CS 450: Numerical Analysis\footnote{These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).}

Numerical Optimization

University of Illinois at Urbana-Champaign
Our focus will be on \textit{continuous} rather than \textit{combinatorial} optimization:

\[
\min_x f(x) \quad \text{subject to} \quad g(x) = 0 \quad \text{and} \quad h(x) \leq 0
\]

where $f \in \mathbb{R}^n \to \mathbb{R}$ is assumed to be differentiable.

- Without the constraints, i.e. with $g = 0$ and $h = 0$, the problem is \textit{unconstrained}.
- With constraints, the \textit{constrained} optimization problem restricts the solution to elements of the feasible region: \{\(x : g(x) = 0 \text{ and } h(x) \leq 0\}\}.

We consider linear, quadratic, and general nonlinear optimization problems:

- If f, g, and h are affine (linear and constant terms only) then we have \textit{linear programming} problem.
- If f is quadratic while g and h are linear, then we have a \textit{quadratic programming} problem, for which specialized methods exist.
- Generally, we have a \textit{nonlinear programming} problem.
Local Minima and Convexity

Without knowledge of the analytical form of the function, numerical optimization methods at best achieve convergence to a \textit{local} rather than \textit{global} minimum:

\textit{If the input domain is infinite or the global minimum is in an infinitesimally narrow trough, it may be impossible to find the global minimum in finite time.}

A set is \textit{convex} if it includes all points on any line, while a function is convex if it is greater or equal to points on any of its tangent lines:

\begin{itemize}
 \item Set S is convex if
 \begin{equation}
 \forall x, y \in S, \quad \alpha \in [0, 1], \quad \alpha x + (1 - \alpha) y \in S.
 \end{equation}
 \item Function f is convex if
 \begin{equation}
 f(\alpha x + (1 - \alpha) y) \leq \alpha f(x) + (1 - \alpha) f(y).
 \end{equation}
 \item A twice-differentiable convex function always has nonnegative second derivative, hence a local minima of a convex function is also a global minima.
\end{itemize}
Existence of Local Minima

- **Level sets** are all points for which f has a given value, **sublevel sets** are all points for which the value of f is less than a given value:

 \[L(z) = \{ \mathbf{x} : f(\mathbf{x}) = z \} \]
 \[S(z) = \{ \mathbf{x} : f(\mathbf{x}) \leq z \} \]

- If there exists a closed and bounded sublevel set in the domain of feasible points, then f has has a global minimum in that set:

 Need a value z such that $S(z)$ has finite size, is contiguous, and includes its own boundary.
Optimality Conditions

- If x is an interior point in the feasible domain and is a local minima,

 \[
 \nabla f(x) = \left[\frac{df}{dx_1}(x) \cdots \frac{df}{dx_n}(x) \right]^T = 0:
 \]

 - If $\frac{df}{dx_i}(x) < 0$ an infinitesimal increment to x_i improves the solution,
 - if $\frac{df}{dx_i}(x) > 0$ an infinitesimal decrement to x_i improves the solution.

- Critical points x satisfy $\nabla f(x) = 0$ and can be minima, maxima, or saddle points:

 For scalar function f, can distinguish the three by considering sign of $f''(x)$.
Hessian Matrix

- To ascertain whether a critical point x, for which $\nabla f(x) = 0$, is a local minima, consider the *Hessian matrix*:

$$
H_f(x) = J_{\nabla f}(x) = \begin{bmatrix}
\frac{d^2 f}{dx_1^2}(x) & \cdots & \frac{d^2 f}{dx_1 dx_n}(x) \\
\vdots & \ddots & \vdots \\
\frac{d^2 f}{dx_n dx_1}(x) & \cdots & \frac{d^2 f}{dx_n^2}(x)
\end{bmatrix}
$$

The Hessian matrix is always symmetric if f is twice differentiable.

