
CS 450: Numerical Anlaysis1

Numerical Integration and Differentiation

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).

http://heath.cs.illinois.edu/scicomp/notes/index.html

Integrability and Sensitivity
▶ Seek to compute I(f) =

∫ b
a f(x)dx:

▶ f is integrable if continuous and bounded.
▶ Finite number of discontinuities is also often permissible.

▶ The condition number of integration is bounded by the distance b− a:
Suppose the input function is perturbed f̂ = f + δf , then

δI = |I(f̂)− I(f)|
≤ |I(δf)|
≤ (b− a)||δf ||∞, where ∥f∥∞ = max

x∈[a,b]
|f(x)|.

Note that this result does not depend on the magnitude of f or its derivatives,
which means integration is generally very well-conditioned, which makes
sense since integration corresponds to averaging.

Quadrature Rules
▶ Approximate the integral I(f) by a weighted sum of function values:

I(f) ≈ Qn(f) =
n∑

i=1

wif(xi)

▶ {xi}ni=1 are quadrature nodes or abscissas, {wi}ni=1 are quadrature weights.
▶ Quadrature rule is closed if x1 = a, xn = b and open otherwise.
▶ Rule is progressive if nodes of Qn are a subset of those of Qn+1.

▶ For a fixed set of n nodes, polynomial interpolation followed by integration
give (n− 1)-degree quadrature rule:
▶ Accuracy depends on interpolant, is exact for all (n− 1)-degree polynomials.
▶ Can obtain weights by expressing the unique (n− 1)-degree polynomial

interpolant in the Lagrange basis p(x) =
∑n

i=1 ϕi(x)f(xi), so that

Qn(f) = I(p) =
n∑

i=1

I(ϕi)︸ ︷︷ ︸
wi

f(xi),

i.e., weight wi is the integral of the ith Lagrange basis function.

Determining Weights for Quadrature Rules
▶ A quadrature rule provides x and w so as to approximate

I(f) ≈ Qn(f) = ⟨w,y⟩, where yi = f(xi)

Qn is the integral of the polynomial interpolant p of (x1, y1), . . . , (xn, yn).
▶ Method of undetermined coefficients obtains y from moment equations,

which insure the quadrature rule is exact for all monomials of degree n− 1:
▶ This also insures the quadrature rule integrates all polynomials of degree up to

n− 1, since by linearity we can decompose the quadrature of any f = αf1 + βf2,

I(αf1 + βf2) = αI(f1) + βI(f2)
▶ Consider the Vandermonde matrix with nodes at x, V (x), so vij = xj−1

i . The ith
monomial has coefficients given by elementary vector e(i), with e

(i)
i = 1 and

e
(i)
j = 0 for j ̸= i, and integral zi =

∫ 1

0
xi−1dx. From the values of the ith

monomial at the nodes, y(i) = V (x)e(i), we see that w satisfies

zi = ⟨w,y(i)⟩ = wTV (x)e(i) →
[
e(1) · · · e(n)

]T
V (x)Tw = z

▶ Since
[
e(1) · · · e(n)

]
= I, we obtain w by solving V (x)Tw = z

Newton-Cotes Quadrature
▶ Newton-Cotes quadrature rules are defined by equispaced nodes on [a, b]:

open: xi = a+ i(b− a)/(n+ 1), closed: xi = a+ (i− 1)(b− a)/(n− 1).
▶ The midpoint rule is the n = 1 open Newton-Cotes rule:

M(f) = (b− a)f

(
a+ b

2

)
▶ The trapezoid rule is the n = 2 closed Newton-Cotes rule:

T (f) =
(b− a)

2
(f(a) + f(b))

▶ Simpson’s rule is the n = 3 closed Newton-Cotes rule:

S(f) =
b− a

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)

Demo: Newton-Cotes weight finder

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Newton-Cotes weight finder.html

Error in Newton-Cotes Quadrature
▶ By our analysis of polynomial quadrature, Newton-cotes rules are exact for

polynomials of degree n− 1, however (1) some, notably the midpoint and
Simpson’s rule are exact also for degree n, and (2) we also want to
understand the error scaling with respect to b− a

▶ Consider the Taylor expansion of f about the midpoint of the integration
interval m = (a+ b)/2:

f(x) = f(m) + f ′(m)(x−m) +
f ′′(m)

2
(x−m)2 + . . .

Integrating the Taylor approximation of f , we note that the odd terms drop:

I(f) = f(m)(b− a)︸ ︷︷ ︸
M(f)

+
f ′′(m)

24
(b− a)3︸ ︷︷ ︸

E(f)

+O((b− a)5)

Consequently, the midpoint rule is first-degree with third order in (b− a).

Demo: Accuracy of Newton-Cotes

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Accuracy of Newton-Cotes.html

Error Estimation
▶ The trapezoid rule is also just degree 1, since via the prior expansion,

f(m) = f(x)− f ′(m)(x−m)− . . ., so using x = a, b, we get

f(m) =
1

2

(
f(a)− f ′(m)(a−m)− f ′′(m)

2
(a−m)2 + . . .

+f(b)− f ′(m)(b−m)− f ′′(m)

2
(b−m)2 + . . .

)
I(f) = T (f)− f ′′(m)

12
(b− a)3︸ ︷︷ ︸

2E(f)

−O((b− a)5)

▶ The above derivation allows us to obtain an error approximation via a
difference of midpoint and trapezoidal rules:

T (f)−M(f) ≈ 3E(f).

Simpson’s rule, S(f) = T (f) + (2/3)(M(f)− T (f)), thus achieves 5th order
accuracy and integrates degree n = 3 polynomials exactly.

Error in Polynomial Quadrature Rules

▶ We can bound the error for a an arbitrary polynomial quadrature rule by
applying our error analysis of interpolation,

|I(f)−Qn(f)| = |I(f − p)|
≤ (b− a)||f − p||∞

≤ b− a

4n
hn||f (n)||∞

= O((b− a)n+1||f (n)||∞)

where h = maxi(xi+1 − xi).

Conditioning of Newton-Cotes Quadrature
▶ We can ascertain stability of quadrature rules, by considering the

amplification of a perturbation f̂ = f + δf :

|Qn(f̂)−Qn(f)| = |Qn(δf)|

=

n∑
i=1

wiδf(xi)

≤ ||w||1||δf ||∞.

Note that we always have
∑

iwi = b− a, since the quadrature rule must be
correct for a constant function. So if w is positive ||w||1 = b− a, the
quadrature rule is stable, i.e. it matches the conditioning of the problem.

▶ Newton-Cotes quadrature rules have at least one negative weight for any
n ≥ 11: More generally, ||w||1 → ∞ as n → ∞ for fixed b− a. This means that
the Newton-Cotes rules can be ill-conditioned.

Clenshaw-Curtis Quadrature

▶ To obtain a more stable quadrature rule, we need to ensure the integrated
interpolant is well-behaved as n increases:

▶ Chebyshev quadrature nodes ensure that interpolant polynomial has bounded
coefficients so long as f is bounded, since the Vandermonde system defining its
coefficients is well-conditioned.

▶ Formally, it can be shown that wi > 0 for the Chebyshev-node
(Clenshaw-Curtis) quadrature.

▶ The weights for Clenshaw-Curtis quadrature rules can be obtained by solutions
to Vandermonde systems on [−1, 1] with Chebyshev-spaced nodes, then
translating to a desired integration interval.

Gaussian Quadrature
▶ So far, we have only considered quadrature rules based on a fixed set of

nodes, but we may also be able to choose nodes to maximize accuracy:
▶ Choice of nodes gives additional n parameters for total 2n degrees of freedom.
▶ Permits exact integration of degree-(2n− 1) polynomials and corresponding

general accuracy.

▶ The unique n-point Gaussian quadrature rule is defined by the solution of the
nonlinear form of the moment equations in terms of both x and w:
Given any complete basis, we seek to solve the nonlinear equations for x,w,

V (x, {ϕi}2n+1
i=1)Tw = y, where yi = I(ϕi).

▶ These nonlinear equations generally have a unique solution (x∗,w∗).
▶ For fixed x, we have an overdetermined system of linear equations for w.

Demo: Gaussian quadrature weight finder

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Gaussian quadrature weight finder.html

Using Gaussian Quadrature Rules
▶ Gaussian quadrature rules are hard to compute, but can be enumerated for a

fixed interval, e.g. a = 0, b = 1, so it suffices to transform the integral to [0, 1]

▶ We can transform a given integral using variable substitution t = x−a
b−a ,

I(f) =
∫ b

a

f(x)dx = (b− a)

∫ 1

0

g(t)dt where g(t) = f(t(b− a) + a).

▶ For quadrature rules defined on [−1, 1], we can transform via the substitution
t = 2x−a

b−a − 1,

I(f) =
∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

g(t)dt where g(t) = f((t+ 1)(b− a)/2 + a).

▶ Gaussian quadrature rules are accurate and stable but not progressive
(nodes cannot be reused to obtain higher-degree approximation):
▶ maximal degree is obtained
▶ weights are always positive (perfect conditioning)

Progressive Gaussian-like Quadrature Rules

▶ Kronod quadrature rules construct (2n+1)-point (3n+1)-degree quadrature
K2n+1 that is progressive with respect to Gaussian quadrature rule Gn:
▶ Gaussian quadrature rule G2n+1 would use same number of points and have

degree 4n+ 1.
▶ Kronod rule points are optimal chosen to reuse all points of Gn, so n+ 1 rather

than 2n+ 1 new evaluations are necessary.

▶ Patterson quadrature rules use 2n+ 2 more points to extend (2n+ 1)-point
Kronod rule to degree 6n+ 4, while reusing all 2n+ 1 points.

▶ Gaussian quadrature rules are in general open, but Gauss-Radau and
Gauss-Lobatto rules permit including end-points:
Gauss-Radau uses one of two end-points as a node, while Gauss-Lobatto
quadrature uses both.

Composite and Adaptive Quadrature
▶ Composite quadrature rules are obtained by integrating a piecewise

interpolant of f :
For example, we can derive simple composite Newton-Cotes rules by
partitioning the domain into sub-intervals [xi, xi+1]:
▶ composite midpoint rule

I(f) =
n−1∑
i=1

∫ xi+1

xi

f(x)dx ≈
n−1∑
i=1

(xi+1 − xi)f((xi+1 + xi)/2)

▶ composite trapezoid rule

I(f) =
n−1∑
i=1

∫ xi+1

xi

f(x)dx ≈
n−1∑
i=1

(xi+1 − xi)

2
(f(xi+1) + f(xi))

▶ Composite quadrature can be done with adaptive refinement:
Introduce new nodes where error estimate is large. Error estimate can be
obtained by e.g., comparing trapezoid and midpoint rules, but can be
completely wrong if function is insufficiently smooth.

More Complicated Integration Problems
▶ To handle improper integrals can either transform integral to get rid of

infinite limit or use appropriate open quadrature rules.

▶ Double integrals can simply be computed by successive 1-D integration.
Composite multidimensional rules are also possible by partitioning the
domain into chunks, e.g., triangulation.

▶ High-dimensional integration is often effectively done by Monte Carlo:

∫
Ω
f(x)dx = E[Y], Y =

|Ω|
N

N∑
i=1

Yi, Yi = f(xi), xi chosen randomly from Ω.

▶ Convergence rate is independent of function (effective polynomial degree
approximation) or dimension of integration domain.

▶ Instead, it depends on number of samples (N), with error scaling as O(1/
√
N).

Integral Equations
▶ Rather than evaluating an integral, in solving an integral equation we seek to

compute the integrand. A typical linear integral equation has the form∫ b

a
K(s, t)u(t)dt = f(s), where K and f are known.

▶ Useful for recovering signal u given response function with kernel K and
measurements of f .

▶ Many differential equation problems can be transformed integral equations.
▶ Using a quadrature rule with weights w1, . . . , wn and nodes t1, . . . , tn obtain

n∑
j=1

wjK(s, tj)u(tj) = f(s).

Discrete sample of f on s1, . . . , sn yields a linear system of equations,
n∑

j=1

wjK(si, tj)u(tj) = f(si).

Numerical Differentiation
▶ Automatic (symbolic) differentiation is a surprisingly viable option:

▶ Any straight-line (no data-dependent branches) computer program is directly
differentiable, when a derivative exists, since it is an assembly of basic
arithmetic operations.

▶ Existing software packages can automatically differentiate whole programs.

▶ Numerical differentiation can be done by interpolation or finite differencing:
▶ Given polynomial interpolant, its derivative is easy to obtain by differentiating

the basis in which it is expressed,

f ′(x) ≈ p′(x) =
[
ϕ′
1(x) · · · ϕ′

n(x)
]T

V (t, {ϕi}ni=1)
−1y, where yi = f(ti).

▶ Obtaining the values of the derivative at the interpolation nodes, can be done via

V (t, {ϕ′
i}ni=1)V (t, {ϕi}ni=1)

−1︸ ︷︷ ︸
Differentiation matrix

y, where yi = f(ti).

▶ Finite-differencing formulas effectively use piecewise linear interpolant.

Demo: Taking Derivatives with Vandermonde Matrices

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Taking Derivatives with Vandermonde Matrices.html

Accuracy of Finite Differences
▶ Forward and backward differencing provide first-order accuracy:

These can be derived, respectively from forward and backward Taylor
expansions of f about x,

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)h2/2 + . . .

f(x− h) = f(x)− f ′(x)h+ f ′′(x)h2/2− . . .

For forward differencing, we obtain an approximation from the first equation,

f ′(x) =
f(x+ h)− f(x)

h
+ f ′′(x)h/2 +

▶ Centered differencing provides second-order accuracy. Subtracting the
backward Taylor expansion from the forward, we obtain centered differencing,

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2).

Second order accuracy is due to cancellation of odd terms like f ′′(x)h/2.

Demo: Finite Differences vs Noise
Demo: Floating point vs Finite Differences

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Finite Differences vs Noise.html
https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Floating point vs Finite Differences.html

Extrapolation Techniques
▶ Given a sequence of approximations to the result of a smooth function, a

more accurate approximation may be obtained by extrapolating this series.
As we lower the step size h in a finite-difference formula, we can try to
extrapolate the series F (h), F (h/2), F (h/4), F (h/8), . . . to h = 0. We have

F (h) = a0 + a1h
p +O(hr) as h → 0 and seek to determine F (0) = a0,

for example in centered differences p = 2 and r = 4.
▶ In particular, given two guesses, Richardson extrapolation eliminates the

leading order error term.
Seek to eliminate a1h

p term in F (h), F (h/2) to improve approximation of a0,

F (h) = a0 + a1h
p +O(hr),

F (h/2) = a0 + a1h
p/2p +O(hr),

a0 = F (h)− F (h)− F (h/2)

1− 1/2p
+O(hr).

Demo: Richardson with Finite Differences

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/08-quadrature-and-differentiation/Richardson with Finite Differences.html

High-Order Extrapolation
▶ Given a series of k composite-quadrature approximations, Romberg

integration applies (k − 1)-levels of Richardson extrapolation.
Compute k composite quadrature rules with node spacing (b− a)/2i for
i ∈, 1 . . . , k, resulting in I1, . . . , Ik then apply Richardson extrapolation first to
to (Ij , Ij+1) for each j ∈ {1, . . . , k − 1} to obtain k − 1 approximations and
so-on.

▶ Extrapolation can be used within an iterative procedure at each step:
For example, Steffensen’s method for finding roots of nonlinear equations,

xn+1 = xn +
f(xn)

1− f(xn + f(xn))/f(xn)
,

derived from Aitken’s delta-squared extrapolation process:
▶ achieves quadratic convergence,
▶ requires no derivative,
▶ competes with the Secant method (quadratic versus superlinear convergence,

but an extra function evaluation necessary).

	Introduction to Numerical Integration
	Quadrature Rules
	Error and Conditioning of Quadrature Rules
	Chebyshev Quadrature
	Gaussian Quadrature

