CS 450: Numerical Anlaysis’

Initial Value Problems for Ordinary Differential Equations

University of Illinois at Urbana-Champaign

"These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).


http://heath.cs.illinois.edu/scicomp/notes/index.html

Ordinary Differential Equations
» An ordinary differential equation (ODE) usually describes time-varying
system by a function y(t) that satisfies a set of equations in its derivatives.
The general implicit form is
gtyy.y ... .y") =0,

but we restrict focus on the explicit form, y*) = f(t,y,y',y",...,y* V).
» An ODE of any order k can be transformed into a first-order ODE,
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Consequently, we restrict our focus to systems of first-order ODEs. Linear
ODEs have the form y'(t) = A(t)y(t) + b(t), whose coefficients are said to be
constant if A(t) = A for all t, and is homogeneous if b(t) = 0.



Example: Newton’s Second Law

» Consider, F' = ma for a given force F', which is a second order ODE,

F=my"(t),
y'(t) = F/m.

The solution is y(t) = %(F/m)t2 + c1t + co, where c1 and ¢, depend on initial
conditions, i.e., values of y(0), ¥/ (0).

» We can transform it into a first order ODE in two variables:

‘o {5’%} ’



Initial Value Problems

» Generally, a first order ODE specifies only the derivative, so the solutions are
non-unique. An initial condition addresses this:

y(to) = Yo

This condition yields an initial value problem (IVP), which is the simplest
example of a boundary condition.

» Given an initial condition, an ODE must satisfy an integral equation for any
given point ¢

y(t)=yo+ [ f(s,y(s))ds,

to

Ifit is the case that f(t,y(t)) is not dependent on y(t), the integral can be
computed directly by numerical quadrature to solve the ODE.



Existence and Uniqueness of Solutions
» For an ODE to have a unique solution, it must be defined on a closed domain
D and be Lipschitz continuous:

Vy,ge D, |f(t,9)—fty)l2<Llg—yl2,

i.e. the rate of change of the ODE solution should itself change continuously.
Any differentiable function f is Lipschitz continuous with

L= T (t,y)|2,
(t{g%)\l sty

where Jy is Jacobian of f with respect to y. For an IVP, this continuity
condition is also sufficient for existence and uniqueness of a solution.

» The solutions of an ODE can be stable, unstable, or asymptotically stable:
Perturbation to the input causes a perturbation to the solution that

» has bounded growth for a stable ODE,
» unbounded growth for an unstable ODE, and
» shrinks for an asymptotically stable ODE.



Stability of 1D ODEs

» The solution to the scalar ODE ¢ = \y is y(t) = yoe, with stability
dependent on A:

oo : A >0 (unstable)
tli)m y(t) =< yo :A=0 (stable)
0 : X <0 (asymptotically stable)

» A constant-coefficient linear ODE has the form y’ = Ay, with stability
dependent on the real parts of the eigenvalues of A:

> At a point (t,y), any ODE can be approximated by a linear ODE of the form
z' =Js(t,y)z.

» For general ODEs, stability can be ascertained locally by considering the
eigenvalues of J¢(t,y).



Demo: Forward Euler stability

Numerical Solutions to ODEs

» Methods for numerical ODEs seek to approximate y(t) at {t;};,.
Compute y;, for k € {1,...,m} so as to approximate y(t.) ~ yi. For an IVP,
typically form yy.1 using y;. or additionally (for multistep methods) yy._1, . ..

» Euler’s method provides the simplest method (attempt) for obtaining a
numerical solution:
Approximation solution to ODE at ti. + h by linear segment from (ty, yi) with
slope f(tr, yx),
Yit1 = Y + hif (b, Yi).-
This approximation is the first order form of various models (Taylor series,
finite differences, interpolation, quadrature, undetermined coefficients).


https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/09-initial-value-problems/Forward Euler stability.html

Error in Numerical Methods for ODEs

» Truncation error is typically the main quantity of interest, which can be
defined globally or locally:
» Global error is measured at all points

er = Yr — Y(tr)

» Local error measures the deviation from the exact solution wy_1(t) passing
through the previous point (ti—1,yr—1),

Iy = yr — up—1(ts).

» The order of accuracy of a given method is one less than than the order of
the leading order term in the local error I;:

» Accuracy is of order p ifly, = O(hi”), for forward Euler p = 1 since

Y(tir1) = y(te) + ha f(te, y(tr)) + O(hR),

soly = O(h3).



Accuracy and Taylor Series Methods

» By taking a degree-r Taylor expansion of the ODE in ¢, at each consecutive
(tx, yr), we achieve rth order accuracy.

We can bound the local approximation error as the error in the Taylor
expansion,

y(tr +h) = y(ty) + 9 (te)h+ -+ y " (te) R /7!
which is O(h™*1), leading to O(h™) accuracy in the approximation to f(t,y).
Euler’s method is a first-order Taylor series method.
» Taylor series methods require high-order derivatives at each step:

» Analytic differentiation is expensive, so seek to approximate.

» Can perform a finite-differencing approximation by evaluating at points near
(tx, yr) (Multi-stage methods) or simply using previous points, e.g. (tx—1,Yx—1)
(multi-step methods).



Demo: Stability regions

Growth Factors and Stability Regions
» Stability of an ODE method discerns whether local errors are amplified,
deamplified, or stay constant:
» A method is stable if the growth factor of the error is less than or equal to one.

» The stability region for a method describes stablie step-sizes via
> the step size h (assuming its constant) and
» eigenvalues )\, usually as a function of h\.

