CS 450: Numerical Anlaysis ${ }^{1}$
 Boundary Value Problems for Ordinary Differential Equations

University of Illinois at Urbana-Champaign

[^0]
Boundary Conditions

- Often we seek to solve a differential equation that satisfies conditions on its values and derivatives on parts of the domain boundary.
- Dirichlet boundary conditions specify values of $\boldsymbol{y}(t)$ at boundary.
- Neumann boundary conditions specify values of derivative $\boldsymbol{f}(t, \boldsymbol{y})$ at boundary.
- Consider a first order ODE $\boldsymbol{y}^{\prime}(t)=\boldsymbol{f}(t, \boldsymbol{y})$ with linear boundary conditions on domain $t \in[a, b]$:

$$
\boldsymbol{B}_{a} \boldsymbol{y}(a)+\boldsymbol{B}_{b} \boldsymbol{y}(b)=\boldsymbol{c}
$$

- IVPs are a special case of Dirichlet condition with $\boldsymbol{B}_{a}=\boldsymbol{I}, \boldsymbol{B}_{b}=\mathbf{0}$.
- Conditions are separated if they do not couple different boundary points, i.e., for all i, the ith row of either \boldsymbol{B}_{a} or \boldsymbol{B}_{b} is zero.
- Higher-order boundary conditions can be reduced to linear boundary conditions in the same way as a nonlinear ODE is reduced to a linear ODE.

Existence of Solutions for Linear ODE BVPs

- The solutions of linear ODE BVP $\boldsymbol{y}^{\prime}(t)=\boldsymbol{A}(t) \boldsymbol{y}(t)+\boldsymbol{b}(t)$ are linear combinations of solutions to linear homogeneous ODE IVPs $\boldsymbol{y}^{\prime}(t)=\boldsymbol{A}(t) \boldsymbol{y}(t)$:
- Let the solutions $\boldsymbol{y}_{i}(t)$ to the homogeneous ODE, $\boldsymbol{y}_{i}^{\prime}(t)=\boldsymbol{A}(t) \boldsymbol{y}_{i}(t)$, with initial conditions $\boldsymbol{y}_{i}(a)=\boldsymbol{e}_{i}$ be columns of

$$
\boldsymbol{Y}(t)=\left[\begin{array}{lll}
\boldsymbol{y}_{1}(t) & \cdots & \boldsymbol{y}_{n}(t)
\end{array}\right]=\boldsymbol{I}+\int_{a}^{t} \boldsymbol{A}(s) \boldsymbol{Y}^{\prime}(s) d s
$$

- The ODE BVP solutions are then given by $\boldsymbol{y}(t)=\boldsymbol{Y}(t) \boldsymbol{u}(t)$ for some $\boldsymbol{u}(t)$, with

$$
\begin{aligned}
\boldsymbol{y}^{\prime}(t)=\boldsymbol{A}(t) \boldsymbol{y}(t)+\boldsymbol{b}(t) & \Rightarrow \boldsymbol{Y}^{\prime}(t) \boldsymbol{u}(t)+\boldsymbol{Y}(t) \boldsymbol{u}^{\prime}(t)=\boldsymbol{A}(t) \boldsymbol{Y}(t) \boldsymbol{u}(t)+\boldsymbol{b}(t), \\
\boldsymbol{Y}^{\prime}(t)=\boldsymbol{A}(t) \boldsymbol{Y}(t) & \Rightarrow \boldsymbol{u}^{\prime}(t)=\boldsymbol{Y}(t)^{-1} \boldsymbol{b}(t) .
\end{aligned}
$$

- Solution $\boldsymbol{u}(t)$ (and $\boldsymbol{y}(t)$) exists if $\boldsymbol{Q}=\boldsymbol{B}_{a} \boldsymbol{Y}(a)+\boldsymbol{B}_{b} \boldsymbol{Y}(b)$ is invertible:

$$
\begin{aligned}
\boldsymbol{B}_{a} \boldsymbol{Y}(a) \boldsymbol{u}(a) & +\boldsymbol{B}_{b} \boldsymbol{Y}(b)\left(\boldsymbol{u}(a)+\int_{a}^{b} \boldsymbol{u}^{\prime}(s) d s\right)=\boldsymbol{c} \\
\boldsymbol{u}(a) & =(\underbrace{\boldsymbol{B}_{a} \boldsymbol{Y}(a)+\boldsymbol{B}_{b} \boldsymbol{Y}(b)}_{\boldsymbol{Q}})^{-1}\left(\boldsymbol{c}-\boldsymbol{B}_{b} \boldsymbol{Y}(b) \int_{a}^{b} \boldsymbol{u}^{\prime}(s) d s\right) .
\end{aligned}
$$

Green's Function Form of Solution for Linear ODE BVPs

- For any given $\boldsymbol{b}(t)$ and \boldsymbol{c}, the solution to the BVP can be written in the form:

$$
\boldsymbol{y}(t)=\boldsymbol{\Phi}(t) \boldsymbol{c}+\int_{a}^{b} \boldsymbol{G}(t, s) \boldsymbol{b}(s) d s
$$

$\boldsymbol{\Phi}(t)=\boldsymbol{Y}(t) \boldsymbol{Q}^{-1}$ is the fundamental matrix and the Green's function is

$$
\boldsymbol{G}(t, s)=\boldsymbol{Y}(t) \boldsymbol{Q}^{-1} \boldsymbol{I}(s) \boldsymbol{Y}^{-1}(s), \quad \boldsymbol{I}(s)= \begin{cases}\boldsymbol{B}_{a} \boldsymbol{Y}(a) & : s<t \\ -\boldsymbol{B}_{b} \boldsymbol{Y}(b) & : s \geq t\end{cases}
$$

- From our expression for $\boldsymbol{u}(a)$ and the integral equation for $\boldsymbol{y}(t)$,

$$
\begin{aligned}
\boldsymbol{y}(t) & =\boldsymbol{Y}(t) \boldsymbol{Q}^{-1}\left(\boldsymbol{c}-\boldsymbol{B}_{b} \boldsymbol{Y}(b) \int_{a}^{b} \boldsymbol{u}^{\prime}(s) d s\right)+\boldsymbol{Y}(t) \int_{a}^{t} \boldsymbol{u}^{\prime}(s) d s \\
& =\boldsymbol{\Phi}(t) \boldsymbol{c}+\boldsymbol{Y}(t) \boldsymbol{Q}^{-1}\left(-\boldsymbol{B}_{b} \boldsymbol{Y}(b) \int_{a}^{b} \boldsymbol{u}^{\prime}(s) d s+\boldsymbol{Q} \int_{a}^{t} \boldsymbol{u}^{\prime}(s) d s\right) \\
& =\boldsymbol{\Phi}(t) \boldsymbol{c}+\boldsymbol{Y}(t) \boldsymbol{Q}^{-1}\left(\boldsymbol{B}_{a} \boldsymbol{Y}(a) \int_{a}^{t} \boldsymbol{Y}^{-1}(s) \boldsymbol{b}(s) d s-\boldsymbol{B}_{b} \boldsymbol{Y}(b) \int_{t}^{b} \boldsymbol{Y}^{-1}(s) \boldsymbol{b}(s) d s\right) .
\end{aligned}
$$

Conditioning of Linear ODE BVPs

- For any given $\boldsymbol{b}(t)$ and \boldsymbol{c}, the solution to the BVP can be written in the form:

$$
\boldsymbol{y}(t)=\boldsymbol{\Phi}(t) \boldsymbol{c}+\int_{a}^{b} \boldsymbol{G}(t, s) \boldsymbol{b}(s) d s
$$

$\boldsymbol{\Phi}(t)=\boldsymbol{Y}(t) \boldsymbol{Q}^{-1}$ is the fundamental matrix, which, like the Green's function, is associated with the homogeneous ODE as well as its linear boundary condition matrices \boldsymbol{B}_{a} and \boldsymbol{B}_{b}, but is independent $\boldsymbol{b}(t)$ and \boldsymbol{c}.

- The absolute condition number of the BVP is $\kappa=\max \left\{\|\boldsymbol{\Phi}\|_{\infty},\|\boldsymbol{G}\|_{\infty}\right\}$: This sensitivity measure enables us to bound the perturbation $\|\hat{\boldsymbol{y}}-\boldsymbol{y}\|_{\infty}$ with respect to the magnitude of a perturbation to $\boldsymbol{b}(t)$ or \boldsymbol{c}.

