CS 450: Numerical Analysis
Numerical Integration and Differentiation

University of Illinois at Urbana-Champaign

1 These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).
Integrability and Sensitivity

Seek to compute $\mathcal{I}(f) = \int_a^b f(x) \, dx$:

The condition number of integration is bounded by the distance $b - a$:
Quadrature Rules

- Approximate the integral $\mathcal{I}(f)$ by a weighted sum of function values:

- For a fixed set of n nodes, polynomial interpolation followed by integration give $(n - 1)$-degree quadrature rule:
Determining Weights for Quadrature Rules

- A quadrature rule provides x and w so as to approximate

- Method of undetermined coefficients obtains y from moment equations, which insure the quadrature rule is exact for all monomials of degree $n - 1$:

$Method of undetermined coefficients$ obtains y from $moment equations$, which insure the quadrature rule is exact for all monomials of degree $n - 1$:
Newton-Cotes Quadrature

- **Newton-Cotes** quadrature rules are defined by equispaced nodes on \([a, b]\):

 - The **midpoint rule** is the \(n = 1\) open Newton-Cotes rule:

 - The **trapezoid rule** is the \(n = 2\) closed Newton-Cotes rule:

- **Simpson’s rule** is the \(n = 3\) closed Newton-Cotes rule:
Error in Newton-Cotes Quadrature

By our analysis of polynomial quadrature, Newton-cotes rules are exact for polynomials of degree \(n - 1\), however (1) some, notably the midpoint and Simpson’s rule are exact also for degree \(n\), and (2) we also want to understand the error scaling with respect to \(b - a\).

Consider the Taylor expansion of \(f\) about the midpoint of the integration interval \(m = (a + b)/2\):

Integrating the Taylor approximation of \(f\), we note that the odd terms drop:
Error Estimation

- The trapezoid rule is also just degree 1, since via the prior expansion,
 \[f(m) = f(x) - f'(m)(x - m) - \ldots, \]
 so using \(x = a, b \), we get

- The above derivation allows us to obtain an error approximation via a
difference of midpoint and trapezoidal rules:
Error in Polynomial Quadrature Rules

- We can bound the error for an arbitrary polynomial quadrature rule by applying our error analysis of interpolation,
Conditioning of Newton-Cotes Quadrature

- We can ascertain stability of quadrature rules, by considering the amplification of a perturbation $\hat{f} = f + \delta f$:

- Newton-Cotes quadrature rules have at least one negative weight for any $n \geq 11$:
To obtain a more stable quadrature rule, we need to ensure the integrated interpolant is well-behaved as n increases:
Gaussian Quadrature

- So far, we have only considered quadrature rules based on a fixed set of nodes, but we may also be able to choose nodes to maximize accuracy:

- The *unique* \(n\)-point *Gaussian quadrature rule* is defined by the solution of the nonlinear form of the moment equations in terms of *both* \(x\) and \(w\):
Gaussian quadrature rules are hard to compute, but can be enumerated for a fixed interval, e.g. $a = 0, b = 1$, so it suffices to transform the integral to $[0, 1]$. Gaussian quadrature rules are accurate and stable but not progressive (nodes cannot be reused to obtain higher-degree approximation):
Progressive Gaussian-like Quadrature Rules

- **Kronod** quadrature rules construct \((2n + 1)\)-point \((3n + 1)\)-degree quadrature \(K_{2n+1}\) that is progressive with respect to Gaussian quadrature rule \(G_n\):

- **Patterson** quadrature rules use \(2n + 2\) more points to extend \((2n + 1)\)-point Kronod rule to degree \(6n + 4\), while reusing all \(2n + 1\) points.

- Gaussian quadrature rules are in general open, but *Gauss-Radau* and *Gauss-Lobatto* rules permit including end-points:
Composite and Adaptive Quadrature

- *Composite quadrature rules* are obtained by integrating a piecewise interpolant of f:

- Composite quadrature can be done with adaptive refinement:
More Complicated Integration Problems

- To handle improper integrals can either transform integral to get rid of infinite limit or use appropriate open quadrature rules.

- Double integrals can simply be computed by successive 1-D integration.

- High-dimensional integration is often effectively done by Monte Carlo:
Integral Equations

- Rather than evaluating an integral, in solving an *integral equation* we seek to compute the integrand. A typical linear integral equation has the form

$$\int_{a}^{b} K(s, t)u(t)dt = f(s), \text{ where } K \text{ and } f \text{ are known.}$$

- Using a quadrature rule with weights w_1, \ldots, w_n and nodes t_1, \ldots, t_n obtain
Numerical Differentiation

- Automatic (symbolic) differentiation is a surprisingly viable option:

- Numerical differentiation can be done by interpolation or finite differencing:
Accuracy of Finite Differences

- *Forward and backward differencing* provide first-order accuracy:

- *Centered differencing* provides second-order accuracy.
Given a sequence of approximations to the result of a smooth function, a more accurate approximation may be obtained by extrapolating this series.

In particular, given two guesses, Richardson extrapolation eliminates the leading order error term.
High-Order Extrapolation

- Given a series of k composite-quadrature approximations, *Romberg integration* applies $(k - 1)$-levels of Richardson extrapolation.

- Extrapolation can be used within an iterative procedure at each step:
 For example, Steffensen’s method for finding roots of nonlinear equations,
 \[
 x_{n+1} = x_n + \frac{f(x_n)}{1 - f(x_n + f(x_n))/f(x_n)},
 \]
 derived from Aitken’s delta-squared extrapolation process: