CS 450: Numerical Analysis

Fast Fourier Transform

University of Illinois at Urbana-Champaign

1 These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).
Sparse Linear Systems and Time-independent PDEs

- The Poisson equation serves as a model problem for numerical methods:
 - *the 2D Poisson problem and resulting Kronecker product linear system are a common benchmark,*
 - *this system has the form $T \otimes I + I \otimes T$ where T is tridiagonal.*

- Dense, sparse direct, iterative, FFT, and Multigrid methods provide increasingly good complexity for the problem:
 - *dense linear system solve costs $O(n^3)$ naively,*
 - *nested dissection with Cholesky has $O(n^{3/2})$ complexity and $O(n \log n)$ memory*
 - *Conjugate-Gradient gives $O(n^{3/2})$ complexity with $O(n)$ memory*
 - *FFT achieves $O(n \log n)$ cost and multigrid achieves $O(n).$*
Multigrid

- Multigrid employs a hierarchy of grids to accelerate iterative methods:
 - the residual equation $A \hat{x} = r$ on each fine grid, is approximately solved on the next coarser grid,
 - the equation is restricted by projection matrix P, so that $PAP^T \hat{x} = Pr$
 - the interpolation operator (often given by P^T) is used to obtain an approximate \hat{x} based on the coarse grid approximate solution,
 - at each level we perform some smoothing operations (e.g. Jacobi or Conjugate Gradient) before restriction and after interpolation,
 - at the coarsest level we typically solve directly.

- The multigrid method works by resolving high-frequency error components on finer-grids and low-frequency error components on coarser grids:
 - smoothers are usually effective at reducing local error, but slow at resolving global (low-frequency) components of the error,
 - on coarser grids, the low frequency error may be resolved more quickly.
Consider the Galerkin approximation with linear finite elements to the Poisson equation $u'' = f(t)$ with boundary conditions $u(a) = u(b) = 0$:

$$\phi_i^{(h)}(t) = \begin{cases}
(t - t_{i-1})/h & t \in [t_{i-1}, t_i] \\
(t_{i+1} - t)/h & t \in [t_i, t_{i+1}] \\
0 & : \text{otherwise}
\end{cases}$$

where $t_0 = t_1 = a$ and $t_{n+1} = t_n = b$. The weak form with grid spacing of h is

$$\int_a^b f(t) \phi_i^{(h)}(t) \, dt = -\sum_{j=1}^{n} x_j \int_a^b \phi_j^{(h)'}(t) \phi_i^{(h)'}(t) \, dt.$$

In multigrid, we define a coarse grid basis of $(n - 1)/2$ functions, which are hat functions of twice the width,

$$\phi_i^{(2h)}(t) = \frac{1}{2} \phi_{2i-2}^{(h)}(t) + \phi_{2i-1}^{(h)}(t) + \frac{1}{2} \phi_{2i}^{(h)}(t) = \begin{cases}
(t - t_{i-2})/2h & t \in [t_{i-2}, t_i] \\
(t_{i+2} - t)/2h & t \in [t_i, t_{i+2}] \\
0 & : \text{otherwise}
\end{cases}$$
Coarse Grid Matrix

Multigrid restricts the residual equation on the fine grid $A^{(h)}x = r^{(h)}$ to the coarse grid: Let $\phi^{(2h)} = [\phi_1^{(2h)} \cdots \phi_{(n-1)/2}^{(2h)}]$ and $\phi^{(h)} = [\phi_1^{(h)} \cdots \phi_n^{(h)}]$ and define restriction matrix P so that $\phi^{(2h)} = P\phi^{(h)}$, i.e.,

$$P = \frac{1}{2} \begin{bmatrix}
1 & 2 & 1 \\
1 & 2 & 1 \\
\vdots & \vdots & \vdots
\end{bmatrix} = \begin{bmatrix}
p^{(1)} \\
p^{(2)} \\
\vdots
\end{bmatrix}.$$

The coarse grid stiffness matrix is given by

$$a_{ij}^{(2h)} = -\int_a^b \phi_j^{(2h)'}(t)\phi_i^{(2h)'}(t)dt$$

$$= -p^{(i)} \left(\int_a^b \phi_j^{(h)'}(t)\phi_i^{(h)'}(t)dt \right) p^{(j)T},$$

$$-A^{(h)}$$

$$A^{(2h)} = PA^{(h)}P^T.$$
Restricting the Residual Equation

Given the fine-grid residual $r^{(h)}$, we seek to use the coarse grid to approximate $x^{(h)}$ so that $Ax^{(h)} \approx r^{(h)}$.

Given a function in the coarse grid basis, $u^{(2h)} = x^{(2h)^T} \phi^{(2h)}$, we can express it in the fine-grid basis via

$$u^{(2h)} = x^{(2h)^T} P \phi^{(2h)} = x^{(2h)^T} P \phi^{(h)}.$$

Consequently, the solution to the restricted residual equation $A^{(2h)}x^{(2h)} = r^{(2h)}$ will lead to an approximate residual equation solution on the fine grid with $x^{(h)} = P^T x^{(2h)}$.

Noting this, we derive the form of the coarse grid residual,

$$r^{(2h)} = A^{(2h)}x^{(2h)} = P A^{(h)} P^T x^{(2h)} = P A^{(h)} x^{(h)} = P r^{(h)}.$$
The solutions to hyperbolic PDEs like Poisson are wave-like and take on simple representations in the frequency basis, both for continuous and discretized equations. We define the *discrete Fourier transform* using

\[\omega(n) = \cos(2\pi/n) - i \sin(2\pi/n) = e^{-2\pi i/n}. \]

The DFT matrix \(F \in \mathbb{R}^{n \times n} \) is given by \(f_{ij} = \omega^{ij}_{(n)} \),

\[
F = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & \omega^{(4)} & \omega^{2(4)} & \omega^{3(4)} \\
1 & \omega^{4(4)} & \omega^{4(4)} & \omega^{6(4)} \\
1 & \omega^{3(4)} & \omega^{6(4)} & \omega^{9(4)}
\end{bmatrix}
\]

- it is complex and symmetric (not Hermitian),
- it is unitary modulo scaling \(F^* = nF^{-1} \).

The discrete Fourier transform of vector \(v \) is \(Fv \).
Fast Fourier Transform (FFT)

Consider \(b = Fa \), we have

\[
\forall j \in [0, n - 1] \quad b_j = \sum_{k=0}^{n-1} \omega_{(n)}^{jk} a_k,
\]

the FFT computes this recursively via 2 FFTs of dimension \(n/2 \), using \(\omega(n/2) = \omega_{(n)}^2 \),

\[
b_j = \sum_{k=0}^{n/2-1} \omega_{(n)}^{j(2k)} a_{2k} + \sum_{k=0}^{n/2-1} \omega_{(n)}^{j(2k+1)} a_{2k+1}
\]

\[
= \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k} + \omega_{(n)}^j \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k+1}
\]
Fast Fourier Transform Derivation

- The FFT leverages similarity between the first and second half of the output,

\[
b_j = \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k} + \omega_{(n)}^j \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k+1}
\]

\[u_j\]

\[
\text{corresponds closely to the entry shifted by } n/2,
\]

\[
b_{j+n/2} = \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{(j+n/2)k} a_{2k} + \omega_{(n)}^{j+n/2} \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{(j+n/2)k} a_{2k+1}
\]

\[v_j\]