Shooting Method for ODE BVPs

- For linear ODEs, we construct solutions from IVP solutions in $\boldsymbol{Y}(t)$, which suggests the shooting method for solving BVPs by reduction to IVPs:
For $k=1,2, \ldots$ repeat until convergence:

1. construct approximate initial value guesses $\hat{\boldsymbol{y}}^{(k)}(a) \approx \boldsymbol{y}(a)$,
2. solve the resulting IVP,
3. check the quality of the solution at the new boundary,

$$
\left\|\boldsymbol{B}_{b} \hat{\boldsymbol{y}}^{(k)}(b)-\boldsymbol{B}_{a} \hat{\boldsymbol{y}}^{(k)}(a)-\boldsymbol{c}\right\|,
$$

4. pick the initial conditions for the next shot, $\hat{\boldsymbol{y}}^{(k+1)}(a)$ by treating $\hat{\boldsymbol{y}}^{(l)}(a)$ for $l=1, \ldots, k$ as guesses $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(k)}$ to root finding procedure for

$$
\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{B}_{a} \boldsymbol{x}+\boldsymbol{B}_{b} \boldsymbol{y}_{\boldsymbol{x}}(b)-\boldsymbol{c}, \text { where } \boldsymbol{y}_{\boldsymbol{x}}(b) \text { is the IVP solution with } \boldsymbol{y}_{\boldsymbol{x}}(a)=\boldsymbol{x} .
$$

- Multiple shooting employs the shooting method over subdomains:
- The shooting problems on subdomains are interdependent, as they must satisfy continuity conditions on boundaries between them, leading to a system of nonlinear equations.
- Improves on conditioning of shooting method, which can suffer from ill-conditioning of large IVPs.

Finite Difference Methods

- Rather than solve a sequence of IVPs that satisfy the ODEs until they satisfy boundary conditions, finite difference methods refine an approximation that satisfies the boundary conditions, until it satisfies the ODE:
- Finite difference methods work by obtaining a solution on points t_{1}, \ldots, t_{n}, so that $\hat{\boldsymbol{y}}_{k} \approx \boldsymbol{y}\left(t_{k}\right)$ by finite-difference formulae, for example,

$$
\boldsymbol{f}(t, \boldsymbol{y})=\boldsymbol{y}^{\prime}(t) \approx \frac{\boldsymbol{y}(t+h)-\boldsymbol{y}(t-h)}{2 h} \Rightarrow \hat{\boldsymbol{f}}\left(t_{k}, \hat{\boldsymbol{y}}_{k}\right)=\frac{\hat{\boldsymbol{y}}_{k+1}-\hat{\boldsymbol{y}}_{k-1}}{t_{k+1}-t_{k-1}} .
$$

- The resulting system of equations can be solved by standard methods and is linear if \hat{f} is linear.
- Convergence to solution is obtained with decreasing step size h so long as the method is consistent and stable:
- Consistency implies that the truncation error goes to zero.
- Stability ensures input perturbations have bounded effect on solution.

Finite Difference Methods

- Lets derive the finite difference method for the ODE BVP defined by

$$
u^{\prime \prime}+7\left(1+t^{2}\right) u=0
$$

with boundary conditions $u(-1)=3$ and $u(1)=-3$, using a centered difference approximation for $u^{\prime \prime}$ on $t_{1}, \ldots, t_{n}, t_{i+1}-t_{i}=h$.

- We have equations $u(-1)=u\left(t_{1}\right)=u_{1}=3, u(1)=u\left(t_{n}\right)=u_{n}=3$ and $n-2$ finite difference equations, one for each $i \in\{2, \ldots, n-1\}$,

$$
\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}+7\left(1+t_{i}^{2}\right) u_{i}=0 .
$$

- These correspond to a linear system based on matrices:

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
1 & & \\
1 / h^{2} & -2 / h^{2} & 1 / h^{2} & & \\
& \ddots & \ddots & \ddots & \\
& & 1 / h^{2} & -2 / h^{2} & 1 / h^{2}
\end{array}\right] \text { and } \boldsymbol{B}=\left[\begin{array}{lllll}
0 & & & \\
0 & 7\left(1+t_{2}^{2}\right) & & & \\
& & \ddots & & \\
& & & 7\left(1+t_{n-1}^{2}\right) & 0 \\
& & & & 0
\end{array}\right]
$$

where $(\boldsymbol{A}+\boldsymbol{B}) \boldsymbol{u}=\left[\begin{array}{llll}3 & 0 & \cdots 0 & -3\end{array}\right]^{T}$.

Collocation Methods

- Collocation methods approximate \boldsymbol{y} by representing it in a basis

$$
\boldsymbol{y}(t) \approx \boldsymbol{v}(t, \boldsymbol{x})=\sum_{i=1}^{n} x_{i} \boldsymbol{\phi}_{i}(t)
$$

- Seek to satisfy for collocation points t_{1}, \ldots, t_{n} with $t_{1}=a$ and $t_{n}=b$,

$$
\forall_{i \in\{2, \ldots, n-1\}} \quad \boldsymbol{v}^{\prime}\left(t_{i}, \boldsymbol{x}\right)=\boldsymbol{f}\left(t_{i}, \boldsymbol{v}\left(t_{i}, \boldsymbol{x}\right)\right) .
$$

- Two more equations typically obtained from boundary conditions at t_{1}, t_{n}.
- Choices of basis functions give different families of methods:
- Spectral methods use polynomials or trigonometric functions for ϕ_{i}, which are nonzero over most of $[a, b]$, and have the advantage of corresponding to eigenfunctions of differential operators.
- Finite element methods leverage basis functions with local support (e.g. B-splines) and yield sparsity in the resulting problem since many pairs of basis functions have disjoint support.

Solving BVPs by Optimization

- To improve robustness, define and minimize a residual error over the whole domain rather than at collocation points.
- For simplified scenario $\boldsymbol{f}(t, \boldsymbol{y})=\boldsymbol{f}(t)$,

$$
\boldsymbol{r}(t, \boldsymbol{x})=\boldsymbol{v}^{\prime}(t, \boldsymbol{x})-\boldsymbol{f}(t)=\sum_{j=1}^{n} x_{j} \phi_{j}^{\prime}(t)-\boldsymbol{f}(t) .
$$

- In particular, we seek to minimize the objective function,

$$
F(\boldsymbol{x})=\frac{1}{2} \int_{a}^{b}\|\boldsymbol{r}(t, \boldsymbol{x})\|_{2}^{2} d t .
$$

- The first-order optimality conditions of the optimization problem are a system of linear equations $\boldsymbol{A x}=\boldsymbol{b}$:

$$
\begin{aligned}
\mathbf{0}=\frac{d F}{d x_{i}} & =\int_{a}^{b} \boldsymbol{r}(t, \boldsymbol{x})^{T} \frac{d \boldsymbol{r}}{d x_{i}} d t=\int_{a}^{b} \boldsymbol{r}(t, \boldsymbol{x})^{T} \boldsymbol{\phi}_{i}^{\prime}(t) d t \\
& =\sum_{j=1}^{n} x_{j} \underbrace{\int_{a}^{b} \boldsymbol{\phi}_{j}^{\prime}(t)^{T} \boldsymbol{\phi}_{i}^{\prime}(t) d t}_{a_{i j}}-\underbrace{\int_{a}^{b} \boldsymbol{f}(t)^{T} \boldsymbol{\phi}_{i}^{\prime}(t) d t}_{b_{i}}
\end{aligned}
$$

Weighted Residual

- Weighted residual methods work by ensuring the residual is orthogonal with respect to a given set of weight functions:
- Rather than setting components of the gradient to zero, we instead have

$$
\int_{a}^{b} \boldsymbol{r}(t, \boldsymbol{x})^{T} \boldsymbol{w}_{i}(t) d t=0, \forall i \in\{1, \ldots, n\}
$$

- Again, we obtain a system of equations of the form $\boldsymbol{A x}=\boldsymbol{b}$, where

$$
a_{i j}=\int_{a}^{b} \boldsymbol{\phi}_{j}^{\prime}(t)^{T} \boldsymbol{w}_{i}(t), \quad b_{i}=\int_{a}^{b} \boldsymbol{f}(t)^{T} \boldsymbol{w}_{i}(t)
$$

- The collocation method is a weighted residual method where $\boldsymbol{w}_{i}(t)=\boldsymbol{\delta}\left(t-t_{i}\right)$.
- The Galerkin method is a weighted residual method where $\boldsymbol{w}_{i}=\phi_{i}$. Linear system with the stiffness matrix \boldsymbol{A} and load vector \boldsymbol{b} is

$$
\mathbf{0}=\sum_{j=1}^{n} x_{j} \underbrace{\int_{a}^{b} \boldsymbol{\phi}_{j}^{\prime}(t)^{T} \boldsymbol{\phi}_{i}(t) d t}_{a_{i j}}-\underbrace{\int_{a}^{b} \boldsymbol{f}(t)^{T} \boldsymbol{\phi}_{i}(t) d t}_{b_{i}}
$$

Second-Order BVPs: Poisson Equation

In practice, BVPs are at least second order and its advantageous to work in the natural set of variables.

- Consider the Poisson equation $u^{\prime \prime}(t)=f(t)$ with boundary conditions $u(a)=u(b)=0$ and define a localized basis of hat functions:

$$
\phi_{i}(t)= \begin{cases}\left(t-t_{i-1}\right) / h & : t \in\left[t_{i-1}, t_{i}\right] \\ \left(t_{i+1}-t\right) / h & : t \in\left[t_{i}, t_{i+1}\right] \\ 0 & : \text { otherwise }\end{cases}
$$

for $i \in\{1, \ldots, n\}$, handling boundaries via $t_{0}=t_{1}=a$ and $t_{n}=t_{n+1}=b$.

- Defining residual equation by analogy to the first order case, we obtain,

$$
r=v^{\prime \prime}-f, \text { so that } r(t, \boldsymbol{x})=\sum_{j=1}^{n} x_{j} \phi_{j}^{\prime \prime}(t)-f(t)
$$

However, with our choice of basis, $\phi_{j}^{\prime \prime}(t)$ is undefined, since $\phi_{j}^{\prime}(t)$ is discontinuous at t_{j-1}, t_{j}, t_{j+1}.

Weak Form and the Finite Element Method

- The finite-element method permits a lesser degree of differentiability of basis functions by casting ODEs such as Poisson in weak form:
- If the test functions $\left\{\phi_{i}\right\}_{i=1}^{n}$ satisfy the boundary conditions,

$$
\begin{aligned}
0 & =\int_{a}^{b} r(t, \boldsymbol{x}) \phi_{i}(t) d t=\sum_{j=1}^{n} x_{j} \int_{a}^{b} \phi_{j}^{\prime \prime}(t) \phi_{i}(t) d t-\int_{a}^{b} f(t) \phi_{i}(t) d t \\
& =\sum_{j=1}^{n} x_{j}(\phi_{j}^{\prime}(b) \underbrace{\phi_{i}(b)}_{0}-\phi_{j}^{\prime}(a) \underbrace{\phi_{i}(a)}_{0}-\int_{a}^{b} \phi_{j}^{\prime}(t) \phi_{i}^{\prime}(t) d t)-\int_{a}^{b} f(t) \phi_{i}(t) d t \\
& =-\sum_{j=1}^{n} x_{j} \int_{a}^{b} \phi_{j}^{\prime}(t) \phi_{i}^{\prime}(t) d t-\int_{a}^{b} f(t) \phi_{i}(t) d t
\end{aligned}
$$

- Note that the final equation contains no second derivatives, and subsequently we can form the linear system $\boldsymbol{A x}=\boldsymbol{b}$ with

$$
a_{i j}=-\int_{a}^{b} \phi_{j}^{\prime}(t) \phi_{i}^{\prime}(t) d t, \quad b_{i}=\int_{a}^{b} f(t) \phi_{i}(t) d t .
$$

- The finite element method thus searches the larger (once-differentiable) function space to find a solution u that is in a (twice-differentiable) subspace.

Eigenvalue Problems with ODEs

- A typical second-order scalar ODE BVP eigenvalue problem is to find eigenvalue λ and eigenfunction u to satisfy

$$
u^{\prime \prime}=\lambda f\left(t, u, u^{\prime}\right), \quad \text { with boundary conditions } u(a)=0, u(b)=0 .
$$

These can be solved, e.g. for $f\left(t, u, u^{\prime}\right)=g(t) u$ by finite differences:

- Approximating the solution at a set of points t_{1}, \ldots, t_{n} using finite differences,

$$
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}=\lambda g_{i} y_{i}
$$

- This yields a tridiagonal matrix eigenvalue problem $\boldsymbol{A} \boldsymbol{y}=\lambda \boldsymbol{y}$ where

$$
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{g_{i} h^{2}}=\lambda y_{i} .
$$

Using Generalized Matrix Eigenvalue Problems

- Generalized matrix eigenvalue problems arise from more sophisticated ODEs, $u^{\prime \prime}=\lambda\left(g(t) u+h(t) u^{\prime}\right), \quad$ with boundary conditions $u(a)=0, u(b)=0$.
- Again approximate each of the derivatives at a set of points t_{1}, \ldots, t_{n} using finite differences,

$$
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}=\lambda\left(g_{i}+\frac{y_{i+1}-y_{i-1}}{2 h}\right) y_{i} .
$$

- These corresponds to a generalized matrix eigenvalue problem

$$
\boldsymbol{A} \boldsymbol{y}=\lambda \boldsymbol{B} \boldsymbol{y}
$$

where both \boldsymbol{A} and \boldsymbol{B} are tridiagonal.

- Specialized methods exist for solving generalized matrix eigenvalue problems (also referred to as matrix pencil eigenvalue problems).

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

