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Integrability and Sensitivity

▶ Seek to compute I(f) =
∫ b
a f(x)dx:

▶ The condition number of integration is bounded by the distance b− a:



Quadrature Rules
▶ Approximate the integral I(f) by a weighted sum of function values:

▶ For a fixed set of n nodes, polynomial interpolation followed by integration
give (n− 1)-degree quadrature rule:



Determining Weights for Quadrature Rules
▶ A quadrature rule provides x and w so as to approximate

▶ Method of undetermined coefficients obtains y from moment equations,
which insure the quadrature rule is exact for all monomials of degree n− 1:



Newton-Cotes Quadrature
▶ Newton-Cotes quadrature rules are defined by equispaced nodes on [a, b]:

▶ The midpoint rule is the n = 1 open Newton-Cotes rule:

▶ The trapezoid rule is the n = 2 closed Newton-Cotes rule:

▶ Simpson’s rule is the n = 3 closed Newton-Cotes rule:

Demo: Newton-Cotes weight finder

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Newton-Cotes weight finder.html


Error in Newton-Cotes Quadrature
▶ By our analysis of polynomial quadrature, Newton-cotes rules are exact for

polynomials of degree n− 1, however (1) some, notably the midpoint and
Simpson’s rule are exact also for degree n, and (2) we also want to
understand the error scaling with respect to b− a

▶ Consider the Taylor expansion of f about the midpoint of the integration
interval m = (a+ b)/2:

Integrating the Taylor approximation of f , we note that the odd terms drop:

Demo: Accuracy of Newton-Cotes

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Accuracy of Newton-Cotes.html


Error Estimation
▶ The trapezoid rule is also just degree 1, since via the prior expansion,

f(m) = f(x)− f ′(m)(x−m)− . . ., so using x = a, b, we get

▶ The above derivation allows us to obtain an error approximation via a
difference of midpoint and trapezoidal rules:



Error in Polynomial Quadrature Rules
▶ We can bound the error for a an arbitrary polynomial quadrature rule by

applying our error analysis of interpolation,



Conditioning of Newton-Cotes Quadrature
▶ We can ascertain stability of quadrature rules, by considering the

amplification of a perturbation f̂ = f + δf :

▶ Newton-Cotes quadrature rules have at least one negative weight for any
n ≥ 11:



Clenshaw-Curtis Quadrature

▶ To obtain a more stable quadrature rule, we need to ensure the integrated
interpolant is well-behaved as n increases:



Gaussian Quadrature
▶ So far, we have only considered quadrature rules based on a fixed set of

nodes, but we may also be able to choose nodes to maximize accuracy:

▶ The unique n-point Gaussian quadrature rule is defined by the solution of the
nonlinear form of the moment equations in terms of both x and w:

Demo: Gaussian quadrature weight finder

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Gaussian quadrature weight finder.html


Using Gaussian Quadrature Rules

▶ Gaussian quadrature rules are hard to compute, but can be enumerated for a
fixed interval, e.g. a = 0, b = 1, so it suffices to transform the integral to [0, 1]

▶ Gaussian quadrature rules are accurate and stable but not progressive
(nodes cannot be reused to obtain higher-degree approximation):



Progressive Gaussian-like Quadrature Rules
▶ Kronod quadrature rules construct (2n+1)-point (3n+1)-degree quadrature

K2n+1 that is progressive with respect to Gaussian quadrature rule Gn:

▶ Patterson quadrature rules use 2n+ 2 more points to extend (2n+ 1)-point
Kronod rule to degree 6n+ 4, while reusing all 2n+ 1 points.

▶ Gaussian quadrature rules are in general open, but Gauss-Radau and
Gauss-Lobatto rules permit including end-points:



Composite and Adaptive Quadrature
▶ Composite quadrature rules are obtained by integrating a piecewise

interpolant of f :

▶ Composite quadrature can be done with adaptive refinement:



More Complicated Integration Problems
▶ To handle improper integrals can either transform integral to get rid of

infinite limit or use appropriate open quadrature rules.

▶ Double integrals can simply be computed by successive 1-D integration.

▶ High-dimensional integration is often effectively done by Monte Carlo:



Integral Equations
▶ Rather than evaluating an integral, in solving an integral equation we seek to

compute the integrand. A typical linear integral equation has the form∫ b

a
K(s, t)u(t)dt = f(s), where K and f are known.

▶ Using a quadrature rule with weights w1, . . . , wn and nodes t1, . . . , tn obtain



Numerical Differentiation
▶ Automatic (symbolic) differentiation is a surprisingly viable option:

▶ Numerical differentiation can be done by interpolation or finite differencing:

Demo: Taking Derivatives with Vandermonde Matrices

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Taking Derivatives with Vandermonde Matrices.html


Accuracy of Finite Differences
▶ Forward and backward differencing provide first-order accuracy:

▶ Centered differencing provides second-order accuracy.

Demo: Finite Differences vs Noise
Demo: Floating point vs Finite Differences

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Finite Differences vs Noise.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Floating point vs Finite Differences.html


Extrapolation Techniques
▶ Given a sequence of approximations to the result of a smooth function, a

more accurate approximation may be obtained by extrapolating this series.

▶ In particular, given two guesses, Richardson extrapolation eliminates the
leading order error term.

Demo: Richardson with Finite Differences

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Richardson with Finite Differences.html


High-Order Extrapolation
▶ Given a series of k composite-quadrature approximations, Romberg

integration applies (k − 1)-levels of Richardson extrapolation.

▶ Extrapolation can be used within an iterative procedure at each step:
For example, Steffensen’s method for finding roots of nonlinear equations,

xn+1 = xn +
f(xn)

1− f(xn + f(xn))/f(xn)
,

derived from Aitken’s delta-squared extrapolation process:
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