CS 450: Numerical Anlaysis ${ }^{1}$
 Interpolation

University of Illinois at Urbana-Champaign

[^0]
Interpolation

- Given $\left(t_{1}, y_{1}\right), \ldots,\left(t_{m}, y_{m}\right)$ with nodes $t_{1}<\cdots<t_{m}$ an interpolant f satisfies:

$$
f\left(t_{i}\right)=y_{i} \quad \forall i .
$$

- The number of possible interpolant functions is infinite, but there is a unique degree m - 1 polynomial interpolant.
- Error of interpolant can be quantified with knowledge of true function g, (e.g. by considering $\left.\max _{t \in\left[t_{1}, t_{m}\right]}|f(t)-g(t)|\right)$.
- Interpolant is usually constructed as linear combinations of basis functions $\left\{\phi_{j}\right\}_{j=1}^{n}=\phi_{1}, \ldots, \phi_{n}$ so $f(t)=\sum_{j} x_{j} \phi_{j}(t)$.
- Interpolant exists if $n \geq m$ and is unique for a given basis if $n=m$.
- Vandermonde-like matrix $\boldsymbol{A}=\boldsymbol{V}\left(\boldsymbol{t},\left\{\phi_{j}\right\}_{j=1}^{n}\right)$ satisfies $a_{i j}=\phi_{j}\left(t_{i}\right)$ so $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$.
- Coefficients \boldsymbol{x} of interpolant are obtained by solving Vandermonde system $\boldsymbol{A x}=\boldsymbol{y}$ for \boldsymbol{x}.

Polynomial Interpolation

- The choice of monomials as basis functions, $\phi_{j}(t)=t^{j-1}$ yields a degree $n-1$ polynomial interpolant:
- Corresponding matrix is Vandermonde, $\boldsymbol{A}=\boldsymbol{V}\left(\boldsymbol{t},\left\{t^{j-1}\right\}_{j=1}^{n}\right)$ satisfies $a_{i j}=t_{i}^{j-1}$.
- Polynomial interpolants are easy to evaluate and do calculus on:
- Horner's rule requires n products and $n-1$ additions:

$$
f(t)=x_{1}+t\left(x_{2}+t\left(x_{3}+\ldots\right)\right) .
$$

- $O(n)$ work to determine new coefficients for differentiation and integration.

Conditioning of Interpolation

- Conditioning of interpolation matrix \boldsymbol{A} depends on basis functions and coordinates t_{1}, \ldots, t_{m} :
- t_{i} defines the ith row, so columns tend to be nearly linearly-dependent if $t_{i} \approx t_{i+1}$
- ϕ_{j} defines the j th column, so rows tend to be nearly linearly-dependent if ϕ_{j} is nearly in the span of the other basis functions: $\operatorname{span}\left(\left\{\phi_{i}\right\}_{i=1, i \neq j}^{n}\right)$
- The Vandermonde matrix tends to be ill-conditioned:
- Monomials of increasing degree increasingly resemble one-another, so rows of A become nearly the same, and consequently $\kappa(\boldsymbol{A})$ grows.
- The conditioning can be improved somewhat by shifting and scaling points so that each $t_{i} \in[-1,1]$.
- Consequently, we will consider alternative polynomial bases, seeking to improve the efficiency and conditioning associated with the Vandermonde matrix.
- However, generally, we will obtain the same polynomial interpolant. To improve interpolant quality (e.g., avoid oscillations near endpoints 'Runge phenomenon'), the nodes and not the basis functions need to be changed.

Lagrange Basis

- n-points fully define the unique $(n-1)$-degree polynomial interpolant in the Lagrange basis:

$$
\phi_{j}(t)=\underbrace{\prod_{k=1, k \neq j}^{n}\left(t-t_{k}\right)}_{\text {num }} / \underbrace{\prod_{k=1, k \neq j}^{n}\left(t_{j}-t_{k}\right)}_{\text {den }}
$$

- Note that den is never 0 ,
- num is 0 whenever $t=t_{k}$ for some k, so $\phi_{j}\left(t_{i}\right)=0$ if $i \neq j$,
- when $t=t_{j}$ then num and den are the same, so $\phi_{j}\left(t_{j}\right)=1$,
- consequently, the Lagrange Vandermonde matrix $\boldsymbol{V}\left(\boldsymbol{t},\left\{\phi_{j}\right\}_{j=1}^{n}\right)=\boldsymbol{I}$.
- Lagrange polynomials yield an ideal Vandermonde system, but the basis functions are hard to evaluate and do calculus on:
- Evaluation requires $O\left(n^{2}\right)$ work naively and may incur cancellation error.
- Differentiation and integration are also harder than with monomials.

Newton Basis

- The Newton basis functions $\phi_{j}(t)=\prod_{k=1}^{j-1}\left(t-t_{k}\right)$ with $\phi_{1}(t)=1$ seek the best of monomial and Lagrange bases:
- Evaluation with Newton basis can use recurrence,

$$
\phi_{j}(t)=\phi_{j-1}(t)\left(t-t_{j}\right)
$$

- Divided difference recurrence enables fast computation of coefficients.
- The Newton basis yields a triangular Vandermonde system:
- Note that $a_{i j}=\phi_{j}\left(t_{i}\right)=0$ for all $i<j$, so \boldsymbol{A} is lower-triangular.
- Given A, can use back-substitution to obtain the solution in $O\left(n^{2}\right)$ work.
- Can use evaluation recurrence to compute \boldsymbol{A} with $O\left(n^{2}\right)$ work, but divided difference recurrence is more stable than forming \boldsymbol{A}.

Orthogonal Polynomials

- Recall that good conditioning for interpolation is achieved by constructing a well-conditioned Vandermonde matrix, which is the case when the columns (corresponding to each basis function) are orthonormal. To construct robust basis sets, we introduce a notion of orthonormal functions:
- To compute overlap between basis functions, use a w-weighted integral as inner product,

$$
\langle p, q\rangle_{w}=\int_{-\infty}^{\infty} p(t) q(t) w(t) d t
$$

- $\left\{\phi_{i}\right\}_{i=1}^{n}$ are orthonormal with respect to the above inner product if

$$
\left\langle\phi_{i}, \phi_{j}\right\rangle_{w}=\delta_{i j}=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { otherwise }
\end{array} .\right.
$$

- The corresponding norm is given by $\|f\|=\sqrt{\langle f, f\rangle_{w}}$.

Legendre Polynomials

- The Gram-Schmidt orthogonalization procedure can be used to obtain an orthonormal basis with the same span as any given arbitrary basis: Given orthonormal functions $\left\{\hat{\phi}_{i}\right\}_{i=1}^{k-1}$ obtain k th function from ϕ_{k} via

$$
\hat{\phi}_{k}(t)=\frac{\psi_{k}(t)}{\left\|\psi_{k}\right\|}, \quad \psi_{k}(t)=\phi_{k}(t)-\sum_{i=1}^{k-1}\left\langle\phi_{k}(t), \hat{\phi}_{i}(t)\right\rangle_{w} \hat{\phi}_{i}(t)
$$

- The Legendre polynomials are obtained by Gram-Schmidt on the monomial basis, with $w(t)=\left\{\begin{array}{l}1:-1 \leq t \leq 1 \\ 0: \text { otherwise }\end{array} \quad\right.$ and normalized so $\hat{\phi}_{i}(1)=1$. For example, $\left\{\hat{\phi}_{i}(t)\right\}_{i=1}^{3}=\left\{1, t,\left(3 t^{2}-1\right) / 2\right\}$ since

$$
\begin{aligned}
& \psi_{1}(t)=1, \quad \psi_{2}(t)=t \quad\left(a s\left\langle\phi_{2}(t), \hat{\phi}_{1}(t)\right\rangle_{w} /\left\|\hat{\phi}_{1}(t)\right\|^{2}=0\right) \\
& \psi_{3}(t)=t^{2}-\frac{1}{2} \int_{-1}^{1} t^{2} d t-t \frac{2}{3} \int_{-1}^{1} t^{3} d t=t^{2}-1 / 3
\end{aligned}
$$

Chebyshev Basis

- Chebyshev polynomials $\phi_{j}(t)=\cos ((j-1) \arccos (t))$ and Chebyshev nodes $t_{i}=\cos \left(\frac{2 i-1}{2 n} \pi\right)$ provide a way to pick nodes t_{1}, \ldots, t_{n} along with a basis, to yield perfect conditioning:
- They satisfy the recurrence $\phi_{1}(t)=1, \phi_{2}(t)=t, \phi_{i+1}(t)=2 t \phi_{i}(t)-\phi_{i-1}(t)$
- The Chebyshev basis functions are orthonormal with respect to

$$
w(t)= \begin{cases}1 /\left(1-t^{2}\right)^{1 / 2} & :-1<t<1 \\ 0 & : \text { otherwise }\end{cases}
$$

- The Chebyshev nodes ensure orthogonality of the columns of A, since

$$
\begin{aligned}
\sum_{k=1}^{n} \phi_{l}\left(t_{k}\right) \phi_{j}\left(t_{k}\right) & =\sum_{k=1}^{n} \cos \left(\frac{(l-1)(2 k-1)}{2 n} \pi\right) \cos \left(\frac{(j-1)(2 k-1)}{2 n} \pi\right) \\
& =\frac{1}{2} \sum_{k=1}^{n}\left[\cos \left(\frac{(l-j)(2 k-1)}{2 n} \pi\right)+\cos \left(\frac{(j+l-2)(2 k-1)}{2 n} \pi\right)\right]
\end{aligned}
$$

is zero whenever $j \neq l$ due to periodicity of the summands (can be checked by evaluating geometric sums after applying Euler's formula).

Chebyshev Nodes Intuition

- Note equi-oscillation property, successive extrema of $T_{k}=\phi_{k}$ have the same magnitude but opposite sign.
- Set of k Chebyshev nodes of are given by zeros of T_{k+1} and are abscissas of points uniformly spaced on the unit circle.

Chebyshev Basis: Why Polynomial?

- Why is $\phi_{j}(t)=\cos ((j-1) \arccos (t))$ a polynomial?
- We have that

$$
\phi_{j}(\cos (t))=\cos ((j-1) \cos (t))
$$

- Further, multiple angle-formulae give that $\cos ((j-1) t)=p(\cos (t))$ where p is a degree j polynomial (the form may be derived from De Moivdre's formula, but is complicated and not important here)
- Hence, we have that ϕ_{j} is a polynomial in the domain $[-1,1]$
- The Chebyshev recurrence follows from the identity

$$
\cos (n t)=2 \cos t \cos ((n-1) t)-\cos ((n-2) t)
$$

Error in Interpolation

Given degree n polynomial interpolant \tilde{f} of f the error $E(t)=f(t)-\tilde{f}(t)$ has n zeros t_{1}, \ldots, t_{n}. By induction on n, we show that there exist $y_{1}, \ldots, y_{n} \in\left[t_{1}, t_{n}\right]$ so

$$
\begin{gather*}
E(t)=\int_{t_{1}}^{t} \int_{y_{1}}^{w_{0}} \cdots \int_{y_{n}}^{w_{n-1}} f^{(n+1)}\left(w_{n}\right) d w_{n} \cdots d w_{0} \tag{1}\\
E(t)=E\left(t_{1}\right)+\int_{t_{1}}^{t} E^{\prime}\left(w_{0}\right) d w_{0} \tag{2}
\end{gather*}
$$

Now note that for each of $n-1$ consecutive pairs t_{i}, t_{i+1} we have

$$
\int_{t_{i}}^{t_{i+1}} E^{\prime}(t) d t=E\left(t_{i+1}\right)-E\left(t_{i}\right)=0
$$

and so there are $n-1$ zeros $z_{i} \in\left(t_{i}, t_{i+1}\right)$ such that $E^{\prime}\left(z_{i}\right)=0$.
The inductive hypothesis on E^{\prime} then gives

$$
\begin{equation*}
E^{\prime}\left(w_{0}\right)=\int_{z_{1}}^{w_{0}} \int_{y_{2}}^{w_{1}} \cdots \int_{y_{n}}^{w_{n-1}} f^{(n+1)}\left(w_{n}\right) d w_{n} \cdots d w_{1} \tag{3}
\end{equation*}
$$

Substituting (3) into (2), we obtain (1) with $y_{1}=z_{1}$.

Interpolation Error Bounds

- Consequently, polynomial interpolation satisfies the following error bound:

$$
|E(t)| \leq \frac{\max _{s \in\left[t_{1}, t_{n}\right]}\left|f^{(n+1)}(s)\right|}{n!} \prod_{i=1}^{n}\left(t-t_{i}\right) \quad \text { for } \quad t \in\left[t_{1}, t_{n}\right]
$$

Note that the Choice of Chebyshev nodes decreases this error bound at the extrema, equalizing it with nodes that are in the middle of the interval.

- Letting $h=t_{n}-t_{1}$ (often also achieve same for h as the node-spacing $t_{i+1}-t_{i}$), we obtain

$$
|E(t)| \leq \frac{\max _{s \in\left[t_{1}, t_{n}\right]}\left|f^{(n+1)}(s)\right|}{n!} h^{n}=O\left(h^{n}\right) \quad \text { for } \quad t \in\left[t_{1}, t_{n}\right]
$$

Suggests that higher-accuracy can be achieved by

- adding more nodes (however, high polynomial degree can lead to unwanted oscillations)
- shrinking interpolation interval (suggests piecewise interpolation)

Piecewise Polynomial Interpolation

- The k th piece of the interpolant is typically chosen as polynomial on $\left[t_{i}, t_{i+1}\right]$
- Typically low-degree polynomial pieces used, e.g. cubic.
- Degree of piecewise polynomial is the degree of its pieces.
- Continuity is automatic, differentiability can be enforced by ensuring derivative of pieces is equal at knots (nodes at which pieces meet).

$$
f(t)=\left\{\begin{array}{ll}
t \in\left[t_{1}, t_{2}\right] & : f_{1}(t) \\
& \vdots \\
t \in\left[t_{n-1}, t_{n}\right] & : f_{n-1}(t)
\end{array}, \forall i \in[2, n-1], f_{i-1}\left(t_{i}\right)=f_{i}\left(t_{i}\right)=y_{i}\right.
$$

- Hermite interpolation ensures consecutive interpolant pieces have same derivative at each knot t_{i} :
- Hermite interpolation ensures differentiability of the interpolant $\forall i \in[2, n-1], f_{i-1}^{\prime}\left(t_{i}\right)=f_{i}^{\prime}\left(t_{i}\right)$
- Various further constraints can be placed on the interpolant if its degree is at least 3, since otherwise the system is underdetermined.

Spline Interpolation

- A spline is a $(k-1)$-time differentiable piecewise polynomial of degree k :

Cubic splines are twice-differentiable (Hermite cubics may only be once-differentiable)

- 2($n-1$) equations needed to interpolate data
- $n-2$ to ensure continuity of derivative
- $n-2$ to ensure continuity of second derivative for cubic splines

Overall there are $4(n-1)$ coefficients in the interpolant.

- The resulting interpolant coefficients are again determined by an appropriate generalized Vandermonde system:
A natural spline obtains $4(n-1)$ constraints by forcing $f^{\prime \prime}\left(t_{1}\right)=f^{\prime \prime}\left(t_{n}\right)=0$. Given cubic pieces $p(t)$ and $q(t)$ and nodes t_{1}, t_{2}, t_{3} (where t_{2} is a knot) the generalized Vandermonde system for a two-piece cubic natural spline consists of 8 equations with 8 unknowns:

$$
\begin{array}{ll}
p\left(t_{1}\right)=y_{1}, & p^{\prime \prime}\left(t_{1}\right)=0 \\
p\left(t_{2}\right)=y_{2}, & q\left(t_{2}\right)=y_{2}, \\
p^{\prime}\left(t_{2}\right)=q^{\prime}\left(t_{2}\right), \quad p^{\prime \prime}\left(t_{2}\right)=q^{\prime \prime}\left(t_{2}\right) \\
q\left(t_{3}\right)=y_{3}, & q^{\prime \prime}\left(t_{3}\right)=0
\end{array}
$$

B-Splines

B-splines provide an effective way of constructing splines from a basis:

- The basis functions can be defined recursively with respect to degree:

$$
\begin{array}{ll}
v_{i}^{k}(t)=\frac{t-t_{i}}{t_{i+k}-t_{i}}, & \phi_{i}^{0}(t)= \begin{cases}1 & t_{i} \leq t \leq t_{i+1} \\
0 & \text { otherwise }\end{cases} \\
\phi_{i}^{k}(t)=v_{i}^{k}(t) \phi_{i}^{k-1}(t)+\left(1-v_{i+1}^{k}(t)\right) \phi_{i+1}^{k-1}(t), & f(t)=\sum_{i=1}^{n} c_{i} \phi_{i}^{k}(t)
\end{array}
$$

- ϕ_{i}^{1} is a linear 'hat function' that increases from 0 to 1 on $\left[t_{i}, t_{i+1}\right]$ and decreases from 1 to 0 on $\left[t_{i+1}, t_{i+2}\right]$.
- ϕ_{i}^{k} is positive on $\left[t_{i}, t_{i+k+1}\right]$ and zero elsewhere.
- The B-spline basis spans all possible splines of degree k with nodes $\left\{t_{i}\right\}_{i=1}^{n}$.
- The B-spline basis coefficients are determined by a Vandermonde system that is lower-triangular and banded (has k subdiagonals), and need not contain differentiability constraints, since $f(t)$ is a sum of $\phi_{i}^{k} s$.

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