- If x^* is a minima of f, then $H_f(x^*)$ is positive semi-definite:

If $H_f(x^)$ is not positive semi-definite, there exists normalized vector s such that $s^T H_f(x^*) s < 0$, which means that for a sufficiently small α, $\hat{x} = x^* + \alpha s$ will have be a better solution, $f(\hat{x}) < f(x^*)$, since the gradient is zero at x^* and decreases for an infinitesimal perturbation of x^* in the direction s.**
Optimality on Feasible Region Border

Given an equality constraint $g(x) = 0$, it is no longer necessarily the case that $\nabla f(x^*) = 0$. Instead, it may be that directions in which the gradient decreases lead to points outside the feasible region:

$$\exists \lambda \in \mathbb{R}^n, \quad -\nabla f(x^*) = J^T g(x^*) \lambda$$

λ are referred to as the Lagrange multipliers.

This necessary condition implies that at x^*, the direction in which f decreases is in the span of directions moving along which would exit the feasible region.

Such constrained minima are critical points of the Lagrangian function $L(x, \lambda) = f(x) + \lambda^T g(x)$, so they satisfy:

$$\nabla L(x^*, \lambda) = \begin{bmatrix} \nabla f(x^*) + J^T g(x^*) \lambda \\ g(x^*) \end{bmatrix} = 0$$

Seeking λ^* to obtain a function $k(x) = L(x, \lambda^*)$ with maximum global minimum is the dual optimization problem.
Sensitivity and Conditioning

The condition number of solving a nonlinear equations is \(1/f'(x^*)\), however for a minimizer \(x^*\), we have \(f'(x^*) = 0\), so conditioning of optimization is inherently bad:

Consider perturbation of function values for a function that changes slowly near the minimum.

To analyze worst case error, consider how far we have to move from a root \(x^*\) to perturb the function value by \(\epsilon\):

\[
\epsilon = f(x^* + h) - f(x^*) = f'(x^*)h + \frac{1}{2} f''(x^*)h^2 + O(h^3)
\]

so if the function value changes by a infinitesimal perturbation \(\epsilon\), we have the error to the solution \(h\), satisfies \(h = O(\sqrt{\epsilon / f''(x^*)})\)

a perturbation to the function value in the \(k\)th significant digit, could result in the solution changing in the \(k / 2\)th significant digit.
Golden Section Search

- Given bracket \([a, b]\) with a unique local minimum (\(f\) is unimodal on the interval), golden section search considers points \(f(x_1), f(x_2)\), \(a < x_1 < x_2 < b\) and discards subinterval \([a, x_1]\) or \([x_2, b]\):
 - If a function is strictly convex and bounded on \([a, b]\), it is unimodal on that interval, but a unimodal function may be non-convex.
 - Because the function is unimodal, if we have \(f(x_1) < f(x_2)\) then the unique local minima \(f\) in \([a, b]\) has to be in the interval \([a, x_2]\).
 - So, if \(f(x_1) < f(x_2)\) can restrict search to \([a, x_2]\) and otherwise to \([x_1, b]\).

- Since one point remains in the interval, golden section search selects \(x_1\) and \(x_2\) so one of them can be effectively reused in the next iteration:
 - For example, when \(f(x_1) > f(x_2)\), \(x_2\) is inside \([x_1, b]\) and we would like \(x_2\) to serve as the \(x_1\) for the next iteration.
 - To ensure this, and minimize resulting interval length, we pick \(x_2 = a + (b - a)(\sqrt{5} - 1)/2\) and \(x_1 = b - (b - a)(\sqrt{5} - 1)/2\).

- Consequently, the convergence of golden section search is linear with constant \((\sqrt{5} - 1)/2\) per function evaluation.
Newton’s Method for Optimization

- At each iteration, approximate function by quadratic and find minimum of quadratic function:

 \(\hat{f} \) as first three terms of Taylor expansion of \(f \) about \(x_k \), matching value and first two derivatives of \(f \) at \(x_k \).

- The new approximate guess will be given by \(x_{k+1} - x_k = -f'(x_k)/f''(x_k) \):

\[
f(x) \approx \hat{f}(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2
\]

- since the function is quadratic, we can find its unique critical point to find its minima,

\[
\hat{f}'(x_{k+1}) = f'(x_k) + f''(x_k)(x_{k+1} - x_k) = 0.
\]
Successive Parabolic Interpolation

- Interpolate f with a quadratic function at each step and find its minima:
 Given three points, there is a unique quadratic function interpolating them.

