf (x)+

m∑
i=1

λiHgi(x)

Demo: Sequential Quadratic Programming

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/06-optimization/Sequential Quadratic Programming.html

Inequality Constrained Optimality Conditions
▶ The Karush-Kuhn-Tucker (KKT) conditions are necessary coniditions for local

minima of a problem with equality and inequality constraints, they include
▶ First, any minima x∗ must be a feasible point, so g(x∗) = 0 and h(x∗) ≤ 0.
▶ We say the ith inequality constraint is active at a minima x∗ if hi(x

∗) = 0.
▶ The collection of equality constraints and active inequality constraints

q(x) =
[
g(x) h(x)

]T , satisfies q(x∗) = 0.
▶ The negative gradient of the objective function at the minima must be in the row

span of the Jacobian of this collection of constraints:

−∇f(x∗) = JT
q (x∗)λ∗ where λ∗ =

[
λ1 λ2

]T and λ2 ≤ 0.

▶ To use SQP for an inequality constrained optimization problem, consider at
each iteration an active set of constraints:
▶ Active set qk contains all equality constraints and all inequality constraints that

are exactly satisfied or violated at xk.
▶ Active set method: perform one step of Newton’s method to minimize

Lk(x,λ) = f(x) + λTqk(x) with respect to x and λ, then update active set.

Penalty Functions

▶ Alternatively, we can reduce constrained optimization problems to
unconstrained ones by modifying the objective function. Penalty functions
are effective for equality constraints g(x) = 0:

ϕρ(x) = f(x) +
1

2
ρg(x)Tg(x)

is a simple merit function, and its solutions x∗
ρ satisfy limρ→∞ x∗

ρ = x∗.
However, the Hessian of ϕρ becomes increasingly ill-conditioned for large ρ,
leading to slow convergence.

▶ The augmented Lagrangian function provides a more numerically robust
approach:

Lρ(x,λ) = f(x) + λTg(x) +
1

2
ρg(x)Tg(x)

Barrier Functions
▶ Barrier functions (interior point methods) provide an effective way of working

with inequality constraints h(x) ≤ 0:
▶ Provided we start at a feasible point, modify objective function so it diverges to

∞ when approaching border of feasible region.
▶ Inverse barrier function:

ϕµ(x) = f(x)− µ

m∑
i=1

1

hi(x)
.

▶ Logarithmic barrier function:

ϕµ(x) = f(x)− µ

m∑
i=1

log(−hi(x)).

▶ When using sufficiently small steps, we have x∗
µ → x∗ as µ → 0.

▶ Barrier and penality methods solve a sequence of unconstrained problems (for
changing ρ or µ), requiring multiple executions of e.g., Newton’s method.

▶ Primal-dual interior point methods can also be derived from the KKT conditions.

	Numerical Optimization Problems
	Constrained and Unconstrained Optimization
	Existence and Uniqueness of Solutions
	Properties of Local Minima
	Conditioning of Minima
	Algorithms for 1D Optimization

	Multidimensional Quadratic Optimization
	Steepest Descent
	Conjugate Gradient

	General Nonlinear Optimization Methods
	Newton's Method
	Quasi-Newton Method

	Nonlinear Least Squares
	Constrained Optimization Methods
	Overview of Approaches
	Optimization with Equality Constraints
	Optimization with Inequality Constraints

