CS 450: Numerical Anlaysis ${ }^{1}$

Numerical Optimization

University of Illinois at Urbana-Champaign

[^0]
Numerical Optimization

- Our focus will be on continuous rather than combinatorial optimization:

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x}) \text { subject to } \boldsymbol{g}(\boldsymbol{x})=\mathbf{0} \quad \text { and } \quad \boldsymbol{h}(\boldsymbol{x}) \leq \mathbf{0}
$$

where $f \in \mathbb{R}^{n} \rightarrow \mathbb{R}$ is assumed to be differentiable.

- Without the constraints, i.e. with $\boldsymbol{g}=\mathbf{0}$ and $\boldsymbol{h}=\mathbf{0}$, the problem is unconstrained.
- With constraints, the constrained optimization problem restricts the solution to elements of the feasible region: $\{\boldsymbol{x}: \boldsymbol{g}(\boldsymbol{x})=\mathbf{0}$ and $\boldsymbol{h}(\boldsymbol{x}) \leq \mathbf{0}\}$.
- We consider linear, quadratic, and general nonlinear optimization problems:
- If f, \boldsymbol{g}, and \boldsymbol{h} are affine (linear and constant terms only) then we have linear programming problem.
- If f is quadratic while g and h are linear, then we have a quadratic programming problem, for which specialized methods exist.
- Generally, we have a nonlinear programming problem.

Local Minima and Convexity

- Without knowledge of the analytical form of the function, numerical optimization methods at best achieve convergence to a local rather than global minimum:
If the input domain is infinite or the global minimum is in an infinitesimally narrow trough, it may be impossible to find the global minimum in finite time.
- A set is convex if it includes all points on any line, while a function is convex if it is greater or equal to points on any of its tangent lines:
- Set S is convex if

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in S, \quad \alpha \in[0,1], \quad \alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y} \in S
$$

- Function f is convex if

$$
f(\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y}) \leq \alpha f(\boldsymbol{x})+(1-\alpha) f(\boldsymbol{y})
$$

- A twice-differentiable convex function always has nonnegative second derivative, hence a local minima of a convex function is also a global minima.

Existence of Local Minima

- Level sets are all points for which f has a given value, sublevel sets are all points for which the value of f is less than a given value:

$$
\begin{aligned}
& L(z)=\{\boldsymbol{x}: f(\boldsymbol{x})=z\} \\
& S(z)=\{\boldsymbol{x}: f(\boldsymbol{x}) \leq z\}
\end{aligned}
$$

- If there exists a closed and bounded sublevel set in the domain of feasible points, then f has has a global minimum in that set:
Need a value z such that $S(z)$ has finite size, is contiguous, and includes its own boundary.

Optimality Conditions

- If x is an interior point in the feasible domain and is a local minima,

$$
\nabla f(\boldsymbol{x})=\left[\begin{array}{ll}
\frac{d f}{d x_{1}}(\boldsymbol{x}) & \cdots \frac{d f}{d x_{n}}(\boldsymbol{x})
\end{array}\right]^{T}=\mathbf{0}:
$$

- If $\frac{d f}{d x_{i}}(x)<0$ an infinitesimal increment to x_{i} improves the solution,
- if $\frac{d f}{d x_{i}}(\boldsymbol{x})>0$ an infinitesimal decrement to x_{i} improves the solution.
-Critical points \boldsymbol{x} satisfy $\nabla f(\boldsymbol{x})=\mathbf{0}$ and can be minima, maxima, or saddle points:
For scalar function f, can distinguish the three by considering sign of $f^{\prime \prime}(x)$.

Hessian Matrix

- To ascertain whether a critical point \boldsymbol{x}, for which $\nabla f(\boldsymbol{x})=\mathbf{0}$, is a local minima, consider the Hessian matrix:

$$
\boldsymbol{H}_{f}(\boldsymbol{x})=\boldsymbol{J}_{\nabla f}(\boldsymbol{x})=\left[\begin{array}{ccc}
\frac{d^{2} f}{d x_{1}^{2}}(\boldsymbol{x}) & \cdots & \frac{d^{2} f}{d x_{1} d x_{n}}(\boldsymbol{x}) \\
\vdots & \ddots & \vdots \\
\frac{d^{2} f}{d x_{n} d x_{1}}(\boldsymbol{x}) & \cdots & \frac{d^{2} f}{d x_{n}^{2}}(\boldsymbol{x})
\end{array}\right]
$$

The Hessian matrix is always symmetric if f is twice differentiable.

- If \boldsymbol{x}^{*} is a minima of f, then $\boldsymbol{H}_{f}\left(\boldsymbol{x}^{*}\right)$ is positive semi-definite: If $\boldsymbol{H}_{f}\left(\boldsymbol{x}^{*}\right)$ is not positive semi-definite, there exists normalized vector such that $\boldsymbol{s}^{T} \boldsymbol{H}_{f}\left(\boldsymbol{x}^{*}\right) \boldsymbol{s}<0$, which means that for a sufficiently small $\alpha, \hat{\boldsymbol{x}}=\boldsymbol{x}^{*}+\alpha \boldsymbol{s}$ will have be a better solution, $f(\hat{\boldsymbol{x}})<f\left(\boldsymbol{x}^{*}\right)$, since the gradient is zero at \boldsymbol{x}^{*} and decreases for an infinitesimal perturbation of \boldsymbol{x}^{*} in the direction s.

Optimality on Feasible Region Border

- Given an equality constraint $\boldsymbol{g}(\boldsymbol{x})=\mathbf{0}$, it is no longer necessarily the case that $\nabla f\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$. Instead, it may be that directions in which the gradient decreases lead to points outside the feasible region:

$$
\exists \boldsymbol{\lambda} \in \mathbb{R}^{n}, \quad-\nabla f\left(\boldsymbol{x}^{*}\right)=\boldsymbol{J}_{\boldsymbol{g}}^{T}\left(\boldsymbol{x}^{*}\right) \boldsymbol{\lambda}
$$

- λ are referred to as the Lagrange multipliers.
- This necessary condition implies that at \boldsymbol{x}^{*}, the direction in which f decreases is in the span of directions moving along which would exit the feasible region.
- Such constrained minima are critical points of the Lagrangian function $\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{T} \boldsymbol{g}(\boldsymbol{x})$, so they satisfy:

$$
\nabla \mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}\right)=\left[\begin{array}{c}
\nabla f\left(\boldsymbol{x}^{*}\right)+\boldsymbol{J}_{\boldsymbol{g}}^{T}\left(\boldsymbol{x}^{*}\right) \boldsymbol{\lambda} \\
\boldsymbol{g}\left(\boldsymbol{x}^{*}\right)
\end{array}\right]=\mathbf{0}
$$

Seeking $\boldsymbol{\lambda}^{*}$ to obtain a function $k(\boldsymbol{x})=\mathcal{L}\left(\boldsymbol{x}, \boldsymbol{\lambda}^{*}\right)$ with maximum global minimum is the dual optimization problem.

Sensitivity and Conditioning

- The condition number of solving a nonlinear equations is $1 / f^{\prime}\left(x^{*}\right)$, however for a minimizer x^{*}, we have $f^{\prime}\left(x^{*}\right)=0$, so conditioning of optimization is inherently bad:
Consider perturbation of function values for a function that changes slowly near the minimum.
- To analyze worst case error, consider how far we have to move from a root \boldsymbol{x}^{*} to perturb the function value by ϵ :

$$
\epsilon=f\left(x^{*}+h\right)-f\left(x^{*}\right)=\underbrace{f^{\prime}\left(x^{*}\right) h}_{0}+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) h^{2}+O\left(h^{3}\right)
$$

- so if the function value changes by a infinitesimal perturbation ϵ, we have the error to the solution h, satisfies $h=O\left(\sqrt{\epsilon / f^{\prime \prime}\left(x^{*}\right)}\right)$
- a perturbation to the function value in the k th significant digit, could result in the solution changing in the $k / 2$ th significant digit.

Golden Section Search

- Given bracket $[a, b]$ with a unique local minimum (f is unimodal on the interval), golden section search considers consider points $f\left(x_{1}\right), f\left(x_{2}\right)$, $a<x_{1}<x_{2}<b$ and discards subinterval $\left[a, x_{1}\right]$ or $\left[x_{2}, b\right]$:
- If a function is strictly convex and bounded on $[a, b]$, it is unimodal on that interval, but a unimodal function may be non-convex.
- Because the function is unimodal, if we have $f\left(x_{1}\right)<f\left(x_{2}\right)$ then the unique local minima f in $[a, b]$ has to be in the interval $\left[a, x_{2}\right]$.
- So, if $f\left(x_{1}\right)<f\left(x_{2}\right)$ can restrict search to $\left[a, x_{2}\right]$ and otherwise to $\left[x_{1}, b\right]$.
- Since one point remains in the interval, golden section search selects x_{1} and x_{2} so one of them can be effectively reused in the next iteration:
- For example, when $f\left(x_{1}\right)>f\left(x_{2}\right), x_{2}$ is inside $\left[x_{1}, b\right]$ and we would like x_{2} to serve as the x_{1} for the next iteration.
- To ensure this, and minimize resulting interval length, we pick $x_{2}=a+(b-a)(\sqrt{5}-1) / 2$ and $x_{1}=b-(b-a)(\sqrt{5}-1) / 2$.
- Consequently, the convergence of golden secetion search is linear with constant $(\sqrt{5}-1) / 2$ per function evaluation.

Newton's Method for Optimization

- At each iteration, approximate function by quadratic and find minimum of quadratic function:
Pick quadratic function \hat{f} as first three terms of Taylor expansion of f about x_{k}, matching value and first two derivatives of f at x_{k}.
- The new approximate guess will be given by $x_{k+1}-x_{k}=-f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)$:

$$
f(x) \approx \hat{f}(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2}
$$

since the function is quadratic, we can find its unique critical point to find its minima,

$$
\hat{f}^{\prime}\left(x_{k+1}\right)=f^{\prime}\left(x_{k}\right)+f^{\prime \prime}\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)=0 .
$$

Successive Parabolic Interpolation

- Interpolate f with a quadratic function at each step and find its minima: Given three points, there is a unique quadratic function interpolating them.
- The convergence rate of the resulting method is roughly 1.324

By comparison, the convergence of golden section search is linear with a constant of 0.618, while Newton's method converges quadratically.

Safeguarded 1D Optimization

- Safeguarding can be done by bracketing via golden section search: Combination of Newton and golden section search
- achieves quadratic convergence locally,
- is guaranteed convergence provided unimodality of function.
- Backtracking and step-size control:
- Can take smaller step $x_{k+1}=x_{k}-\alpha_{k} f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)$ for some $\alpha_{k}<1$.
- Can backtrack and choose smaller α_{k} if $f\left(x_{k+1}\right)>f\left(x_{k}\right)$.

General Multidimensional Optimization

- Direct search methods by simplex (Nelder-Mead):
- form a $n+1$-point polytope in n-dimensional space and adjust worst point (highest function value) by moving it along a line passing through the centroid of the remaining points,
- relies on function evaluations only, but can converge to nonstationary points even for convex 2D functions.
- Steepest descent: find the minimizer in the direction of the negative gradient:

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)
$$

such that $f\left(\boldsymbol{x}_{k+1}\right)=\min _{\alpha_{k}} f\left(\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)\right)$, i.e. perform a line search (solve 1D optimization problem) in the direction of the negative gradient.

Convergence of Steepest Descent

- Steepest descent converges linearly with a constant that can be arbitrarily close to 1 :
- Convergence is slow locally, in the worst case, and generally depends on the Hessian near the minima.
- If the gradient is changing quickly, it serves as good approximation only within a small local neighborhood, so the line search may result in arbitrarily small steps.
- Given quadratic optimization problem $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x}$ where \boldsymbol{A} is symmetric positive definite, consider the error $\boldsymbol{e}_{k}=\boldsymbol{x}_{k}-\boldsymbol{x}^{*}$:
- We can quantify the error using the norm, $\|\boldsymbol{x}\|_{\boldsymbol{A}}=\boldsymbol{x}^{T} \boldsymbol{A x}$, as

$$
\lim _{k \rightarrow \infty} \frac{\left\|\boldsymbol{e}_{k+1}\right\|_{\boldsymbol{A}}}{\left\|\boldsymbol{e}_{k}\right\|_{\boldsymbol{A}}}=\frac{\sigma_{\max }(\boldsymbol{A})-\sigma_{\min }(\boldsymbol{A})}{\sigma_{\max }(\boldsymbol{A})+\sigma_{\min }(\boldsymbol{A})}
$$

