CS 450: Numerical Anlaysis¹ Interpolation

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Interpolation

• Given $(t_1, y_1), \ldots, (t_m, y_m)$ with *nodes* $t_1 < \cdots < t_m$ an *interpolant* f satisfies:

▶ Interpolant is usually constructed as linear combinations of *basis functions* $\{\phi_j\}_{j=1}^n = \phi_1, \dots, \phi_n \text{ so } f(t) = \sum_j x_j \phi_j(t).$

Polynomial Interpolation

• The choice of *monomials* as basis functions, $\phi_j(t) = t^{j-1}$ yields a degree n-1 polynomial interpolant:

Polynomial interpolants are easy to evaluate and do calculus on:

Demo: Monomial interpolation

Conditioning of Interpolation

Conditioning of interpolation matrix A depends on basis functions and coordinates t₁,...,t_m:

> The Vandermonde matrix tends to be ill-conditioned:

Lagrange Basis

▶ *n*-points fully define the unique (*n* − 1)-degree polynomial interpolant in the Lagrange basis:

Lagrange polynomials yield an ideal Vandermonde system, but the basis functions are hard to evaluate and do calculus on:

Newton Basis

► The *Newton basis* functions $\phi_j(t) = \prod_{k=1}^{j-1} (t - t_k)$ with $\phi_1(t) = 1$ seek the best of monomial and Lagrange bases:

The Newton basis yields a triangular Vandermonde system:

Orthogonal Polynomials

Recall that good conditioning for interpolation is achieved by constructing a well-conditioned Vandermonde matrix, which is the case when the columns (corresponding to each basis function) are orthonormal. To construct robust basis sets, we introduce a notion of *orthonormal functions*:

Legendre Polynomials

The Gram-Schmidt orthogonalization procedure can be used to obtain an orthonormal basis with the same span as any given arbitrary basis:

• The Legendre polynomials are obtained by Gram-Schmidt on the monomial basis, with $w(t) = \begin{cases} 1: -1 \le t \le 1\\ 0: \text{ otherwise} \end{cases}$ and normalized so $\hat{\phi}_i(1) = 1$.

Chebyshev Basis

• Chebyshev polynomials $\phi_j(t) = \cos((j-1) \operatorname{arccos}(t))$ and Chebyshev nodes $t_i = \cos\left(\frac{2i-1}{2n}\pi\right)$ provide a way to pick nodes t_1, \ldots, t_n along with a basis, to yield perfect conditioning:

Chebyshev Nodes Intuition

- Note *equi-oscillation* property, successive extrema of $T_k = \phi_k$ have the same magnitude but opposite sign.
- Set of k Chebyshev nodes of are given by zeros of T_{k+1} and are abscissas of points uniformly spaced on the unit circle.

Chebyshev Basis: Why Polynomial?

• Why is $\phi_j(t) = \cos((j-1) \arccos(t))$ a polynomial?

Error in Interpolation

Given degree *n* polynomial interpolant \tilde{f} of *f* the error $E(t) = f(t) - \tilde{f}(t)$ has *n* zeros t_1, \ldots, t_n . By induction on *n*, we show that there exist $y_1, \ldots, y_n \in [t_1, t_n]$ so

Interpolation Error Bounds

Consequently, polynomial interpolation satisfies the following error bound:

Letting $h = t_n - t_1$ (often also achieve same for h as the node-spacing $t_{i+1} - t_i$), we obtain

Piecewise Polynomial Interpolation

Demo: Composite Gauss Interpolation Error

▶ The *k*th piece of the interpolant is typically chosen as polynomial on $[t_i, t_{i+1}]$

Hermite interpolation ensures consecutive interpolant pieces have same derivative at each knot t_i:

Spline Interpolation

• A *spline* is a (k-1)-time differentiable piecewise polynomial of degree k:

The resulting interpolant coefficients are again determined by an appropriate generalized Vandermonde system:

B-Splines

B-splines provide an effective way of constructing splines from a basis:

► The basis functions can be defined recursively with respect to degree: