CS 450: Numerical Anlaysis¹ Initial Value Problems for Ordinary Differential Equations

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Ordinary Differential Equations

An ordinary differential equation (ODE) usually describes time-varying system by a function y(t) that satisfies a set of equations in its derivatives. The general implicit form is

$$\boldsymbol{g}(t, \boldsymbol{y}, \boldsymbol{y}', \boldsymbol{y}'', \dots, \boldsymbol{y}^{(k)}) = \boldsymbol{0},$$

but we restrict focus on the explicit form, $y^{(k)} = f(t, y, y', y'', \dots, y^{(k-1)})$. An ODE of any order k can be transformed into a first-order ODE,

$$\boldsymbol{u}' = \begin{bmatrix} \boldsymbol{u}'_1 \\ \vdots \\ \boldsymbol{u}'_{k-1} \\ \boldsymbol{u}'_k \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}_2 \\ \vdots \\ \boldsymbol{u}_k \\ \boldsymbol{f}(t, \boldsymbol{u}_1, \dots, \boldsymbol{u}_k) \end{bmatrix} \quad \textit{where} \quad \boldsymbol{u}_i(t) = \boldsymbol{y}^{(i-1)}(t).$$

Consequently, we restrict our focus to systems of first-order ODEs. Linear ODEs have the form y'(t) = A(t)y(t) + b(t), whose coefficients are said to be constant if A(t) = A for all t, and is homogeneous if b(t) = 0.

Example: Newton's Second Law

• Consider, F = ma for a given force F, which is a second order ODE,

$$F = my''(t),$$

$$y''(t) = F/m.$$

The solution is $y(t) = \frac{1}{2}(F/m)t^2 + c_1t + c_2$, where c_1 and c_2 depend on initial conditions, i.e., values of y(0), y'(0).

We can transform it into a first order ODE in two variables:

$$oldsymbol{u} = egin{bmatrix} y(t) \ y'(t) \end{bmatrix}, \ egin{bmatrix} u_1' \ u_2' \end{bmatrix} = oldsymbol{u}' = oldsymbol{f}(t,oldsymbol{u}) = egin{bmatrix} u_2 \ F/m \end{bmatrix}.$$

Initial Value Problems

Generally, a first order ODE specifies only the derivative, so the solutions are non-unique. An *initial condition* addresses this:

$$\boldsymbol{y}(t_0) = \boldsymbol{y}_0$$

This condition yields an initial value problem (IVP), which is the simplest example of a boundary condition.

Given an initial condition, an ODE must satisfy an integral equation for any given point t:

$$oldsymbol{y}(t) = oldsymbol{y}_0 + \int_{t_0}^t oldsymbol{f}(s,oldsymbol{y}(s)) ds,$$

If it is the case that f(t, y(t)) is not dependent on y(t), the integral can be computed directly by numerical quadrature to solve the ODE.

Existence and Uniqueness of Solutions

For an ODE to have a unique solution, it must be defined on a closed domain D and be Lipschitz continuous:

 $\forall \boldsymbol{y}, \boldsymbol{\hat{y}} \in D, \quad \|\boldsymbol{f}(t, \boldsymbol{\hat{y}}) - \boldsymbol{f}(t, \boldsymbol{y})\|_2 \le L \|\boldsymbol{\hat{y}} - \boldsymbol{y}\|_2,$

i.e. the rate of change of the ODE solution should itself change continuously. Any differentiable function f is Lipschitz continuous with

 $L = \max_{(t,\boldsymbol{y})\in D} \|\boldsymbol{J}_{\boldsymbol{f}}(t,\boldsymbol{y})\|_2,$

where J_f is Jacobian of f with respect to y. For an IVP, this continuity condition is also sufficient for existence and uniqueness of a solution.

- The solutions of an ODE can be stable, unstable, or asymptotically stable: Perturbation to the input causes a perturbation to the solution that
 - has bounded growth for a stable ODE,
 - unbounded growth for an unstable ODE, and
 - shrinks for an asymptotically stable ODE.

Stability of 1D ODEs

• The solution to the scalar ODE $y' = \lambda y$ is $y(t) = y_0 e^{\lambda t}$, with stability dependent on λ :

 $\lim_{t \to \infty} y(t) = \begin{cases} \infty &: \lambda > 0 \text{ (unstable)} \\ y_0 &: \lambda = 0 \text{ (stable)} \\ 0 &: \lambda < 0 \text{ (asymptotically stable)} \end{cases}$

- A constant-coefficient linear ODE has the form y' = Ay, with stability dependent on the real parts of the eigenvalues of A:
 - At a point (t, y), any ODE can be approximated by a linear ODE of the form $z' = J_f(t, y)z$.
 - For general ODEs, stability can be ascertained locally by considering the eigenvalues of J_f(t, y).

