CS 450: Numerical Anlaysis ${ }^{1}$
 Boundary Value Problems for Ordinary Differential Equations

University of Illinois at Urbana-Champaign

[^0]
Boundary Conditions

- Often we seek to solve a differential equation that satisfies conditions on its values and derivatives on parts of the domain boundary.
- Consider a first order ODE $\boldsymbol{y}^{\prime}(t)=\boldsymbol{f}(t, \boldsymbol{y})$ with linear boundary conditions on domain $t \in[a, b]$:

$$
\boldsymbol{B}_{a} \boldsymbol{y}(a)+\boldsymbol{B}_{b} \boldsymbol{y}(b)=\boldsymbol{c}
$$

Existence of Solutions for Linear ODE BVPs

- The solutions of linear ODE BVP $\boldsymbol{y}^{\prime}(t)=\boldsymbol{A}(t) \boldsymbol{y}(t)+\boldsymbol{b}(t)$ are linear combinations of solutions to linear homogeneous ODE IVPs $\boldsymbol{y}^{\prime}(t)=\boldsymbol{A}(t) \boldsymbol{y}(t)$:
- Solution $\boldsymbol{u}(t)$ (and $\boldsymbol{y}(t)$) exists if $\boldsymbol{Q}=\boldsymbol{B}_{a} \boldsymbol{Y}(a)+\boldsymbol{B}_{b} \boldsymbol{Y}(b)$ is invertible:

Green's Function Form of Solution for Linear ODE BVPs

- For any given $\boldsymbol{b}(t)$ and \boldsymbol{c}, the solution to the BVP can be written in the form:

$$
\boldsymbol{y}(t)=\boldsymbol{\Phi}(t) \boldsymbol{c}+\int_{a}^{b} \boldsymbol{G}(t, s) \boldsymbol{b}(s) d s
$$

$\boldsymbol{\Phi}(t)=\boldsymbol{Y}(t) \boldsymbol{Q}^{-1}$ is the fundamental matrix and the Green's function is

$$
\boldsymbol{G}(t, s)=\boldsymbol{Y}(t) \boldsymbol{Q}^{-1} \boldsymbol{I}(s) \boldsymbol{Y}^{-1}(s), \quad \boldsymbol{I}(s)= \begin{cases}\boldsymbol{B}_{a} \boldsymbol{Y}(a) & : s<t \\ -\boldsymbol{B}_{b} \boldsymbol{Y}(b) & : s \geq t\end{cases}
$$

Conditioning of Linear ODE BVPs

- For any given $\boldsymbol{b}(t)$ and \boldsymbol{c}, the solution to the BVP can be written in the form:

$$
\boldsymbol{y}(t)=\boldsymbol{\Phi}(t) \boldsymbol{c}+\int_{a}^{b} \boldsymbol{G}(t, s) \boldsymbol{b}(s) d s
$$

- The absolute condition number of the BVP is $\kappa=\max \left\{\|\boldsymbol{\Phi}\|_{\infty},\|\boldsymbol{G}\|_{\infty}\right\}$:

Shooting Method for ODE BVPs

- For linear ODEs, we construct solutions from IVP solutions in $\boldsymbol{Y}(t)$, which suggests the shooting method for solving BVPs by reduction to IVPs:
- Multiple shooting employs the shooting method over subdomains:

Finite Difference Methods

- Rather than solve a sequence of IVPs that satisfy the ODEs until they satisfy boundary conditions, finite difference methods refine an approximation that satisfies the boundary conditions, until it satisfies the ODE:
- Convergence to solution is obtained with decreasing step size h so long as the method is consistent and stable:

Finite Difference Methods

- Lets derive the finite difference method for the ODE BVP defined by

$$
u^{\prime \prime}+7\left(1+t^{2}\right) u=0
$$

with boundary conditions $u(-1)=3$ and $u(1)=-3$, using a centered difference approximation for $u^{\prime \prime}$ on $t_{1}, \ldots, t_{n}, t_{i+1}-t_{i}=h$.

Collocation Methods

- Collocation methods approximate \boldsymbol{y} by representing it in a basis

$$
\boldsymbol{y}(t) \approx \boldsymbol{v}(t, \boldsymbol{x})=\sum_{i=1}^{n} x_{i} \boldsymbol{\phi}_{i}(t)
$$

- Choices of basis functions give different families of methods:

Solving BVPs by Optimization

- To improve robustness, define and minimize a residual error over the whole domain rather than at collocation points.
- The first-order optimality conditions of the optimization problem are a system of linear equations $\boldsymbol{A x}=\boldsymbol{b}$:

Weighted Residual

- Weighted residual methods work by ensuring the residual is orthogonal with respect to a given set of weight functions:
- The Galerkin method is a weighted residual method where $\boldsymbol{w}_{i}=\phi_{i}$.

Second-Order BVPs: Poisson Equation

In practice, BVPs are at least second order and its advantageous to work in the natural set of variables.

- Consider the Poisson equation $u^{\prime \prime}(t)=f(t)$ with boundary conditions $u(a)=u(b)=0$ and define a localized basis of hat functions:
- Defining residual equation by analogy to the first order case, we obtain,

Weak Form and the Finite Element Method

- The finite-element method permits a lesser degree of differentiability of basis functions by casting ODEs such as Poisson in weak form:

Eigenvalue Problems with ODEs

- A typical second-order scalar ODE BVP eigenvalue problem is to find eigenvalue λ and eigenfunction u to satisfy

$$
u^{\prime \prime}=\lambda f\left(t, u, u^{\prime}\right), \quad \text { with boundary conditions } u(a)=0, u(b)=0 .
$$

These can be solved, e.g. for $f\left(t, u, u^{\prime}\right)=g(t) u$ by finite differences:

Using Generalized Matrix Eigenvalue Problems

- Generalized matrix eigenvalue problems arise from more sophisticated ODEs,

$$
u^{\prime \prime}=\lambda\left(g(t) u+h(t) u^{\prime}\right), \quad \text { with boundary conditions } u(a)=0, u(b)=0 .
$$

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