- Now \(\omega_{(n/2)}^{(j+n/2)k} = \omega_{(n/2)}^{jk}\) since \((\omega_{(n/2)}^{n/2})^k = 1^k = 1\) and using \(\omega_{(n)}^{n/2} = -1\),

\[
b_{j+n/2} = \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k} - \omega_{(n)}^j \sum_{k=0}^{n/2-1} \omega_{(n/2)}^{jk} a_{2k+1}
\]

\[u_j\]

\[v_j\]
FFT Algorithm Summary

Let vectors u and v be two recursive FFTs, $\forall j \in [0, n/2 - 1]$

$$u_j = \sum_{k=0}^{n/2-1} \omega^{jk}_{(n/2)}a_{2k}, \quad v_j = \sum_{k=0}^{n/2-1} \omega^{jk}_{(n/2)}a_{2k+1}$$

Given u and v scale using "twiddle factors" $z_j = \omega^j_{(n)} \cdot v_j$

Then it suffices to combine the vectors as follows $b = \begin{bmatrix} u + z \\ u - z \end{bmatrix}$

The FFT has $O(n \log n)$ cost complexity:

There are two recursive calls of dimension $n/2$ and $O(n)$ work for application to twiddle factors and final summation, thus

$$T(n) = 2T(n) + O(n) = O(n \log n).$$
Applications of the FFT

- We can rapidly multiply degree n polynomials by considering their values ω^i_{2n-1} for $i \in \{0, \ldots, 2n - 1\}$

$$p_c(\omega^i_{2n-1}) = p_a(\omega^i_{2n-1})p_b(\omega^i_{2n-1})$$

- The product of coefficients of p_a, p_b with Vandermonde matrix $v_{ij} = (\omega^i_{2n-1})^j$, which is the DFT matrix, gives values of polynomials at $2n - 1$ nodes.

- Interpolation to compute coefficients of p_c from the products of values of p_a and p_b at those nodes is multiplication by the inverted DFT matrix and is exact since p_c is degree $2n - 2$.

- More generally the DFT can be used to solve any Toeplitz linear system (convolution):
 - A standard convolution has the form, $\forall k \in [0, n - 1]$ $c_k = \sum_{j=0}^{k} a_j b_{k-j}$.
 - Convolution is equivalent to multiplications of polynomials with degree $n/2 - 1$ and coefficients a and b, where the convolution computes the coefficients c of the product of the two polynomials.
The Fourier transform method for computing a convolution is given by

\[c_k = \frac{1}{n} \sum_s \omega^{-ks}_{(n)} \left(\sum_j \omega^{sj}_{(n)} a_j \right) \left(\sum_t \omega^{st}_{(n)} b_t \right) \]

Rearrange the order of the summations to see what happens to every product of \(a\) and \(b\)

\[c_k = \frac{1}{n} \sum_s \sum_j \sum_t \omega^{(j+t-k)s}_{(n)} a_j b_t \]

For any \(u = j + t - k \neq 0\), we observe \(\sum_s (\omega^u_{(n)})^s = 0\)

When \(j + t - k = 0\) the products \(\omega^{(s+t-j)k}_{(n)} = 1\), so there are \(n\) nonzero terms \(a_j b_{k-j}\) in the summation
Solving Numerical PDEs with the FFT

- 1D finite-difference schemes on a regular grid correspond to convolutions:
 \textit{1D model problem is simply convolution with vector} \([1, -2, 1]\).

- For the 1D Poisson model problem, the eigenvectors of \(T\) corresponds to the imaginary part of a minor of a \(2(n + 1)\)-dimensional DFT matrix:

 \[T = XDX^{-1} \]

 \(X\) is the imaginary part of \(f_{i+1,j+1}\) with \(X \in \mathbb{R}^{n \times n}\) and \(F \in \mathbb{R}^{2(n+1) \times 2(n+1)}\).

 - \textit{In particular,} \(T\) can be diagonalized and the overall system solved by FFT with \(O(n \log n)\) cost.

- Multidimensional Poisson can be handled with multidimensional FFT:
 \textit{For example 2D FFT (1D FFT of each row then 1D FFT of each column) suffices to solve the 2D Poisson problem.}