
CS 450: Numerical Anlaysis1

Initial Value Problems for Ordinary Differential Equations

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).

http://heath.cs.illinois.edu/scicomp/notes/index.html

Ordinary Differential Equations
▶ An ordinary differential equation (ODE) usually describes time-varying

system by a function y(t) that satisfies a set of equations in its derivatives.
The general implicit form is

g(t,y,y′,y′′, . . . ,y(k)) = 0,

but we restrict focus on the explicit form, y(k) = f(t,y,y′,y′′, . . . ,y(k−1)).

▶ An ODE of any order k can be transformed into a first-order ODE,

u′ =


u′
1
...

u′
k−1

u′
k

 =


u2
...
uk

f(t,u1, . . . ,uk)

 where ui(t) = y(i−1)(t).

Consequently, we restrict our focus to systems of first-order ODEs. Linear
ODEs have the form y′(t) = A(t)y(t) + b(t), whose coefficients are said to be
constant if A(t) = A for all t, and is homogeneous if b(t) = 0.

Example: Newton’s Second Law

▶ Consider, F = ma for a given force F , which is a second order ODE,

F = my′′(t),

y′′(t) = F/m.

The solution is y(t) = 1
2(F/m)t2 + c1t+ c2, where c1 and c2 depend on initial

conditions, i.e., values of y(0), y′(0).
▶ We can transform it into a first order ODE in two variables:

u =

[
y(t)
y′(t)

]
,[

u′1
u′2

]
= u′ = f(t,u) =

[
u2

F/m

]
.

Initial Value Problems

▶ Generally, a first order ODE specifies only the derivative, so the solutions are
non-unique. An initial condition addresses this:

y(t0) = y0

This condition yields an initial value problem (IVP), which is the simplest
example of a boundary condition.

▶ Given an initial condition, an ODE must satisfy an integral equation for any
given point t:

y(t) = y0 +

∫ t

t0

f(s,y(s))ds,

If it is the case that f(t,y(t)) is not dependent on y(t), the integral can be
computed directly by numerical quadrature to solve the ODE.

Existence and Uniqueness of Solutions
▶ For an ODE to have a unique solution, it must be defined on a closed domain

D and be Lipschitz continuous:

∀y, ŷ ∈ D, ∥f(t, ŷ)− f(t,y)∥2 ≤ L∥ŷ − y∥2,

i.e. the rate of change of the ODE solution should itself change continuously.
Any differentiable function f is Lipschitz continuous with

L = max
(t,y)∈D

∥Jf (t,y)∥2,

where Jf is Jacobian of f with respect to y. For an IVP, this continuity
condition is also sufficient for existence and uniqueness of a solution.

▶ The solutions of an ODE can be stable, unstable, or asymptotically stable:
Perturbation to the input causes a perturbation to the solution that
▶ has bounded growth for a stable ODE,
▶ unbounded growth for an unstable ODE, and
▶ shrinks for an asymptotically stable ODE.

Stability of 1D ODEs

▶ The solution to the scalar ODE y′ = λy is y(t) = y0e
λt, with stability

dependent on λ:

lim
t→∞

y(t) =


∞ : λ > 0 (unstable)
y0 : λ = 0 (stable)
0 : λ < 0 (asymptotically stable)

▶ A constant-coefficient linear ODE has the form y′ = Ay, with stability
dependent on the real parts of the eigenvalues of A:
▶ At a point (t,y), any ODE can be approximated by a linear ODE of the form

z′ = Jf (t,y)z.
▶ For general ODEs, stability can be ascertained locally by considering the

eigenvalues of Jf (t,y).

Numerical Solutions to ODEs

▶ Methods for numerical ODEs seek to approximate y(t) at {tk}mk=1.
Compute yk for k ∈ {1, . . . ,m} so as to approximate y(tk) ≈ yk. For an IVP,
typically form yk+1 using yk or additionally (for multistep methods) yk−1, . . .

▶ Euler’s method provides the simplest method (attempt) for obtaining a
numerical solution:
Approximation solution to ODE at tk + h by linear segment from (tk,yk) with
slope f(tk,yk),

yk+1 = yk + hkf(tk,yk).