- When sufficiently close to a local minima, general nonlinear optimization problems are described by such an SPD quadratic problem.
- Convergence rate depends on the conditioning of A, since

$$
\frac{\sigma_{\max }(\boldsymbol{A})-\sigma_{\min }(\boldsymbol{A})}{\sigma_{\max }(\boldsymbol{A})+\sigma_{\min }(\boldsymbol{A})}=\frac{\kappa(\boldsymbol{A})-1}{\kappa(\boldsymbol{A})+1} .
$$

Gradient Methods with Extrapolation

- We can improve the constant in the linear rate of convergence of steepest descent by leveraging extrapolation methods, which consider two previous iterates (maintain momentum in the direction $\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}$):

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)+\beta_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)
$$

- The heavy ball method, which uses constant $\alpha_{k}=\alpha$ and $\beta_{k}=\beta$, achieves better convergence than steepest descent:
For a quadratic program defined by \boldsymbol{A}, these exist α and β, such that the convergence rate of the heavy ball method is

$$
\lim _{k \rightarrow \infty} \frac{\left\|\boldsymbol{e}_{k+1}\right\|_{\boldsymbol{A}}}{\left\|\boldsymbol{e}_{k}\right\|_{\boldsymbol{A}}}=\frac{\sqrt{\kappa(\boldsymbol{A})}-1}{\sqrt{\kappa(\boldsymbol{A})}+1}
$$

Nesterov's gradient optimization method is another instance of an extrapolation method that provides further improved optimality guarantees.

Conjugate Gradient Method

- The conjugate gradient method is capable of making the optimal choice (for quadratic programs) of α_{k} and β_{k} at each iteration:

$$
\left(\alpha_{k}, \beta_{k}\right)=\underset{\alpha_{k}, \beta_{k}}{\operatorname{argmin}}\left[f\left(\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)+\beta_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}\right)\right)\right]
$$

- For SPD quadratic programming problems, conjugate gradient is an optimal 1st order method, converging in $n-1$ iterations.
- It implicitly computes Lanczos iteration, searching along A-orthogonal directions at each step.
- Parallel tangents implementation of the method in a general nonlinear setting proceeds as follows

1. Perform a step of steepest descent to generate $\hat{\boldsymbol{x}}_{k}$ from \boldsymbol{x}_{k}.
2. Generate \boldsymbol{x}_{k+1} by minimizing over the line passing through \boldsymbol{x}_{k-1} and $\hat{\boldsymbol{x}}_{k}$.

Nonlinear Conjugate Gradient

- Various formulations of conjugate gradient are possible for nonlinear objective functions, which differ in how they compute β below
- Fletcher-Reeves is among the most common, computes the following at each iteration

1. Perform 1D minimization for α in $f\left(\boldsymbol{x}_{k}+\alpha \boldsymbol{s}_{k}\right)$
2. $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha \boldsymbol{s}_{k}$
3. Compute gradient $\boldsymbol{g}_{k+1}=\nabla f\left(\boldsymbol{x}_{k+1}\right)$
4. Compute $\beta=\boldsymbol{g}_{k+1}^{T} \boldsymbol{g}_{k+1} /\left(\boldsymbol{g}_{k}^{T} \boldsymbol{g}_{k+1}\right)$
5. $\boldsymbol{s}_{k+1}=-\boldsymbol{g}_{k+1}+\beta \boldsymbol{s}_{k}$

Conjugate Gradient for Quadratic Optimization

- Conjugate gradient is an optimal iterative method for quadratic optimization, $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{T} \boldsymbol{x}$
- For such problems, it can be expressed in an efficient and succinct form, computing at each iteration

1. $\alpha=\boldsymbol{r}_{k}^{T} \boldsymbol{r}_{k} / \boldsymbol{s}_{k}^{T} \boldsymbol{A} \boldsymbol{s}_{k}$
2. $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha \boldsymbol{s}_{k}$
3. Compute gradient $\boldsymbol{r}_{k+1}=\boldsymbol{r}_{k}-\alpha_{k} \boldsymbol{A} \boldsymbol{s}_{k}$
4. Compute $\beta=\boldsymbol{r}_{k+1}^{T} \boldsymbol{r}_{k+1} /\left(\boldsymbol{r}_{k}^{T} \boldsymbol{r}_{k+1}\right)$
5. $\boldsymbol{s}_{k+1}=\boldsymbol{r}_{k+1}+\beta \boldsymbol{s}_{k}$

- Note that for quadratic optimization, the negative gradient - \boldsymbol{g} corresponds to the residual $\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A x}$

Krylov Optimization

- Conjugate Gradient finds the minimizer of $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{T} \boldsymbol{x}$ within the Krylov subspace of \boldsymbol{A} :
- It constructs Krylov subspace $\mathcal{K}_{k}(\boldsymbol{A}, \boldsymbol{b})=\operatorname{span}\left(\boldsymbol{b}, \boldsymbol{A} \boldsymbol{b}, \ldots, \boldsymbol{A}^{r-1} \boldsymbol{b}\right)$.
- At the kth step conjugate gradient yields iterate

$$
\boldsymbol{x}_{k}=\|\boldsymbol{b}\|_{2} \boldsymbol{Q}_{k} \boldsymbol{T}_{k}^{-1} \boldsymbol{e}_{1},
$$

where \boldsymbol{Q}_{k} are the Lanczos vectors associated with $\mathcal{K}_{k}(\boldsymbol{A}, \boldsymbol{b})$ and $\boldsymbol{T}_{k}=\boldsymbol{Q}_{k}^{T} \boldsymbol{A} \boldsymbol{Q}_{k}$.

- This choice of x_{k} minimizes $f(x)$ since

$$
\begin{aligned}
\min _{\boldsymbol{x} \in \mathcal{K}_{k}(\boldsymbol{A}, \boldsymbol{c})} f(\boldsymbol{x}) & =\min _{\boldsymbol{y} \in \mathbb{R}^{k}} f\left(\boldsymbol{Q}_{k} \boldsymbol{y}\right) \\
& =\min _{\boldsymbol{y} \in \mathbb{R}^{k}} \boldsymbol{y}^{T} \boldsymbol{Q}_{k}^{T} \boldsymbol{A} \boldsymbol{Q}_{k} \boldsymbol{y}-\boldsymbol{b}^{T} \boldsymbol{Q}_{k} \boldsymbol{y} \\
& =\min _{\boldsymbol{y} \in \mathbb{R}^{k}} \boldsymbol{y}^{T} \boldsymbol{T}_{k} \boldsymbol{y}-\|\boldsymbol{b}\|_{2} \boldsymbol{e}_{1}^{T} \boldsymbol{y}
\end{aligned}
$$

is minimized by $\boldsymbol{y}=\|\boldsymbol{b}\|_{2} \boldsymbol{T}_{k}^{-1} \boldsymbol{e}_{1}$.

- Since \boldsymbol{T}_{k} differs from \boldsymbol{T}_{k-1} only in addition of a single row and column, by Sherman-Morrison-Woodbury, efficient updates exist to solve for each \boldsymbol{y}.

Newton's Method

- Newton's method in n dimensions is given by finding minima of n-dimensional quadratic approximation:

$$
f\left(\boldsymbol{x}_{k}+\boldsymbol{s}\right) \approx \hat{f}(\boldsymbol{s})=f\left(\boldsymbol{x}_{k}\right)+\boldsymbol{s}^{T} \nabla f\left(\boldsymbol{x}_{k}\right)+\frac{1}{2} s^{T} \boldsymbol{H}_{f}\left(\boldsymbol{x}_{k}\right) \boldsymbol{s} .
$$

The existence of second derivatives of f at $\boldsymbol{x}_{k}\left(\boldsymbol{H}_{f}\left(\boldsymbol{x}_{k}\right)\right)$ is needed. The minima of this function can be determined by identifying critical points

$$
\mathbf{0}=\nabla \hat{f}(\boldsymbol{s})=\nabla f\left(\boldsymbol{x}_{k}\right)+\boldsymbol{H}_{f}\left(\boldsymbol{x}_{k}\right) \boldsymbol{s},
$$

thus to determine s we solve the linear system,

$$
\boldsymbol{H}_{f}\left(\boldsymbol{x}_{k}\right) \boldsymbol{s}=-\nabla f\left(\boldsymbol{x}_{k}\right) .
$$

Assuming invertibility of the Hessian, Newton's method iteration is

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\underbrace{\boldsymbol{H}_{f}\left(\boldsymbol{x}_{k}\right)^{-1} \nabla f\left(\boldsymbol{x}_{k}\right)}_{\boldsymbol{s}_{k}} .
$$

Quadratic convergence follows by equivalence to Newton's method for solving nonlinear system of optimality equations $\nabla f(\boldsymbol{x})=\mathbf{0}$.