Numerical Solutions to ODEs

- Methods for numerical ODEs seek to approximate y(t) at $\{t_k\}_{k=1}^m$. Compute y_k for $k \in \{1, ..., m\}$ so as to approximate $y(t_k) \approx y_k$. For an IVP, typically form y_{k+1} using y_k or additionally (for multistep methods) $y_{k-1},...$
- Euler's method provides the simplest method (attempt) for obtaining a numerical solution:

Approximation solution to ODE at $t_k + h$ by linear segment from (t_k, y_k) with slope $f(t_k, y_k)$,

$$\boldsymbol{y}_{k+1} = \boldsymbol{y}_k + h_k \boldsymbol{f}(t_k, \boldsymbol{y}_k).$$

This approximation is the first order form of various models (Taylor series, finite differences, interpolation, quadrature, undetermined coefficients).

Error in Numerical Methods for ODEs

- Truncation error is typically the main quantity of interest, which can be defined *globally* or *locally*:
 - Global error is measured at all points

$$\boldsymbol{e}_k = \boldsymbol{y}_k - \boldsymbol{y}(t_k).$$

Local error measures the deviation from the exact solution $u_{k-1}(t)$ passing through the previous point (t_{k-1}, y_{k-1}) ,

$$\boldsymbol{l}_k = \boldsymbol{y}_k - \boldsymbol{u}_{k-1}(t_k).$$

- The order of accuracy of a given method is one less than than the order of the leading order term in the local error l_k:
 - Accuracy is of order p if $l_k = O(h_k^{p+1})$, for forward Euler p = 1 since

$$\boldsymbol{y}(t_{k+1}) = \boldsymbol{y}(t_k) + h_k \boldsymbol{f}(t_k, \boldsymbol{y}(t_k)) + O(h_k^2),$$

so $l_k = O(h_k^2)$.

Accuracy and Taylor Series Methods

b By taking a degree-r Taylor expansion of the ODE in t, at each consecutive (t_k, y_k) , we achieve rth order accuracy.

We can bound the local approximation error as the error in the Taylor expansion,

$$oldsymbol{y}(t_k+h)=oldsymbol{y}(t_k)+oldsymbol{y}'(t_k)h+\cdots+oldsymbol{y}^{(r)}(t_k)h^r/r!$$

which is $O(h^{r+1})$, leading to $O(h^r)$ accuracy in the approximation to f(t, y). Euler's method is a first-order Taylor series method.

- Taylor series methods require high-order derivatives at each step:
 - Analytic differentiation is expensive, so seek to approximate.
 - Can perform a finite-differencing approximation by evaluating at points near (t_k, y_k) (multi-stage methods) or simply using previous points, e.g. (t_{k-1}, y_{k-1}) (multi-step methods).

Growth Factors and Stability Regions

- Stability of an ODE method discerns whether local errors are amplified, deamplified, or stay constant:
 - A method is stable if the growth factor of the error is less than or equal to one.
 - > The stability region for a method describes stablie step-sizes via
 - the step size h (assuming its constant) and
 - eigenvalues λ , usually as a function of $h\lambda$.
- Basic stability properties follow from analysis of linear scalar ODE, which serves as a local approximation to more complex ODEs.
 - Consider forward Euler for the ODE $y' = \lambda y$, where

$$y_{k+1} = y_k + h\lambda y_k = \underbrace{(1+h\lambda)}_{growth\ factor} y_k$$

- Euler's method requires $|1 + h\lambda| \le 1$ to be stable, which implies $-2 \le h\lambda \le 0$
- Relative to the local errors l_1, \ldots, l_k , the global error e_k satisfies

$$e_k = l_k + (1 + h\lambda)e_{k-1} = \sum_{i=1}^k (1 + h\lambda)^{k-i}l_i.$$

Stability Region for Forward Euler

- The stability region of a general ODE constrains the eigenvalues of hJ_f
 - Given propogated error $oldsymbol{e}_k = oldsymbol{y}_k oldsymbol{y}(t_k)$, Forward Euler gives

$$\begin{aligned} e_{k+1} &= y_k + h f(t, y_k) - y(t_{k+1}) \\ &= y_k + h f(t, y_k) - (y(t_k) + f(t_k, y(t_k))h - \hat{l}_k) \\ &= e_k + h J_f(t_k, y_k) e_k + \hat{l}_k + O(||e_k||^2) \end{aligned}$$

- Consequently the growth factor for Forward Euler is $I + h_k J_f(t_k, y_k)$.
- ► Forward Euler is asymptotically stable if the spectral radius of the growth factor is less than one, so the eigenvalues of h_kJ_f(t_k, y_k) must always lie within a stability region that is a circle on the complex plane centered at −1 of radius 1.

Backward Euler Method

Implicit methods for ODEs form a sequence of solutions that satisfy conditions on a local approximation to the solution:

The most basic implicit method is the backward Euler method

 $\boldsymbol{y}_{k+1} = \boldsymbol{y}_k + \boldsymbol{h}_k \boldsymbol{f}(t_{k+1}, \boldsymbol{y}_{k+1}),$

which solves for y_{k+1} so that a linear approximation of the solution at t_{k+1} passes through the point (t_k, y_k) . Just like forward Euler, first-order accuracy is achieved by the linear approximation.