- The convergence rate of the resulting method is roughly 1.324
 By comparison, the convergence of golden section search is linear with a constant of 0.618, while Newton’s method converges quadratically.
Safeguarded 1D Optimization

- Safeguarding can be done by bracketing via golden section search:
 Combination of Newton and golden section search

 - achieves quadratic convergence locally,
 - is guaranteed convergence provided unimodality of function.

- Backtracking and step-size control:

 - *Can take smaller step* $x_{k+1} = x_k - \alpha_k f'(x_k) / f''(x_k)$ for some $\alpha_k < 1$.
 - *Can backtrack and choose smaller* α_k if $f(x_{k+1}) > f(x_k)$.
General Multidimensional Optimization

- Direct search methods by simplex (Nelder-Mead):
 - form a \(n+1 \)-point polytope in \(n \)-dimensional space and adjust worst point (highest function value) by moving it along a line passing through the centroid of the remaining points,
 - relies on function evaluations only, but can converge to nonstationary points even for convex 2D functions.

- Steepest descent: find the minimizer in the direction of the negative gradient:

\[
x_{k+1} = x_k - \alpha_k \nabla f(x_k)
\]

such that \(f(x_{k+1}) = \min_{\alpha_k} f(x_k - \alpha_k \nabla f(x_k)) \), i.e. perform a line search (solve 1D optimization problem) in the direction of the negative gradient.

Demo: Nelder-Mead Method
Convergence of Steepest Descent

▶ Steepest descent converges linearly with a constant that can be arbitrarily close to 1:
 ▶ *Convergence is slow locally, in the worst case, and generally depends on the Hessian near the minima.*
 ▶ *If the gradient is changing quickly, it serves as good approximation only within a small local neighborhood, so the line search may result in arbitrarily small steps.*

▶ Given quadratic optimization problem \(f(x) = \frac{1}{2}x^T Ax + c^T x \) where \(A \) is symmetric positive definite, consider the error \(e_k = x_k - x^* \):
 ▶ *We can quantify the error using the norm, \(||x||_A = x^T Ax \), as*
 \[
 \lim_{k \to \infty} \frac{||e_{k+1}||_A}{||e_k||_A} = \frac{\sigma_{\text{max}}(A) - \sigma_{\text{min}}(A)}{\sigma_{\text{max}}(A) + \sigma_{\text{min}}(A)}
 \]
 ▶ *When sufficiently close to a local minima, general nonlinear optimization problems are described by such an SPD quadratic problem.*
 ▶ *Convergence rate depends on the conditioning of \(A \), since*
 \[
 \frac{\sigma_{\text{max}}(A) - \sigma_{\text{min}}(A)}{\sigma_{\text{max}}(A) + \sigma_{\text{min}}(A)} = \frac{\kappa(A) - 1}{\kappa(A) + 1}.
 \]
Gradient Methods with Extrapolation

- We can improve the constant in the linear rate of convergence of steepest descent by leveraging *extrapolation methods*, which consider two previous iterates (maintain *momentum* in the direction $x_k - x_{k-1}$):

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \beta_k (x_k - x_{k-1})$$

- The *heavy ball method*, which uses constant $\alpha_k = \alpha$ and $\beta_k = \beta$, achieves better convergence than steepest descent:

 For a quadratic program defined by A, these exist α and β, such that the convergence rate of the heavy ball method is

 $$\lim_{k \to \infty} \frac{||e_{k+1}||_A}{||e_k||_A} = \frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}$$

 Nesterov’s gradient optimization method is another instance of an extrapolation method that provides further improved optimality guarantees.
The conjugate gradient method is capable of making the optimal choice (for quadratic programs) of α_k and β_k at each iteration:

$$(\alpha_k, \beta_k) = \arg\min_{\alpha_k, \beta_k} f(x_k - \alpha_k \nabla f(x_k) + \beta_k (x_k - x_{k-1}))$$

For SPD quadratic programming problems, conjugate gradient is an optimal 1st order method, converging in $n - 1$ iterations.

It implicitly computes Lanczos iteration, searching along A-orthogonal directions at each step.

Parallel tangents implementation of the method in a general nonlinear setting proceeds as follows:

1. Perform a step of steepest descent to generate \hat{x}_k from x_k.
2. Generate x_{k+1} by minimizing over the line passing through x_{k-1} and \hat{x}_k.
Various formulations of conjugate gradient are possible for nonlinear objective functions, which differ in how they compute β below.

Fletcher-Reeves is among the most common, computes the following at each iteration:

1. Perform 1D minimization for α in $f(x_k + \alpha s_k)$
2. $x_{k+1} = x_k + \alpha s_k$
3. Compute gradient $g_{k+1} = \nabla f(x_{k+1})$
4. Compute $\beta = g_{k+1}^T g_{k+1}/(g_k^T g_{k+1})$
5. $s_{k+1} = -g_{k+1} + \beta s_k$
Conjugate Gradient is an optimal iterative method for quadratic optimization,

\[f(x) = \frac{1}{2} x^T A x - b^T x \]

For such problems, it can be expressed in an efficient and succinct form, computing at each iteration

1. \(\alpha = r_k^T r_k / s_k^T A s_k \)
2. \(x_{k+1} = x_k + \alpha s_k \)
3. Compute gradient \(r_{k+1} = r_k - \alpha_k A s_k \)
4. Compute \(\beta = r_{k+1}^T r_{k+1} / (r_k^T r_k) \)
5. \(s_{k+1} = r_{k+1} + \beta s_k \)

Note that for quadratic optimization, the negative gradient \(-g\) corresponds to the residual \(r = b - A x \)
Krylov Optimization

- Conjugate Gradient finds the minimizer of \(f(x) = \frac{1}{2} x^T A x - b^T x \) within the Krylov subspace of \(A \):
 - It constructs Krylov subspace \(K_k(A, b) = \text{span}(b, Ab, \ldots, A^{r-1}b) \).
 - At the \(k \)th step conjugate gradient yields iterate
 \[
 x_k = \|b\|_2 Q_k T_k^{-1} e_1,
 \]
 where \(Q_k \) are the Lanczos vectors associated with \(K_k(A, b) \) and \(T_k = Q_k^T A Q_k \).
 - This choice of \(x_k \) minimizes \(f(x) \) since
 \[
 \min_{x \in K_k(A, c)} f(x) = \min_{y \in \mathbb{R}^k} f(Q_k y) = \min_{y \in \mathbb{R}^k} y^T Q_k^T A Q_k y - b^T Q_k y
 = \min_{y \in \mathbb{R}^k} y^T T_k y - \|b\|_2 e_1^T y
 \]
 is minimized by \(y = \|b\|_2 T_k^{-1} e_1 \).
 - Since \(T_k \) differs from \(T_{k-1} \) only in addition of a single row and column, by Sherman-Morrison-Woodbury, efficient updates exist to solve for each \(y \).
Newton’s Method

Newton’s method in \(n \) dimensions is given by finding minima of \(n \)-dimensional quadratic approximation:

\[
f(x_k + s) \approx \hat{f}(s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T H_f(x_k) s.
\]

The existence of second derivatives of \(f \) at \(x_k \) (\(H_f(x_k) \)) is needed. The minima of this function can be determined by identifying critical points

\[0 = \nabla \hat{f}(s) = \nabla f(x_k) + H_f(x_k) s,
\]

thus to determine \(s \) we solve the linear system,

\[
H_f(x_k) s = -\nabla f(x_k).
\]

Assuming invertibility of the Hessian, Newton’s method iteration is

\[
x_{k+1} = x_k - H_f(x_k)^{-1} \nabla f(x_k) s_k.
\]

Quadratic convergence follows by equivalence to Newton’s method for solving nonlinear system of optimality equations \(\nabla f(x) = 0 \).
Quasi-Newton Methods

- Quasi-Newton methods compute approximations to the Hessian at each step:

\[x_{k+1} = x_k - \alpha_k B_k^{-1} \nabla f(x_k) \]

where \(\alpha_k \) is a line search parameter. Quasi-Newton methods can be more robust than Newton’s method, as the Newton’s method step can lead to a direction in which the objective function is strictly increasing.