This approximation is the first order form of various models (Taylor series,
finite differences, interpolation, quadrature, undetermined coefficients).

Demo: Forward Euler stability

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/09-initial-value-problems/Forward Euler stability.html

Error in Numerical Methods for ODEs
▶ Truncation error is typically the main quantity of interest, which can be

defined globally or locally:
▶ Global error is measured at all points

ek = yk − y(tk).

▶ Local error measures the deviation from the exact solution uk−1(t) passing
through the previous point (tk−1,yk−1),

lk = yk − uk−1(tk).

▶ The order of accuracy of a given method is one less than than the order of
the leading order term in the local error lk:
▶ Accuracy is of order p if lk = O(hp+1

k), for forward Euler p = 1 since

y(tk+1) = y(tk) + hkf(tk,y(tk)) +O(h2
k),

so lk = O(h2
k).

Accuracy and Taylor Series Methods
▶ By taking a degree-r Taylor expansion of the ODE in t, at each consecutive

(tk,yk), we achieve rth order accuracy.
We can bound the local approximation error as the error in the Taylor
expansion,

y(tk + h) = y(tk) + y′(tk)h+ · · ·+ y(r)(tk)h
r/r!

which is O(hr+1), leading to O(hr) accuracy in the approximation to f(t,y).
Euler’s method is a first-order Taylor series method.

▶ Taylor series methods require high-order derivatives at each step:
▶ Analytic differentiation is expensive, so seek to approximate.
▶ Can perform a finite-differencing approximation by evaluating at points near

(tk,yk) (multi-stage methods) or simply using previous points, e.g. (tk−1,yk−1)
(multi-step methods).

Growth Factors and Stability Regions
▶ Stability of an ODE method discerns whether local errors are amplified,

deamplified, or stay constant:
▶ A method is stable if the growth factor of the error is less than or equal to one.
▶ The stability region for a method describes stablie step-sizes via

▶ the step size h (assuming its constant) and
▶ eigenvalues λ, usually as a function of hλ.

▶ Basic stability properties follow from analysis of linear scalar ODE, which
serves as a local approximation to more complex ODEs.
▶ Consider forward Euler for the ODE y′ = λy, where

yk+1 = yk + hλyk = (1 + hλ)︸ ︷︷ ︸
growth factor

yk.

▶ Euler’s method requires |1 + hλ| ≤ 1 to be stable, which implies −2 ≤ hλ ≤ 0

▶ Relative to the local errors l1, . . . , lk, the global error ek satisfies

ek = lk + (1 + hλ)ek−1 =
k∑

i=1

(1 + hλ)k−ili.

Demo: Stability regions

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/09-initial-value-problems/Stability regions.html

Stability Region for Forward Euler
▶ The stability region of a general ODE constrains the eigenvalues of hJf

▶ Given propogated error ek = yk − y(tk), Forward Euler gives

ek+1 = yk + hf(t,yk)− y(tk+1)

= yk + hf(t,yk)− (y(tk) + f(tk,y(tk))h− l̂k)

= ek + hJf (tk,yk)ek + l̂k +O(∥ek∥2)

▶ Consequently the growth factor for Forward Euler is I + hkJf (tk,yk).
▶ Forward Euler is asymptotically stable if the spectral radius of the growth factor

is less than one, so the eigenvalues of hkJf (tk,yk) must always lie within a
stability region that is a circle on the complex plane centered at −1 of radius 1.

Backward Euler Method
▶ Implicit methods for ODEs form a sequence of solutions that satisfy

conditions on a local approximation to the solution:
The most basic implicit method is the backward Euler method

yk+1 = yk + hkf(tk+1,yk+1),

which solves for yk+1 so that a linear approximation of the solution at tk+1

passes through the point (tk,yk). Just like forward Euler, first-order accuracy
is achieved by the linear approximation.

▶ The stability region of the backward Euler method is the left half of the
complex plane:
Such a method is called unconditionally stable. Note that the growth factor
can be derived via

yk+1 = yk + hλyk+1 =
1

1− hλ
yk,

and satisfies |1/(1− hλ)| ≤ 1 so long as hλ ≤ 0.

Demo: Backward Euler stability

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/09-initial-value-problems/Backward Euler stability.html

Stiffness

▶ Stiff ODEs are ones that contain components that vary at disparate
time-scales:
▶ These are challenging since they require both high accuracy and stability
▶ A linear ODE is stiff if the eigenvalues of A are disparate in magnitude
▶ Explicit methods must use small step size h to ensure stability
▶ Implicit methods are stable with any step size and hence effective for stiff ODEs

Demo: Stiffness

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/09-initial-value-problems/Stiffness.html

Trapezoid Method
▶ A second-order accurate implicit method is the trapezoid method

yk+1 = yk + hk(f(tk,yk) + f(tk+1,yk+1))/2,

▶ This method takes the average of the backward and forward Euler steps.

▶ Its growth factor is 1+hλ/2
1−hλ/2 .

▶ Since
∣∣∣ 1+hλ/2
1−hλ/2

∣∣∣ ≤ 1 for any λ < 0, the method is unconditionally stable.

▶ Generally, methods can be derived from quadrature rules:
▶ Evaluate or approximate f at a set of points near (tk,yk).
▶ Use weights from a given quadrature rule to approximate solution to local

integral equation.
▶ Finding appropriate quadrature nodes is hard, implicit methods in effect solve

for them.

Multi-Stage Methods
▶ Multi-stage methods construct yk+1 by approximating y between tk and tk+1:

▶ Runge-Kutta methods are the most well-known family of these, simple example
is Heun’s method,

yk+1 = yk + h

[
f(tk,yk)︸ ︷︷ ︸

v1

/2 + f
(
tk + h,yk + hf(tk,yk)︸ ︷︷ ︸

v1

)
/2

]
.

▶ We can think of the above method as employing the trapezoid quadrature rule.
▶ The difference between Heun’s method and the (implicit) trapezoid method is

that we evaluate at f(tk + h,yk + hv1) rather than working with the implicit
value of f(tk + h,yk+1).

▶ The 4th order Runge-Kutta scheme is particularly popular:
This scheme uses Simpson’s rule,

yk+1 = yk + (h/6)(v1 + 2v2 + 2v3 + v4)

v1 = f(tk,yk), v2 = f(tk + h/2,yk + (h/2)v1),

v3 = f(tk + h/2,yk + (h/2)v2), v4 = f(tk + h,yk + hv3).

Runge-Kutta Methods
▶ Runge-Kutta methods evaluate f at tk + cih for c0, . . . , cr ∈ [0, 1],

uk(tk+1) = yk +

∫ tk+h

tk

f(s,y(s))ds ≈ yk + h

r−1∑
i=0

wif(tk + cih, ŷki),

where {(ci, wi)}ri=0 are quadrature (node, weight) pairs.
▶ A general family of Runge Kutta methods can be defined by

ŷki = yk + h
∑
j

aijf(tk + cih, ŷkj).

Runge Kutta methods can then be represented by a Butcher tableau,

c A

wT
e.g. for RK4 A has a single subdiagonal,

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

If A is strictly lower triangular (aij = 0 for j ≥ i), the scheme is explicit, if A
is lower-triangular then it is diagonally implicit, and otherwise implicit.

Demo: Dissipation in Runge-Kutta Methods

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/09-initial-value-problems/Dissipation in Runge-Kutta Methods.html

Multistep Methods

▶ Multistep methods employ {yi}ki=0 to compute yk+1:
Linear multistep methods have the form,

yk+1 =

m∑
i=1

αiyk+1−i + h

m∑
i=0

βif(tk+1−i,yk+1−i).

Interpolation is used to determine each αi and βi, method is explicit if β0 = 0.
▶ Multistep methods are not self-starting, but have practical advantages:

▶ Can be initiated by Runge-Kutta methods.
▶ They require few function evaluations.
▶ Generalize to non-uniformly-spaced points (multivalue methods).

	Introduction to ODEs
	Existence and Uniqueness of Solutions
	Stability and Error in ODEs
	Explicit Methods
	Stability Regions

	Implicit Schemes
	High-Order Methods
	Runge-Kutta Methods
	Multistep Methods

