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Boundary Conditions
▶ Often we seek to solve a differential equation that satisfies conditions on its

values and derivatives on parts of the domain boundary.

▶ Consider a first order ODE y′(t) = f(t,y) with linear boundary conditions on
domain t ∈ [a, b]:

Bay(a) +Bby(b) = c



Existence of Solutions for Linear ODE BVPs
▶ The solutions of linear ODE BVP y′(t) = A(t)y(t) + b(t) are linear

combinations of solutions to linear homogeneous ODE IVPs y′(t) = A(t)y(t):

▶ Solution u(t) (and y(t)) exists if Q = BaY (a) +BbY (b) is invertible:



Green’s Function Form of Solution for Linear ODE BVPs
▶ For any given b(t) and c, the solution to the BVP can be written in the form:

y(t) = Φ(t)c+

∫ b

a
G(t, s)b(s)ds

Φ(t) = Y (t)Q−1 is the fundamental matrix and the Green’s function is

G(t, s) = Y (t)Q−1I(s)Y −1(s), I(s) =

{
BaY (a) : s < t

−BbY (b) : s ≥ t



Conditioning of Linear ODE BVPs
▶ For any given b(t) and c, the solution to the BVP can be written in the form:

y(t) = Φ(t)c+

∫ b

a
G(t, s)b(s)ds

▶ The absolute condition number of the BVP is κ = max{||Φ||∞, ||G||∞}:



Shooting Method for ODE BVPs
▶ For linear ODEs, we construct solutions from IVP solutions in Y (t), which

suggests the shooting method for solving BVPs by reduction to IVPs:

▶ Multiple shooting employs the shooting method over subdomains:

Demo: Shooting method

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/10-boundary-value-problems/Shooting method.html


Finite Difference Methods
▶ Rather than solve a sequence of IVPs that satisfy the ODEs until they satisfy

boundary conditions, finite difference methods refine an approximation that
satisfies the boundary conditions, until it satisfies the ODE:

▶ Convergence to solution is obtained with decreasing step size h so long as
the method is consistent and stable:



Finite Difference Methods
▶ Lets derive the finite difference method for the ODE BVP defined by

u′′ + 7(1 + t2)u = 0

with boundary conditions u(−1) = 3 and u(1) = −3, using a centered
difference approximation for u′′ on t1, . . . , tn, ti+1 − ti = h.

Demo: Finite differences

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/10-boundary-value-problems/Finite differences.html


Collocation Methods
▶ Collocation methods approximate y by representing it in a basis

y(t) ≈ v(t,x) =

n∑
i=1

xiϕi(t).

▶ Choices of basis functions give different families of methods:

Demo: Sparse matrices

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/10-boundary-value-problems/Sparse matrices.html


Solving BVPs by Optimization
▶ To improve robustness, define and minimize a residual error over the whole

domain rather than at collocation points.

▶ The first-order optimality conditions of the optimization problem are a
system of linear equations Ax = b:



Weighted Residual
▶ Weighted residual methods work by ensuring the residual is orthogonal with

respect to a given set of weight functions:

▶ The Galerkin method is a weighted residual method where wi = ϕi.



Second-Order BVPs: Poisson Equation
In practice, BVPs are at least second order and its advantageous to work in the
natural set of variables.
▶ Consider the Poisson equation u′′(t) = f(t) with boundary conditions

u(a) = u(b) = 0 and define a localized basis of hat functions:

▶ Defining residual equation by analogy to the first order case, we obtain,



Weak Form and the Finite Element Method
▶ The finite-element method permits a lesser degree of differentiability of basis

functions by casting ODEs such as Poisson in weak form:



Eigenvalue Problems with ODEs
▶ A typical second-order scalar ODE BVP eigenvalue problem is to find

eigenvalue λ and eigenfunction u to satisfy

u′′ = λf(t, u, u′), with boundary conditions u(a) = 0, u(b) = 0.

These can be solved, e.g. for f(t, u, u′) = g(t)u by finite differences:



Using Generalized Matrix Eigenvalue Problems
▶ Generalized matrix eigenvalue problems arise from more sophisticated ODEs,

u′′ = λ(g(t)u+ h(t)u′), with boundary conditions u(a) = 0, u(b) = 0.
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