CS 450: Numerical Anlaysis ${ }^{1}$

Fast Fourier Transform

University of Illinois at Urbana-Champaign

[^0]
Sparse Linear Systems and Time-independent PDEs

- The Poisson equation serves as a model problem for numerical methods:
- Dense, sparse direct, iterative, FFT, and Multigrid methods provide increasingly good complexity for the problem:

Multigrid

- Multigrid employs a hierarchy of grids to accelerate iterative methods:
- The multigrid method works by resolving high-frequency error components on finer-grids and low-frequency error components on coarser grids:

Multigrid

- Consider the Galerkin approximation with linear finite elements to the Poisson equation $u^{\prime \prime}=f(t)$ with boundary conditions $u(a)=u(b)=0$:

$$
\phi_{i}^{(h)}(t)= \begin{cases}\left(t-t_{i-1}\right) / h & : t \in\left[t_{i-1}, t_{i}\right] \\ \left(t_{i+1}-t\right) / h & : t \in\left[t_{i}, t_{i+1}\right] \\ 0 & : \text { otherwise }\end{cases}
$$

where $t_{0}=t_{1}=a$ and $t_{n+1}=t_{n}=b$.

Coarse Grid Matrix

- Multigrid restricts the residual equation on the fine grid $\boldsymbol{A}^{(h)} \boldsymbol{x}=\boldsymbol{r}^{(h)}$ to the coarse grid:

Restricting the Residual Equation

- Given the fine-grid residual $\boldsymbol{r}^{(h)}$, we seek to use the coarse grid to approximate $\boldsymbol{x}^{(h)}$ so that $\boldsymbol{A} \boldsymbol{x}^{(h)} \approx \boldsymbol{r}^{(h)}$

Discrete Fourier Transform

- The solutions to hyperbolic PDEs like Poisson are wave-like and take on simple representations in the frequency basis, both for continuous and discretized equations. We define the discrete Fourier transform using

$$
\omega_{(n)}=\cos (2 \pi / n)-i \sin (2 \pi / n)=e^{-2 \pi i / n} .
$$

Fast Fourier Transform (FFT)

- Consider $\boldsymbol{b}=\boldsymbol{F a}$, we have

$$
\forall j \in[0, n-1] \quad b_{j}=\sum_{k=0}^{n-1} \omega_{(n)}^{j k} a_{k},
$$

the FFT computes this recursively via 2 FFTs of dimension $n / 2$, using $\omega_{(n / 2)}=\omega_{(n)}^{2}$,

Fast Fourier Transform Derivation

- The FFT leverages similarity between the first and second half of the output,

$$
b_{j}=\underbrace{\sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{j k} a_{2 k}}_{u_{j}}+\omega_{(n)}^{j} \underbrace{\sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{j k} a_{2 k+1}}_{v_{j}}
$$

corresponds closely to the entry shifted by $n / 2$,

$$
b_{j+n / 2}=\sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{(j+n / 2) k} a_{2 k}+\omega_{(n)}^{j+n / 2} \sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{(j+n / 2) k} a_{2 k+1}
$$

FFT Algorithm Summary

- Let vectors \boldsymbol{u} and \boldsymbol{v} be two recursive FFTs, $\forall j \in[0, n / 2-1]$

$$
u_{j}=\sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{j k} a_{2 k}, \quad v_{j}=\sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{j k} a_{2 k+1}
$$

- The FFT has $O(n \log n)$ cost complexity:

Applications of the FFT

- We can rapidly multiply degree n polynomials by considering their values $\omega_{(2 n-1)}^{i}$ for $i \in\{0, \ldots, 2 n-1\}$
- More generally the DFT can be used to solve any Toeplitz linear system (convolution):

Convolution via DFT

- The Fourier transform method for computing a convolution is given by

$$
c_{k}=\frac{1}{n} \sum_{s} \omega_{(n)}^{-k s}\left(\sum_{j} \omega_{(n)}^{s j} a_{j}\right)\left(\sum_{t} \omega_{(n)}^{s t} b_{t}\right)
$$

Solving Numerical PDEs with the FFT

- 1D finite-difference schemes on a regular grid correspond to convolutions:
- For the 1D Poisson model problem, the eigenvectors of \boldsymbol{T} corresponds to the imaginary part of a minor of a $2(n+1)$-dimensional DFT matrix:
- Multidimensional Poisson can be handled with multidimensional FFT:

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