Quasi-Newton Methods

- Quasi-Newton methods compute approximations to the Hessian at each step:

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha_{k} \boldsymbol{B}_{k}^{-1} \nabla f\left(\boldsymbol{x}_{k}\right)
$$

where α_{k} is a line search parameter. Quasi-Newton methods can be more robust than Newton's method, as the Newton's method step can lead to a direction in which the objective function is strictly increasing.

- The BFGS method is a secant update method, similar to Broyden's method:
- At each iteration, perform a rank-2 update to \boldsymbol{B}_{k} using $s_{k}=\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}$ and $\boldsymbol{y}_{\boldsymbol{k}}=\nabla f\left(\boldsymbol{x}_{k+1}\right)-\nabla f\left(\boldsymbol{x}_{k}\right):$

$$
\boldsymbol{B}_{k+1}=\boldsymbol{B}_{k}+\frac{\boldsymbol{y}_{k} \boldsymbol{y}_{k}^{T}}{\boldsymbol{y}_{k}^{T} \boldsymbol{s}_{k}}-\frac{\boldsymbol{B}_{k} \boldsymbol{s}_{k} \boldsymbol{s}_{k}^{T} \boldsymbol{B}_{k}}{\boldsymbol{s}_{k}^{T} \boldsymbol{B}_{k} \boldsymbol{s}_{k}}
$$

- Can update inverse with $O\left(n^{2}\right)$ work, but its more stable and efficient to update a symmetric indefinite factorization.
- The BFGS method also preserves symmetry of the Hessian approximation.

Nonlinear Least Squares

- An important special case of multidimensional optimization is nonlinear least squares, the problem of fitting a nonlinear function $f_{\boldsymbol{x}}(t)$ so that $f_{\boldsymbol{x}}\left(t_{i}\right) \approx y_{i}$: For example, consider fitting $f_{\left[x_{1}, x_{2}\right]}(t)=x_{1} \sin \left(x_{2} t\right)$ so that

$$
\left[\begin{array}{l}
f_{\left[x_{1}, x_{2}\right]}(1.5) \\
f_{\left[x_{1}, x_{2}\right]}(1.9) \\
f_{\left[x_{1}, x_{2}\right]}(3.2)
\end{array}\right] \approx\left[\begin{array}{c}
-1.2 \\
4.5 \\
7.3
\end{array}\right]
$$

- We can cast nonlinear least squares as an optimization problem and solve it by Newton's method:
Define residual vector function $\boldsymbol{r}(\boldsymbol{x})$ so that $r_{i}(\boldsymbol{x})=y_{i}-f_{\boldsymbol{x}}\left(t_{i}\right)$ and minimize

$$
\phi(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x})\|_{2}^{2}=\frac{1}{2} \boldsymbol{r}(\boldsymbol{x})^{T} \boldsymbol{r}(\boldsymbol{x}) .
$$

Now the gradient is $\nabla \phi(\boldsymbol{x})=\boldsymbol{J}_{\boldsymbol{r}}^{T}(\boldsymbol{x}) \boldsymbol{r}(\boldsymbol{x})$ and the Hessian is

$$
\boldsymbol{H}_{\phi}(\boldsymbol{x})=\boldsymbol{J}_{\boldsymbol{r}}^{T}(\boldsymbol{x}) \boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x})+\sum_{i=1}^{m} r_{i}(\boldsymbol{x}) \boldsymbol{H}_{r_{i}}(\boldsymbol{x})
$$

Gauss-Newton Method

- The Hessian for nonlinear least squares problems has the form:

$$
\boldsymbol{H}_{\phi}(\boldsymbol{x})=\boldsymbol{J}_{\boldsymbol{r}}^{T}(\boldsymbol{x}) \boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x})+\sum_{i=1}^{m} r_{i}(\boldsymbol{x}) \boldsymbol{H}_{r_{i}}(\boldsymbol{x}) .
$$

The second term is small when the residual function $\boldsymbol{r}(\boldsymbol{x})$ is small, so approximate

$$
\boldsymbol{H}_{\phi}(\boldsymbol{x}) \approx \hat{\boldsymbol{H}}_{\phi}(\boldsymbol{x})=\boldsymbol{J}_{\boldsymbol{r}}^{T}(\boldsymbol{x}) \boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x})
$$

- The Gauss-Newton method is Newton iteration with an approximate Hessian:

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\hat{\boldsymbol{H}}_{\phi}\left(\boldsymbol{x}_{k}\right)^{-1} \nabla \phi\left(\boldsymbol{x}_{k}\right)=\boldsymbol{x}_{k}-\left(\boldsymbol{J}_{\boldsymbol{r}}^{T}\left(\boldsymbol{x}_{k}\right) \boldsymbol{J}_{\boldsymbol{r}}\left(\boldsymbol{x}_{k}\right)\right)^{-1} \boldsymbol{J}_{\boldsymbol{r}}^{T}\left(\boldsymbol{x}_{k}\right) \boldsymbol{r}\left(\boldsymbol{x}_{k}\right) .
$$

- recognizing the normal equations, we interpret the Gauss-Newton method as solving linear least squares problems $\boldsymbol{J}_{\boldsymbol{r}}\left(\boldsymbol{x}_{k}\right) \boldsymbol{s}_{k} \cong \boldsymbol{r}\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\boldsymbol{s}_{k}$.
- Gauss-Newton can also be derived by taking a linear approximation of f at \boldsymbol{x}_{k}.
- Tykhonov regularization is often incorporated, yielding Levenberg-Marquardt.

Constrained Optimization Problems

- We now return to the general case of constrained optimization problems:

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x}) \text { subject to } \boldsymbol{g}(\boldsymbol{x})=\mathbf{0} \quad \text { and } \quad \boldsymbol{h}(\boldsymbol{x}) \leq \mathbf{0}
$$

When f is quadratic, while h, g is linear, this is a quadratic optimization problem.

- Generally, we will seek to reduce constrained optimization problems to a series of unconstrained optimization problems:
- sequential quadratic programming: solve an unconstrained quadratic optimization problem at each iteration,
- penalty-based methods: solve a series of more complicated (more ill-conditioned) unconstrained optimization problems,
- active set methods: define sequence of optimization problems with inequality constrains ignored or treated as equality constraints.

Sequential Quadratic Programming

- Sequential quadratic programming (SQP) corresponds to using Newton's method to solve the equality constrained optimality conditions, by finding critical points of the Lagrangian function $\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{T} \boldsymbol{g}(\boldsymbol{x})$,

$$
\nabla \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})=\left[\begin{array}{c}
\nabla f(\boldsymbol{x})+\boldsymbol{J}_{\boldsymbol{g}}^{T}(\boldsymbol{x}) \boldsymbol{\lambda} \\
\boldsymbol{g}(\boldsymbol{x})
\end{array}\right]=\mathbf{0}
$$

- At each iteration, SQP computes $\left[\begin{array}{l}\boldsymbol{x}_{k+1} \\ \boldsymbol{\lambda}_{k+1}\end{array}\right]=\left[\begin{array}{l}\boldsymbol{x}_{k} \\ \boldsymbol{\lambda}_{k}\end{array}\right]+\left[\begin{array}{l}\boldsymbol{s}_{k} \\ \boldsymbol{\delta}_{k}\end{array}\right]$ by solving

$$
\boldsymbol{H}_{\mathcal{L}}\left(\boldsymbol{x}_{k}, \boldsymbol{\lambda}_{k}\right)\left[\begin{array}{l}
\boldsymbol{s}_{k} \\
\boldsymbol{\delta}_{k}
\end{array}\right]=-\nabla \mathcal{L}\left(\boldsymbol{x}_{k}, \boldsymbol{\lambda}_{k}\right)
$$

where

$$
\boldsymbol{H}_{\mathcal{L}}\left(\boldsymbol{x}_{k}, \boldsymbol{\lambda}_{k}\right)=\left[\begin{array}{cc}
\boldsymbol{B}\left(\boldsymbol{x}_{k}, \boldsymbol{\lambda}_{k}\right) & \boldsymbol{J}_{\boldsymbol{g}}^{T}\left(\boldsymbol{x}_{k}\right) \\
\boldsymbol{J}_{\boldsymbol{g}}\left(\boldsymbol{x}_{k}\right) & \mathbf{0}
\end{array}\right] \quad \text { with } \quad \boldsymbol{B}(\boldsymbol{x}, \boldsymbol{\lambda})=\boldsymbol{H}_{f}(\boldsymbol{x})+\sum_{i=1}^{m} \lambda_{i} \boldsymbol{H}_{g_{i}}(\boldsymbol{x})
$$

Inequality Constrained Optimality Conditions

- The Karush-Kuhn-Tucker (KKT) conditions are necessary coniditions for local minima of a problem with equality and inequality constraints, they include
- First, any minima \boldsymbol{x}^{*} must be a feasible point, so $\boldsymbol{g}\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$ and $\boldsymbol{h}\left(\boldsymbol{x}^{*}\right) \leq \mathbf{0}$.
- We say the ith inequality constraint is active at a minima \boldsymbol{x}^{*} if $h_{i}\left(\boldsymbol{x}^{*}\right)=0$.
- The collection of equality constraints and active inequality constraints $\boldsymbol{q}(\boldsymbol{x})=\left[\begin{array}{ll}\boldsymbol{g}(\boldsymbol{x}) & \boldsymbol{h}(\boldsymbol{x})\end{array}\right]^{T}$, satisfies $\boldsymbol{q}\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$.
- The negative gradient of the objective function at the minima must be in the row span of the Jacobian of this collection of constraints:

$$
-\nabla f\left(\boldsymbol{x}^{*}\right)=\boldsymbol{J}_{\boldsymbol{q}}^{T}\left(\boldsymbol{x}^{*}\right) \boldsymbol{\lambda}^{*} \quad \text { where } \boldsymbol{\lambda}^{*}=\left[\begin{array}{ll}
\boldsymbol{\lambda}_{1} & \boldsymbol{\lambda}_{2}
\end{array}\right]^{T} \text { and } \boldsymbol{\lambda}_{2} \leq 0 .
$$

- To use SQP for an inequality constrained optimization problem, consider at each iteration an active set of constraints:
- Active set \boldsymbol{q}_{k} contains all equality constraints and all inequality constraints that are exactly satisfied or violated at x_{k}.
- Active set method: perform one step of Newton's method to minimize $\mathcal{L}_{k}(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{T} \boldsymbol{q}_{k}(\boldsymbol{x})$ with respect to \boldsymbol{x} and $\boldsymbol{\lambda}$, then update active set.

Penalty Functions

- Alternatively, we can reduce constrained optimization problems to unconstrained ones by modifying the objective function. Penalty functions are effective for equality constraints $\boldsymbol{g}(\boldsymbol{x})=0$:

$$
\phi_{\rho}(\boldsymbol{x})=f(\boldsymbol{x})+\frac{1}{2} \rho \boldsymbol{g}(\boldsymbol{x})^{T} \boldsymbol{g}(\boldsymbol{x})
$$

is a simple merit function, and its solutions $\boldsymbol{x}_{\rho}^{*}$ satisfy $\lim _{\rho \rightarrow \infty} \boldsymbol{x}_{\rho}^{*}=\boldsymbol{x}^{*}$. However, the Hessian of ϕ_{ρ} becomes increasingly ill-conditioned for large ρ, leading to slow convergence.

- The augmented Lagrangian function provides a more numerically robust approach:

$$
\mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{T} \boldsymbol{g}(\boldsymbol{x})+\frac{1}{2} \rho \boldsymbol{g}(\boldsymbol{x})^{T} \boldsymbol{g}(\boldsymbol{x})
$$

Barrier Functions

- Barrier functions (interior point methods) provide an effective way of working with inequality constraints $\boldsymbol{h}(\boldsymbol{x}) \leq \mathbf{0}$:
- Provided we start at a feasible point, modify objective function so it diverges to ∞ when approaching border of feasible region.
- Inverse barrier function:

$$
\phi_{\mu}(\boldsymbol{x})=f(\boldsymbol{x})-\mu \sum_{i=1}^{m} \frac{1}{h_{i}(\boldsymbol{x})} .
$$

- Logarithmic barrier function:

$$
\phi_{\mu}(\boldsymbol{x})=f(\boldsymbol{x})-\mu \sum_{i=1}^{m} \log \left(-h_{i}(\boldsymbol{x})\right) .
$$

- When using sufficiently small steps, we have $\boldsymbol{x}_{\mu}^{*} \rightarrow \boldsymbol{x}^{*}$ as $\mu \rightarrow 0$.
- Barrier and penality methods solve a sequence of unconstrained problems (for changing ρ or μ), requiring multiple executions of e.g., Newton's method.
- Primal-dual interior point methods can also be derived from the KKT conditions.

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