» Basic stability properties follow from analysis of linear scalar ODE, which
serves as a local approximation to more complex ODEs.
» Consider forward Euler for the ODE y' = \y, where

Yk+1 = Yk + hAye = (1 +hA) yp.
N—_——
growth factor
> Euler’s method requires |1 + hA| < 1 to be stable, which implies —2 < hA <0

» Relative to the local errors 14, ..., 1, the global error e, satisfies

k
ex =l + (1+hNer—1 = > _(1+hN)FL

=1


https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/09-initial-value-problems/Stability regions.html

Stability Region for Forward Euler
» The stability region of a general ODE constrains the eigenvalues of hJ;

> Given propogated error ey, = yi — y(tx), Forward Euler gives

err1 = Yr +hf(t,yr) — y(trs1)
=yp +hf(tyr) — (y(ts) + Fte, y(te)h — 1)
= ey + hJy(ty, yu)ex + Ik + O(||ek||2)

» Consequently the growth factor for Forward Euler is I + hyJ¢(ti, Yi)-

» Forward Euler is asymptotically stable if the spectral radius of the growth factor
is less than one, so the eigenvalues of hyJ¢(t, yi) must always lie within a
stability region that is a circle on the complex plane centered at —1 of radius 1.




Demo: Backward Euler stability

Backward Euler Method

» Implicit methods for ODEs form a sequence of solutions that satisfy
conditions on a local approximation to the solution:

The most basic implicit method is the backward Euler method

Yit1 = Yk + e f(tet1, Ybt1),

which solves for y;..1 so that a linear approximation of the solution at tj.
passes through the point (t, yx). Just like forward Euler, first-order accuracy
is achieved by the linear approximation.

> The stability region of the backward Euler method is the left half of the
complex plane:

Such a method is called unconditionally stable. Note that the growth factor
can be derived via

1
Ykt1 = Yk T RAYR41L = 753 ks

and satisfies |1/(1 — hA)| < 1 so long as hA < 0.


https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/09-initial-value-problems/Backward Euler stability.html

Demo: Stiffness

Stiffness

» Stiff ODEs are ones that contain components that vary at disparate
time-scales:
» These are challenging since they require both high accuracy and stability
» A linear ODE is stiff if the eigenvalues of A are disparate in magnitude
» Explicit methods must use small step size h to ensure stability
» Implicit methods are stable with any step size and hence effective for stiff ODEs


https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/09-initial-value-problems/Stiffness.html

Trapezoid Method

> A second-order accurate implicit method is the trapezoid method
Y1 = Yk + A (F (e, yr) + f(ter1, Yer1))/2,

» This method takes the average of the backward and forward Euler steps.

1+h)/2

» [ts growth factor is T SvoR

» Since ) iZ’A\g‘ < 1forany A <0, the method is unconditionally stable.

» Generally, methods can be derived from quadrature rules:
» Evaluate or approximate f at a set of points near (ti, yx ).

» Use weights from a given quadrature rule to approximate solution to local
integral equation.

» Finding appropriate quadrature nodes is hard, implicit methods in effect solve
for them.



Multi-Stage Methods

» Multi-stage methods construct yi.1 by approximating y between ¢, and t51:

» Runge-Kutta methods are the most well-known family of these, simple example
is Heun’s method,

Yor1 = Yr + h f(tkayk)/2+f<tk+h7yk+hf(tk»yk)>/2:|'
—— ———

V1 U1
» We can think of the above method as employing the trapezoid quadrature rule.

» The difference between Heun’s method and the (implicit) trapezoid method is
that we evaluate at f(t; + h, yx + hv1) rather than working with the implicit
value of f(tx + h, Yr+1)-

» The 4th order Runge-Kutta scheme is particularly popular:
This scheme uses Simpson’s rule,

Y1 = Y + (1/6)(v1 + 202 + 2v3 + v4)
U1 = f(tk’?yk)? V2 = .f(tk? + h/27yk + (h/2)’01),
v3 = f(tr +h/2,yr + (h/2)v2), ve = f(ty + h, yx + hvs).



Demo: Dissipation in Runge-Kutta Methods

Runge-Kutta Methods

» Runge-Kutta methods evaluate f at t; + ¢;h for co,..., ¢, € [0,1],
tr+h r—1
wte)=wt [ FeylsDds ~ uoth Y wif(tt e )
Uk i=0

where {(c;,w;)};_, are quadrature (node, weight) pairs.
» A general family of Runge Kutta methods can be defined by

G = Ye + 0> aij £ty + cih, Gxy).
J

Runge Kutta methods can then be represented by a Butcher tableau,
0

cl A 1/2 | 1/2
- €g. for RK4 A has a single subdiagonal, 12| o 1/2
w 1 0 0 1

[ 176 1/3 1/3 1/6

If A is strictly lower triangular (a;; = 0 for j > i), the scheme is explicit, if A
is lower-triangular then it is diagonally implicit, and otherwise implicit.


https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/09-initial-value-problems/Dissipation in Runge-Kutta Methods.html

Multistep Methods

> Multistep methods employ {y;}¥_, to compute yy1:
Linear multistep methods have the form,

m m
Yerr = Y itkr1—i+ 0> Bif (b1 ir Yrs1-i)-
=1 1=0

Interpolation is used to determine each «; and 8;, method is explicit if 5y = 0.
» Multistep methods are not self-starting, but have practical advantages:
» Can be initiated by Runge-Kutta methods.
» They require few function evaluations.

» Generalize to non-uniformly-spaced points (multivalue methods).
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