
CS 450: Numerical Anlaysis1

Fast Fourier Transform

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).

http://heath.cs.illinois.edu/scicomp/notes/index.html


Sparse Linear Systems and Time-independent PDEs
▶ The Poisson equation serves as a model problem for numerical methods:

▶ Dense, sparse direct, iterative, FFT, and Multigrid methods provide
increasingly good complexity for the problem:



Multigrid
▶ Multigrid employs a hierarchy of grids to accelerate iterative methods:

▶ The multigrid method works by resolving high-frequency error components
on finer-grids and low-frequency error components on coarser grids:



Multigrid
▶ Consider the Galerkin approximation with linear finite elements to the

Poisson equation u′′ = f(t) with boundary conditions u(a) = u(b) = 0:

ϕ
(h)
i (t) =


(t− ti−1)/h : t ∈ [ti−1, ti]

(ti+1 − t)/h : t ∈ [ti, ti+1]

0 : otherwise

where t0 = t1 = a and tn+1 = tn = b.



Coarse Grid Matrix
▶ Multigrid restricts the residual equation on the fine grid A(h)x = r(h) to the

coarse grid:



Restricting the Residual Equation
▶ Given the fine-grid residual r(h), we seek to use the coarse grid to

approximate x(h) so that Ax(h) ≈ r(h)



Discrete Fourier Transform
▶ The solutions to hyperbolic PDEs like Poisson are wave-like and take on

simple representations in the frequency basis, both for continuous and
discretized equations. We define the discrete Fourier transform using

ω(n) = cos(2π/n)− i sin(2π/n) = e−2πi/n.



Fast Fourier Transform (FFT)
▶ Consider b = Fa, we have

∀j ∈ [0, n− 1] bj =

n−1∑
k=0

ωjk
(n)ak,

the FFT computes this recursively via 2 FFTs of dimension n/2, using
ω(n/2) = ω2

(n),



Fast Fourier Transform Derivation
▶ The FFT leverages similarity between the first and second half of the output,

bj =

n/2−1∑
k=0

ωjk
(n/2)a2k︸ ︷︷ ︸
uj

+ωj
(n)

n/2−1∑
k=0

ωjk
(n/2)a2k+1︸ ︷︷ ︸
vj

corresponds closely to the entry shifted by n/2,

bj+n/2 =

n/2−1∑
k=0

ω
(j+n/2)k
(n/2) a2k + ω

j+n/2
(n)

n/2−1∑
k=0

ω
(j+n/2)k
(n/2) a2k+1



FFT Algorithm Summary
▶ Let vectors u and v be two recursive FFTs, ∀j ∈ [0, n/2− 1]

uj =

n/2−1∑
k=0

ωjk
(n/2)a2k, vj =

n/2−1∑
k=0

ωjk
(n/2)a2k+1

▶ The FFT has O(n log n) cost complexity:



Applications of the FFT
▶ We can rapidly multiply degree n polynomials by considering their values

ωi
(2n−1) for i ∈ {0, . . . , 2n− 1}

▶ More generally the DFT can be used to solve any Toeplitz linear system
(convolution):



Convolution via DFT
▶ The Fourier transform method for computing a convolution is given by

ck =
1

n

∑
s

ω−ks
(n)

(∑
j

ωsj
(n)aj

)(∑
t

ωst
(n)bt

)



Solving Numerical PDEs with the FFT

▶ 1D finite-difference schemes on a regular grid correspond to convolutions:

▶ For the 1D Poisson model problem, the eigenvectors of T corresponds to the
imaginary part of a minor of a 2(n+ 1)-dimensional DFT matrix:

▶ Multidimensional Poisson can be handled with multidimensional FFT:

Demo: Fast Fourier Transform

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/12-fft/Fast Fourier Transform.html

	Model Problem
	Multigrid
	Fast Fourier Transform