The stability region of the backward Euler method is the left half of the complex plane:

Such a method is called unconditionally stable. Note that the growth factor can be derived via

$$y_{k+1} = y_k + h\lambda y_{k+1} = \frac{1}{1 - h\lambda} y_k,$$

and satisfies $|1/(1-h\lambda)| \le 1$ so long as $h\lambda \le 0$.

Stiffness

- Stiff ODEs are ones that contain components that vary at disparate time-scales:
 - These are challenging since they require both high accuracy and stability
 - A linear ODE is stiff if the eigenvalues of A are disparate in magnitude
 - Explicit methods must use small step size h to ensure stability
 - Implicit methods are stable with any step size and hence effective for stiff ODEs

Trapezoid Method

A second-order accurate implicit method is the trapezoid method

$$y_{k+1} = y_k + h_k(f(t_k, y_k) + f(t_{k+1}, y_{k+1}))/2,$$

- This method takes the average of the backward and forward Euler steps.
- Its growth factor is $\frac{1+h\lambda/2}{1-h\lambda/2}$.
- Since $\left|\frac{1+h\lambda/2}{1-h\lambda/2}\right| \leq 1$ for any $\lambda < 0$, the method is unconditionally stable.
- Generally, methods can be derived from quadrature rules:
 - Evaluate or approximate f at a set of points near (t_k, y_k) .
 - Use weights from a given quadrature rule to approximate solution to local integral equation.
 - Finding appropriate quadrature nodes is hard, implicit methods in effect solve for them.

Multi-Stage Methods

- Multi-stage methods construct y_{k+1} by approximating y between t_k and t_{k+1} :
 - Runge-Kutta methods are the most well-known family of these, simple example is Heun's method,

$$\boldsymbol{y}_{k+1} = \boldsymbol{y}_k + h \left[\underbrace{\boldsymbol{f}(t_k, \boldsymbol{y}_k)}_{\boldsymbol{v}_1} / 2 + \boldsymbol{f} \left(t_k + h, \boldsymbol{y}_k + h \underbrace{\boldsymbol{f}(t_k, \boldsymbol{y}_k)}_{\boldsymbol{v}_1} \right) / 2 \right].$$

- We can think of the above method as employing the trapezoid quadrature rule.
- ▶ The difference between Heun's method and the (implicit) trapezoid method is that we evaluate at $f(t_k + h, y_k + hv_1)$ rather than working with the implicit value of $f(t_k + h, y_{k+1})$.
- The 4th order Runge-Kutta scheme is particularly popular: This scheme uses Simpson's rule,

$$\begin{aligned} y_{k+1} &= y_k + (h/6)(v_1 + 2v_2 + 2v_3 + v_4) \\ v_1 &= f(t_k, y_k), \\ v_3 &= f(t_k + h/2, y_k + (h/2)v_2), \end{aligned} v_2 &= f(t_k + h/2, y_k + (h/2)v_1), \\ v_4 &= f(t_k + h, y_k + hv_3). \end{aligned}$$

Demo: Dissipation in Runge-Kutta Methods

Runge-Kutta Methods

▶ Runge-Kutta methods evaluate f at $t_k + c_i h$ for $c_0, \ldots, c_r \in [0, 1]$,

$$\boldsymbol{u}_k(t_{k+1}) = \boldsymbol{y}_k + \int_{t_k}^{t_k+h} \boldsymbol{f}(s, \boldsymbol{y}(s)) ds \quad \approx \quad \boldsymbol{y}_k + h \sum_{i=0}^{r-1} w_i \boldsymbol{f}(t_k + c_i h, \hat{\boldsymbol{y}}_{ki}),$$

where $\{(c_i, w_i)\}_{i=0}^r$ are quadrature (node, weight) pairs.

A general family of Runge Kutta methods can be defined by

$$\hat{\boldsymbol{y}}_{ki} = \boldsymbol{y}_k + h \sum_j a_{ij} \boldsymbol{f}(t_k + c_i h, \hat{\boldsymbol{y}}_{kj}).$$

Runge Kutta methods can then be represented by a Butcher tableau,

If A is strictly lower triangular ($a_{ij} = 0$ for $j \ge i$), the scheme is explicit, if A is lower-triangular then it is diagonally implicit, and otherwise implicit.

Multistep Methods

• Multistep methods employ $\{y_i\}_{i=0}^k$ to compute y_{k+1} : Linear multistep methods have the form,

$$\boldsymbol{y}_{k+1} = \sum_{i=1}^{m} \alpha_i \boldsymbol{y}_{k+1-i} + h \sum_{i=0}^{m} \beta_i \boldsymbol{f}(t_{k+1-i}, \boldsymbol{y}_{k+1-i}).$$

Interpolation is used to determine each α_i and β_i , method is explicit if $\beta_0 = 0$.

- Multistep methods are not self-starting, but have practical advantages:
 - Can be initiated by Runge-Kutta methods.
 - They require few function evaluations.
 - Generalize to non-uniformly-spaced points (multivalue methods).