CS 450: Numerical Anlaysis ${ }^{1}$
 Interpolation

University of Illinois at Urbana-Champaign

[^0]
Interpolation

- Given $\left(t_{1}, y_{1}\right), \ldots,\left(t_{m}, y_{m}\right)$ with nodes $t_{1}<\cdots<t_{m}$ an interpolant f satisfies:
- Interpolant is usually constructed as linear combinations of basis functions $\left\{\phi_{j}\right\}_{j=1}^{n}=\phi_{1}, \ldots, \phi_{n}$ so $f(t)=\sum_{j} x_{j} \phi_{j}(t)$.

Polynomial Interpolation

- The choice of monomials as basis functions, $\phi_{j}(t)=t^{j-1}$ yields a degree $n-1$ polynomial interpolant:
- Polynomial interpolants are easy to evaluate and do calculus on:

Conditioning of Interpolation

- Conditioning of interpolation matrix \boldsymbol{A} depends on basis functions and coordinates t_{1}, \ldots, t_{m} :
- The Vandermonde matrix tends to be ill-conditioned:

Lagrange Basis

- n-points fully define the unique $(n-1)$-degree polynomial interpolant in the Lagrange basis:
- Lagrange polynomials yield an ideal Vandermonde system, but the basis functions are hard to evaluate and do calculus on:

Newton Basis

- The Newton basis functions $\phi_{j}(t)=\prod_{k=1}^{j-1}\left(t-t_{k}\right)$ with $\phi_{1}(t)=1$ seek the best of monomial and Lagrange bases:
- The Newton basis yields a triangular Vandermonde system:

Orthogonal Polynomials

- Recall that good conditioning for interpolation is achieved by constructing a well-conditioned Vandermonde matrix, which is the case when the columns (corresponding to each basis function) are orthonormal. To construct robust basis sets, we introduce a notion of orthonormal functions:

Legendre Polynomials

- The Gram-Schmidt orthogonalization procedure can be used to obtain an orthonormal basis with the same span as any given arbitrary basis:
- The Legendre polynomials are obtained by Gram-Schmidt on the monomial basis, with $w(t)=\left\{\begin{array}{l}1:-1 \leq t \leq 1 \\ 0: \text { otherwise }\end{array}\right.$ and normalized so $\hat{\phi}_{i}(1)=1$.

Chebyshev Basis

- Chebyshev polynomials $\phi_{j}(t)=\cos ((j-1) \arccos (t))$ and Chebyshev nodes $t_{i}=\cos \left(\frac{2 i-1}{2 n} \pi\right)$ provide a way to pick nodes t_{1}, \ldots, t_{n} along with a basis, to yield perfect conditioning:

Chebyshev Nodes Intuition

- Note equi-oscillation property, successive extrema of $T_{k}=\phi_{k}$ have the same magnitude but opposite sign.
- Set of k Chebyshev nodes of are given by zeros of T_{k+1} and are abscissas of points uniformly spaced on the unit circle.

Chebyshev Basis: Why Polynomial?

- Why is $\phi_{j}(t)=\cos ((j-1) \arccos (t))$ a polynomial?

Error in Interpolation

Given degree n polynomial interpolant \tilde{f} of f the error $E(t)=f(t)-\tilde{f}(t)$ has n zeros t_{1}, \ldots, t_{n}. By induction on n, we show that there exist $y_{1}, \ldots, y_{n} \in\left[t_{1}, t_{n}\right]$ so

Interpolation Error Bounds

- Consequently, polynomial interpolation satisfies the following error bound:
- Letting $h=t_{n}-t_{1}$ (often also achieve same for h as the node-spacing $t_{i+1}-t_{i}$), we obtain

Piecewise Polynomial Interpolation

- The k th piece of the interpolant is typically chosen as polynomial on $\left[t_{i}, t_{i+1}\right]$
- Hermite interpolation ensures consecutive interpolant pieces have same derivative at each knot t_{i} :

Spline Interpolation

- A spline is a $(k-1)$-time differentiable piecewise polynomial of degree k :
- The resulting interpolant coefficients are again determined by an appropriate generalized Vandermonde system:

B-Splines

B-splines provide an effective way of constructing splines from a basis:

- The basis functions can be defined recursively with respect to degree:

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

