CS 450: Numerical Anlaysis ${ }^{1}$

Numerical Integration and Differentiation

University of Illinois at Urbana-Champaign

[^0]
Integrability and Sensitivity

- Seek to compute $\mathcal{I}(f)=\int_{a}^{b} f(x) d x$:
- The condition number of integration is bounded by the distance $b-a$:

Quadrature Rules

- Approximate the integral $\mathcal{I}(f)$ by a weighted sum of function values:
- For a fixed set of n nodes, polynomial interpolation followed by integration give $(n-1)$-degree quadrature rule:

Determining Weights for Quadrature Rules

- A quadrature rule provides \boldsymbol{x} and \boldsymbol{w} so as to approximate
- Method of undetermined coefficients obtains \boldsymbol{y} from moment equations, which insure the quadrature rule is exact for all monomials of degree $n-1$:

Newton-Cotes Quadrature

- Newton-Cotes quadrature rules are defined by equispaced nodes on $[a, b]$:
- The midpoint rule is the $n=1$ open Newton-Cotes rule:
- The trapezoid rule is the $n=2$ closed Newton-Cotes rule:
- Simpson's rule is the $n=3$ closed Newton-Cotes rule:

Error in Newton-Cotes Quadrature

- By our analysis of polynomial quadrature, Newton-cotes rules are exact for polynomials of degree $n-1$, however (1) some, notably the midpoint and Simpson's rule are exact also for degree n, and (2) we also want to understand the error scaling with respect to $b-a$
- Consider the Taylor expansion of f about the midpoint of the integration interval $m=(a+b) / 2$:

Integrating the Taylor approximation of f, we note that the odd terms drop:

Error Estimation

- The trapezoid rule is also just degree 1, since via the prior expansion, $f(m)=f(x)-f^{\prime}(m)(x-m)-\ldots$, so using $x=a, b$, we get
- The above derivation allows us to obtain an error approximation via a difference of midpoint and trapezoidal rules:

Error in Polynomial Quadrature Rules

- We can bound the error for a an arbitrary polynomial quadrature rule by applying our error analysis of interpolation,

Conditioning of Newton-Cotes Quadrature

- We can ascertain stability of quadrature rules, by considering the amplification of a perturbation $\hat{f}=f+\delta f$:
- Newton-Cotes quadrature rules have at least one negative weight for any $n \geq 11$:

Clenshaw-Curtis Quadrature

- To obtain a more stable quadrature rule, we need to ensure the integrated interpolant is well-behaved as n increases:

Gaussian Quadrature

- So far, we have only considered quadrature rules based on a fixed set of nodes, but we may also be able to choose nodes to maximize accuracy:
- The unique n-point Gaussian quadrature rule is defined by the solution of the nonlinear form of the moment equations in terms of both x and w :

Using Gaussian Quadrature Rules

- Gaussian quadrature rules are hard to compute, but can be enumerated for a fixed interval, e.g. $a=0, b=1$, so it suffices to transform the integral to $[0,1]$
- Gaussian quadrature rules are accurate and stable but not progressive (nodes cannot be reused to obtain higher-degree approximation):

Progressive Gaussian-like Quadrature Rules

- Kronod quadrature rules construct ($2 n+1$)-point $(3 n+1)$-degree quadrature $K_{2 n+1}$ that is progressive with respect to Gaussian quadrature rule G_{n} :
- Patterson quadrature rules use $2 n+2$ more points to extend $(2 n+1)$-point Kronod rule to degree $6 n+4$, while reusing all $2 n+1$ points.
- Gaussian quadrature rules are in general open, but Gauss-Radau and Gauss-Lobatto rules permit including end-points:

Composite and Adaptive Quadrature

- Composite quadrature rules are obtained by integrating a piecewise interpolant of f :
- Composite quadrature can be done with adaptive refinement:

More Complicated Integration Problems

- To handle improper integrals can either transform integral to get rid of infinite limit or use appropriate open quadrature rules.
- Double integrals can simply be computed by successive 1-D integration.
- High-dimensional integration is often effectively done by Monte Carlo:

Integral Equations

- Rather than evaluating an integral, in solving an integral equation we seek to compute the integrand. A typical linear integral equation has the form

$$
\int_{a}^{b} K(s, t) u(t) d t=f(s), \quad \text { where } \quad K \quad \text { and } \quad f \text { are known. }
$$

- Using a quadrature rule with weights w_{1}, \ldots, w_{n} and nodes t_{1}, \ldots, t_{n} obtain

Numerical Differentiation

- Automatic (symbolic) differentiation is a surprisingly viable option:
- Numerical differentiation can be done by interpolation or finite differencing:

Accuracy of Finite Differences

Demo: Finite Differences vs Noise

- Forward and backward differencing provide first-order accuracy:
- Centered differencing provides second-order accuracy.

Extrapolation Techniques

- Given a sequence of approximations to the result of a smooth function, a more accurate approximation may be obtained by extrapolating this series.
- In particular, given two guesses, Richardson extrapolation eliminates the leading order error term.

High-Order Extrapolation

- Given a series of k composite-quadrature approximations, Romberg integration applies $(k-1)$-levels of Richardson extrapolation.
- Extrapolation can be used within an iterative procedure at each step: For example, Steffensen's method for finding roots of nonlinear equations,

$$
x_{n+1}=x_{n}+\frac{f\left(x_{n}\right)}{1-f\left(x_{n}+f\left(x_{n}\right)\right) / f\left(x_{n}\right)},
$$

derived from Aitken's delta-squared extrapolation process:

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

