CS 450: Numerical Anlaysis¹ Partial Differential Equations

University of Illinois at Urbana-Champaign

¹These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

Partial Differential Equations

Partial differential equations (PDEs) describe physical laws and other continuous phenomena:

► The advection PDE describes basic phenomena in fluid flow,

$$u_t = -a(t, x)u_x$$

where $u_t = \partial u/\partial t$ and $u_x = \partial u/\partial x$.

Types of PDEs

▶ Some of the most important PDEs are *second order*:

► The *discriminant* determines the canonical form of second-order PDEs:

Characteristic Curves

► A *characteristic* of a PDE is a level curve in the solution:

More generally, characteristic curves describe curves in the solution field u(t,x) that correspond to solutions of ODEs, e.g. for $u_t=-a(t,x)u_x$ with $u(0,x)=u_0(x)$,

Method of Lines

Semidiscrete methods obtain an approximation to the PDE by solving a system of ODEs. Consider the heat equation,

$$u_t = cu_{xx}$$
 on $0 \le x \le 1$, $u(0, x) = f(x), u(t, 0) = u(t, 1) = 0$.

► This *method of lines* often yields a stiff ODE:

Semidiscrete Collocation

▶ Instead of finite-differences, we can express u(t,x) in a spatial basis $\phi_1(x), \ldots, \phi_n(x)$ with time-dependent coefficients $\alpha_1(t), \ldots, \alpha_n(t)$:

For the heat equation $u_t=cu_{xx}$, we obtain a linear constant-coefficient vector ODE:

Fully Discrete Methods

- Generally, both time and space dimensions are discretized, either by applying an ODE solver to a semidiscrete method or using finite differences.
 - lacktriangle Again consider the heat equation $u_t=cu_{xx}$ and discretize so $u_i^{(k)}pprox u(t_k,x_i)$,

This iterative scheme corresponds to a 3-point stencil,

Implicit Fully Discrete Methods

▶ Using Euler's method for the heat equation, stability requirement is

► This step-size restriction on stability can be circumvented by use of implicit time-stepper, such as backward Euler,

 Using the trapezoid method to solve the ODE we obtain the second-order Crank-Nicolson method,

Convergence and Stability

- Lax Equivalence Theorem: consistency + stability = convergence
 - Consistency means that the local truncation error goes to zero, and is easy to verify by Taylor expansions.
 - Stability implies that the approximate solution at any time t must remain bounded.
 - Together these conditions are necessary and sufficient for convergence.
- Stability can be ascertained by spectral or Fourier analysis:
 - ► In the method of lines, we saw that the eigenvalues of the resulting ODE define the stability region.
 - Fourier analysis decomposes the solution into a sum of harmonic functions and bounds their amplitudes.

CFL Condition

▶ The domain of dependence of a PDE for a given point (t,x) is the portion of the problem domain influencing this point through the PDE:

► The Courant, Friedrichs, and Lewy (CFL) condition states that for an explicit finite-differencing scheme to be stable for a hyperbolic PDE, it is necessary that the domain of the dependence of the PDE must be contained in the domain of dependence of the scheme:

Time-Independent PDEs

► We now turn our focus to time-independent PDEs as exemplified by the Helmholtz equation:

$$u_{xx} + u_{yy} + \lambda u = f(x, y)$$

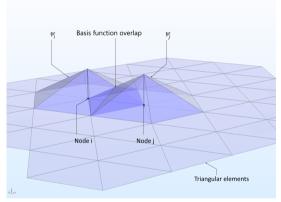
We discretize as before, but no longer perform time stepping:

Finite-Differencing for Poisson

ightharpoonup Consider the Poisson equation with equispaced mesh-points on [0,1]:

Multidimensional Finite Elements

► There are many ways to define localized basis functions, for example in the 2D FEM method²:



Sparse Linear Systems

- ► Finite-difference and finite-element methods for time-independent PDEs give rise to sparse linear systems:
 - typified by the 2D Laplace equation, where for both finite differences and FEM,

Direct methods apply LU or other factorization to A, while *iterative methods* refine x by minimizing r = Ax - b, e.g. via Krylov subspace methods.

Direct Methods for Sparse Linear Systems

▶ It helps to think of A as the adjacency matrix of graph G = (V, E) where $V = \{1, ..., n\}$ and $a_{ij} \neq 0$ if and only if $(i, j) \in E$:

Factorizing the lth row/column in Gaussian elimination corresponds to removing node i, with nonzeros (new edges) introduces for each k, l such that (i, k) and (i, l) are in the graph.

Vertex Orderings for Direct Methods

▶ Select the node of minimum degree at each step of factorization:

▶ Graph partitioning also serves to bound fill, remove vertex separator $S \subset V$ so that $V \setminus S = V_1 \cup \cdots \cup V_k$ become disconnected, then order V_1, \ldots, V_k, S :

Nested dissection ordering partitions graph into halves recursively, ordering each separator last.

Sparse Iterative Methods

Sparse iterative methods avoid overhead of fill in sparse direct factorization. Matrix splitting methods provide the most basic iterative methods:

Sparse Iterative Methods

▶ The Jacobi method is the simplest iterative solver:

▶ The Jacobi method converges if *A* is strictly row-diagonally-dominant:

Gauss-Seidel Method

▶ The Jacobi method takes weighted sums of $x^{(k)}$ to produce each entry of $x^{(k+1)}$, while Gauss-Seidel uses the latest available values, i.e. to compute $x_i^{(k+1)}$ it uses a weighted sum of

$$x_1^{(k+1)}, \dots, x_{i-1}^{(k+1)}, x_i^{(k)}, \dots, x_n^{(k)}.$$

Gauss-Seidel provides somewhat better convergence than Jacobi:

Successive Over-Relaxation

► The *successive over-relaxation* (SOR) method seeks to improve the spectral radius achieved by Gauss-Seidel, by choosing

$$M = \frac{1}{\omega}D + L$$
, $N = \left(\frac{1}{\omega} - 1\right)D - U$

The parameter ω in SOR controls the 'step-size' of the iterative method:

Conjugate Gradient

▶ The solution to Ax = b when A is symmetric positive definite is the minima of the quadratic optimization problem,

$$\min_{m{x}} m{x}^T m{A} m{x} - m{x}^T m{b}$$

lacktriangle Conjugate gradient works by picking A-orthogonal descent directions

► The convergence rate of CG is linear with coefficient $\frac{\sqrt{\kappa(A)-1}}{\sqrt{\kappa(A)}+1}$:

Preconditioning

Preconditioning techniques choose matrix $M \approx A$ that is easy to invert and solve a modified linear system with an equivalent solution to Ax = b,

$$\boldsymbol{M}^{-1}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{M}^{-1}\boldsymbol{b}$$

 $lackbox{ iny}{M}$ is chosen to be an effective approximation to A with a simple structure: