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Interpolation

» Given (t1,y1),. .., (tm,ym) With nodes t; < --- < t,, an interpolant f satisfies:

f(ti) =y Vi

» The number of possible interpolant functions is infinite, but there is a unique
degree m — 1 polynomial interpolant.

» Error of interpolant can be quantified with knowledge of true function g, (e.g. by
considering max;et, +,,] | f(t) — g()|) -

» Interpolant is usually constructed as linear combinations of basis functions
{1 =1, SO f(t) =32, 259,(t).
» Interpolant exists if n > m and is unique for a given basis if n = m.
» Vandermonde-like matrix A =V (¢,{¢;}}_,) satisfies a;; = ¢;(t;) S0 Az = y.

» Coefficients x of interpolant are obtained by solving Vandermonde system
Ax =y for x.



Polynomial Interpolation

» The choice of monomials as basis functions, ¢;(t) = t/~! yields a degree
n — 1 polynomial interpolant:

> Corresponding matrix is Vandermonde, A = V (¢, {/=1}"_, ) satisfies a;; =t .
» Polynomial interpolants are easy to evaluate and do calculus on:
» Horner’s rule requires n products and n — 1 additions:
f@)y=a1 +t(za+t(xzs+...)).

> O(n) work to determine new coefficients for differentiation and integration.



Demo: Monomial interpolation

Conditioning of Interpolation
» Conditioning of interpolation matrix A depends on basis functions and

coordinates t1,...,ty:
» ¢, defines the ith row, so columns tend to be nearly linearly-dependent if
ti = i1

> ¢, defines the jth column, so rows tend to be nearly linearly-dependent if ¢; is
nearly in the span of the other basis functions: span({qﬁi}?:l’#j)

» The Vandermonde matrix tends to be ill-conditioned:

» Monomials of increasing degree increasingly resemble one-another, so rows of
A become nearly the same, and consequently x(A) grows.

» The conditioning can be improved somewhat by shifting and scaling points so
that each t; € [-1,1].

» Consequently, we will consider alternative polynomial bases, seeking to improve
the efficiency and conditioning associated with the Vandermonde matrix.

» However, generally, we will obtain the same polynomial interpolant. To improve
interpolant quality (e.g., avoid oscillations near endpoints 'Runge
phenomenon’), the nodes and not the basis functions need to be changed.


https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/07-interpolation/Monomial interpolation.html

Lagrange Basis

» n-points fully define the unique (n — 1)-degree polynomial interpolant in the
Lagrange basis:

n n
;(t) = t—t)/ ] 5 —t)
k=1,k#j k=1,k#j
num den

» Note that den is never 0,
» num is 0 whenever t = t;, for some k, so ¢;(t;) = 0if i # j,
> whent = t; then num and den are the same, so ¢,(t;) = 1,
> consequently, the Lagrange Vandermonde matrix V (t,{¢, ;?:1) =1
» Lagrange polynomials yield an ideal Vandermonde system, but the basis
functions are hard to evaluate and do calculus on:
» Evaluation requires O(n?) work naively and may incur cancellation error.

» Differentiation and integration are also harder than with monomials.



Newton Basis

> The Newton basis functions ¢;(t) = [[2_} (t — t) with ¢;(t) = 1 seek the best
of monomial and Lagrange bases:

» Evaluation with Newton basis can use recurrence,
0;(t) = ¢j—1(t)(t — t;).
» Divided difference recurrence enables fast computation of coefficients.
» The Newton basis yields a triangular Vandermonde system:

> Note that a;; = ¢;(t;) = 0 forall i < j, so A is lower-triangular.
> Given A, can use back-substitution to obtain the solution in O(n?) work.

> Can use evaluation recurrence to compute A with O(n?) work, but divided
difference recurrence is more stable than forming A.



Orthogonal Polynomials

» Recall that good conditioning for interpolation is achieved by constructing a
well-conditioned Vandermonde matrix, which is the case when the columns
(corresponding to each basis function) are orthonormal. To construct robust
basis sets, we introduce a notion of orthonormal functions:

» To compute overlap between basis functions, use a w-weighted integral as inner
product,

0, Q)w = /_OO p(t)q(t)w(t)dt.

> {¢;}7, are orthonormal with respect to the above inner product if

1 ifi=j
0 otherwise

<¢i7¢j>w = §ij = {

» The corresponding norm is given by || f|| = \/{f, )w-



Demo: Orthogonal Polynomials

Legendre Polynomials

» The Gram-Schmidt orthogonalization procedure can be used to obtain an
orthonormal basis with the same span as any given arbitrary basis:

Given orthonormal functions {¢;}%~} obtain kth function from ¢y, via

k—1
. t . R
)= T ) = ault) — L0, B0t
=1
» The Legendre polynomials are obtained by Gram-Schmidt on the monomial
1:-1<t<1 N
basis, with w(t) = - t__ and normalized so ¢;(1) = 1.
0 : otherwise

For example, {6;(t)}3_, = {1,t, (3t> — 1)/2} since
i) =1, Po(t) =t (as (¢a(t), d1(t))w/|ld1(t)]* = 0)

1

1 2 1
3(t) :t2—2/ tZdt—tS/ t3dt =t* —1/3
-1 -1


https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/07-interpolation/Orthogonal Polynomials.html

ChEbySheV Basis Demo: Chebyshev interpolation
» Chebyshev polynomials ¢;(t) = cos((j — 1) arccos(t)) and Chebyshev nodes
t; = cos (2-17) provide a way to pick nodes t1,...,t, along with a basis, to
yield perfect conditioning:
> They satisfy the recurrence ¢1(t) = 1, pa(t) = ¢, dir1(t) = 2t (t) — Ppi—1(t)
» The Chebyshev basis functions are orthonormal with respect to

wit) = {1/(1 )2 io1<t<]

0 : otherwise

» The Chebyshev nodes ensure orthogonality of the columns of A, since

kzn:_l (tr)b;(tr) Zc <l_122k_1)7r>cos<(j_l)2(§k_l)7r)
_ :’:{ (l](ikz1)W)+COS<(j+1227)L(2k1)W)]

is zero whenever j # 1 due to periodicity of the summands (can be checked by
evaluating geometric sums after applying Euler’s formula).



https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/07-interpolation/Chebyshev interpolation.html

Demo: Jump with Chebyshev Nodes

Chebyshev Nodes Intuition

) 0 1

» Note equi-oscillation property, successive extrema of T, = ¢, have the same
magnitude but opposite sign.

» Set of £ Chebyshev nodes of are given by zeros of Tj .1 and are abscissas of
points uniformly spaced on the unit circle.


https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/07-interpolation/Jump with Chebyshev Nodes.html

Chebyshev Basis: Why Polynomial?

» Why is ¢;(t) = cos((j — 1) arccos(t)) a polynomial?
> We have that
6(cos()) = cos((j — 1) cos(t))
> Further, multiple angle-formulae give that cos((j — 1)t) = p(cos(t)) where pis a

degree j polynomial (the form may be derived from De Moivdre’s formula, but is
complicated and not important here)

> Hence, we have that ¢, is a polynomial in the domain [—1,1]
» The Chebyshev recurrence follows from the identity

cos(nt) = 2costcos((n — 1)t) — cos((n — 2)t)



Error in Interpolation ) ~
Given degree n polynomial interpolant f of f the error E(t) = f(t) — f(¢t) hasn

zeros ty,...,t,. By induction on n, we show that there exist y,...,y, € [t1,t,] SO
t wo Wy —1
E(t) = / / T / f(n+1)(wn)dwn -+~ dwg (1)
t1 Jy n
t
E(t) = E(t1) + | E'(wo)dwy (2)

t1
Now note that for each of n — 1 consecutive pairs t;, t;11 we have

tit1
E'(t)dt = E(ti1) — E(t:) =0

t;
and so there are n — 1 zeros z; € (t;,t;+1) such that E'(z;) = 0.
The inductive hypothesis on E' then gives

wo w1 Wn—1
E/(wo) = / / / D () - -~ duy (3)
z1 Y2 n

Substituting (3) into (2), we obtain (1) with y1 = z1.



Demo: Interpolation Error

Interpolation Error Bounds
» Consequently, polynomial interpolation satisfies the following error bound:

(n+1) n

i=1

[E@)] <

n!
Note that the Choice of Chebyshev nodes decreases this error bound at the
extrema, equalizing it with nodes that are in the middle of the interval.

> Letting h = t,, — t1 (often also achieve same for h as the node-spacing
ti+1 — t;), we obtain

MaXseity ity |f(n+1)(5)|

n!

[E()] <

K" = O(h") for t€ [ty t]

Suggests that higher-accuracy can be achieved by
» adding more nodes (however, high polynomial degree can lead to unwanted
oscillations)
» shrinking interpolation interval (suggests piecewise interpolation)


https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/07-interpolation/Interpolation Error.html

Demo: Composite Gauss Interpolation Error

Piecewise Polynomial Interpolation
» The kth piece of the interpolant is typically chosen as polynomial on [t;,¢; 1]
» Typically low-degree polynomial pieces used, e.g. cubic.
» Degree of piecewise polynomial is the degree of its pieces.

» Continuity is automatic, differentiability can be enforced by ensuring derivative
of pieces is equal at knots (nodes at which pieces meet).

te [tl, tg] : f1 (t)
f(t) = : Vi€ 2,n—1], fii(t) = fi(ti) = v
te [tn_l,tn] : fn—l(t)

» Hermite interpolation ensures consecutive interpolant pieces have same
derivative at each knot t;:

» Hermite interpolation ensures differentiability of the interpolant
Vi€ [2,n 1], fi_1(t:) = fi(t:)

» Various further constraints can be placed on the interpolant if its degree is at
least 3, since otherwise the system is underdetermined.


https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/07-interpolation/Composite Gauss Interpolation Error.html

Spline Interpolation
» Asplineis a (k — 1)-time differentiable piecewise polynomial of degree k:
Cubic splines are twice-differentiable (Hermite cubics may only be
once-differentiable)
> 2(n — 1) equations needed to interpolate data
» n — 2 to ensure continuity of derivative
» n — 2 to ensure continuity of second derivative for cubic splines
Overall there are 4(n — 1) coefficients in the interpolant.
> The resulting interpolant coefficients are again determined by an
appropriate generalized Vandermonde system:
A natural spline obtains 4(n — 1) constraints by forcing f"(t1) = f”(t,) = 0.
Given cubic pieces p(t) and q(t) and nodes t1,ts,t3 (where ts is a knot) the
generalized Vandermonde system for a two-piece cubic natural spline
consists of 8 equations with 8 unknowns:

p(t1) =y, p"(t1)=0
p(t2) =y, q(t2) =y, P(t2) =d (t2), p"(ta) =q"(t2)
q(t3) =y3, ¢"(t3) =0



B-Splines
B-splines provide an effective way of constructing splines from a basis:
» The basis functions can be defined recursively with respect to degree:

koo Ut oy _ J1 tiSt<tin
vilt) = tivk — ti 9i(t) = {0 otherwise
or (1) = o (e (8) + (1= of (D)SF T (1), f(1) =) cidf(2)

=1

> ¢! is alinear ‘hat function’ that increases from 0 to 1 on [t;, ;1] and
decreases from 1 to 0 on [tiy1,tit2).

> ¢¥ is positive on [t;, t;11+1] and zero elsewhere.
» The B-spline basis spans all possible splines of degree k with nodes {t;}" ;.

» The B-spline basis coefficients are determined by a Vandermonde system that
is lower-triangular and banded (has k subdiagonals), and need not contain
differentiability constraints, since f(t) is a sum of ¢¥s.
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