- The BFGS method is a secant update method, similar to Broyden’s method:

 - At each iteration, perform a rank-2 update to \(B_k \) using \(s_k = x_{k+1} - x_k \) and \(y_k = \nabla f(x_{k+1}) - \nabla f(x_k) \):

\[B_{k+1} = B_k + \frac{y_k y_k^T}{y_k^T s_k} - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} \]

 - Can update inverse with \(O(n^2) \) work, but its more stable and efficient to update a symmetric indefinite factorization.

- The BFGS method also preserves symmetry of the Hessian approximation.
Nonlinear Least Squares

An important special case of multidimensional optimization is \textit{nonlinear least squares}, the problem of fitting a nonlinear function \(f_x(t) \) so that \(f_x(t_i) \approx y_i \):

For example, consider fitting \(f_{[x_1,x_2]}(t) = x_1 \sin(x_2 t) \) so that

\[
\begin{bmatrix}
 f_{[x_1,x_2]}(1.5) \\
 f_{[x_1,x_2]}(1.9) \\
 f_{[x_1,x_2]}(3.2)
\end{bmatrix} \approx \begin{bmatrix}
 -1.2 \\
 4.5 \\
 7.3
\end{bmatrix}.
\]

We can cast nonlinear least squares as an optimization problem and solve it by Newton’s method:

Define residual vector function \(r(x) \) so that \(r_i(x) = y_i - f_x(t_i) \) and minimize

\[
\phi(x) = \frac{1}{2} \| r(x) \|^2 = \frac{1}{2} r(x)^T r(x).
\]

Now the gradient is \(\nabla \phi(x) = J_r^T(x) r(x) \) and the Hessian is

\[
H_{\phi}(x) = J_r^T(x) J_r(x) + \sum_{i=1}^{m} r_i(x) H_{r_i}(x).
\]
Gauss-Newton Method

- The Hessian for nonlinear least squares problems has the form:

\[H_{\phi}(x) = J^T_r(x)J_r(x) + \sum_{i=1}^{m} r_i(x)H_{r_i}(x). \]

The second term is small when the residual function \(r(x) \) is small, so approximate

\[H_{\phi}(x) \approx \hat{H}_{\phi}(x) = J^T_r(x)J_r(x). \]

- The Gauss-Newton method is Newton iteration with an approximate Hessian:

\[x_{k+1} = x_k - \hat{H}_{\phi}(x_k)^{-1}\nabla \phi(x_k) = x_k - (J_r^T(x_k)J_r(x_k))^{-1}J_r^T(x_k)r(x_k). \]

- Recognizing the normal equations, we interpret the Gauss-Newton method as solving linear least squares problems \(J_r(x_k) s_k \approx r(x_k), x_{k+1} = x_k + s_k. \)
- Gauss-Newton can also be derived by taking a linear approximation of \(f \) at \(x_k. \)
- Tykhonov regularization is often incorporated, yielding Levenberg-Marquardt.
We now return to the general case of constrained optimization problems:

$$\min_x f(x) \quad \text{subject to} \quad g(x) = 0 \quad \text{and} \quad h(x) \leq 0$$

When f is quadratic, while h, g is linear, this is a quadratic optimization problem.

Generally, we will seek to reduce constrained optimization problems to a series of unconstrained optimization problems:

- **sequential quadratic programming**: solve an unconstrained quadratic optimization problem at each iteration,
- **penalty-based methods**: solve a series of more complicated (more ill-conditioned) unconstrained optimization problems,
- **active set methods**: define sequence of optimization problems with inequality constrains ignored or treated as equality constraints.
Sequential Quadratic Programming

- **Sequential quadratic programming** (SQP) corresponds to using Newton’s method to solve the equality constrained optimality conditions, by finding critical points of the Lagrangian function $\mathcal{L}(x, \lambda) = f(x) + \lambda^T g(x)$,

$$\nabla \mathcal{L}(x, \lambda) = \begin{bmatrix} \nabla f(x) + J_g(x)^T \lambda \\ g(x) \end{bmatrix} = 0$$

- At each iteration, SQP computes $[x_{k+1}, \lambda_{k+1}] = [x_k, \lambda_k] + [s_k, \delta_k]$ by solving

$$H_\mathcal{L}(x_k, \lambda_k) \begin{bmatrix} s_k \\ \delta_k \end{bmatrix} = -\nabla \mathcal{L}(x_k, \lambda_k)$$

where

$$H_\mathcal{L}(x_k, \lambda_k) = \begin{bmatrix} B(x_k, \lambda_k) & J_g(x_k)^T \\ J_g(x_k) & 0 \end{bmatrix} \quad \text{with} \quad B(x, \lambda) = H_f(x) + \sum_{i=1}^m \lambda_i H_{g_i}(x)$$
Inequality Constrained Optimality Conditions

- The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions for local minima of a problem with equality and inequality constraints, they include:
 - First, any minima x^* must be a feasible point, so $g(x^*) = 0$ and $h(x^*) \leq 0$.
 - We say the ith inequality constraint is active at a minima x^* if $h_i(x^*) = 0$.
 - The collection of equality constraints and active inequality constraints $q(x) = [g(x) \ h(x)]^T$, satisfies $q(x^*) = 0$.
 - The negative gradient of the objective function at the minima must be in the row span of the Jacobian of this collection of constraints:
 $$-\nabla f(x^*) = J^T_q(x^*)\lambda^* \quad \text{where} \quad \lambda^* = [\lambda_1 \ \lambda_2]^T \quad \text{and} \quad \lambda_2 \leq 0.$$

- To use SQP for an inequality constrained optimization problem, consider at each iteration an active set of constraints:
 - Active set q_k contains all equality constraints and all inequality constraints that are exactly satisfied or violated at x_k.
 - Active set method: perform one step of Newton’s method to minimize $L_k(x, \lambda) = f(x) + \lambda^T q_k(x)$ with respect to x and λ, then update active set.
Penalty Functions

Alternatively, we can reduce constrained optimization problems to unconstrained ones by modifying the objective function. **Penalty functions** are effective for equality constraints \(g(x) = 0 \):

\[
\phi_\rho(x) = f(x) + \frac{1}{2} \rho g(x)^T g(x)
\]

is a simple merit function, and its solutions \(x_\rho^* \) satisfy \(\lim_{\rho \to \infty} x_\rho^* = x^* \). However, the Hessian of \(\phi_\rho \) becomes increasingly ill-conditioned for large \(\rho \), leading to slow convergence.

The augmented Lagrangian function provides a more numerically robust approach:

\[
\mathcal{L}_\rho(x, \lambda) = f(x) + \lambda^T g(x) + \frac{1}{2} \rho g(x)^T g(x)
\]
Barrier Functions

- **Barrier functions** (*interior point methods*) provide an effective way of working with inequality constraints $h(x) \leq 0$:
 - Provided we start at a feasible point, modify objective function so it diverges to ∞ when approaching border of feasible region.
 - **Inverse barrier function**:
 $$\phi_\mu(x) = f(x) - \mu \sum_{i=1}^{m} \frac{1}{h_i(x)}.$$
 - **Logarithmic barrier function**:
 $$\phi_\mu(x) = f(x) - \mu \sum_{i=1}^{m} \log(-h_i(x)).$$
 - When using sufficiently small steps, we have $x_\mu^* \to x^*$ as $\mu \to 0$.
 - Barrier and penalty methods solve a sequence of unconstrained problems (for changing ρ or μ), requiring multiple executions of e.g., Newton’s method.
 - Primal-dual interior point methods can also be derived from the KKT conditions.