CS 450: Numerical Anlaysis ${ }^{1}$

Fast Fourier Transform

University of Illinois at Urbana-Champaign

[^0]
Sparse Linear Systems and Time-independent PDEs

- The Poisson equation serves as a model problem for numerical methods:
- the 2D Poisson problem and resulting Kronecker product linear system are a common benchmark,
- this system has the form $\boldsymbol{T} \otimes \boldsymbol{I}+\boldsymbol{I} \otimes \boldsymbol{T}$ where \boldsymbol{T} is tridiagonal.
- Dense, sparse direct, iterative, FFT, and Multigrid methods provide increasingly good complexity for the problem:
- dense linear system solve costs $O\left(n^{3}\right)$ naively,
- nested dissection with Cholesky has $O\left(n^{3 / 2}\right)$ complexity and $O(n \log n)$ memory
- Conjugate-Gradient gives $O\left(n^{3 / 2}\right)$ complexity with $O(n)$ memory
- FFT achieves $O(n \log n)$ cost and multigrid achieves $O(n)$.

Multigrid

- Multigrid employs a hierarchy of grids to accelerate iterative methods:
- the residual equation $\boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{r}$ on each fine grid, is approximately solved on the next coarser grid,
- the equation is restricted by projection matrix \boldsymbol{P}, so that $\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{T} \boldsymbol{P} \hat{\boldsymbol{x}}=\boldsymbol{P r}$
- the interpolation operator (often given by \boldsymbol{P}^{T}) is used to obtain an approximate $\hat{\boldsymbol{x}}$ based on the coarse grid approximate solution,
- at each level we perform some smoothing operations (e.g. Jacobi or Conjugate Gradient) before restriction and after interpolation,
- at the coarsest level we typically solve directly.
- The multigrid method works by resolving high-frequency error components on finer-grids and low-frequency error components on coarser grids:
- smoothers are usually effective at reducing local error, but slow at resolving global (low-frequency) components of the error,
- on coarser grids, the low frequency error may be resolved more quickly.

Multigrid

- Consider the Galerkin approximation with linear finite elements to the Poisson equation $u^{\prime \prime}=f(t)$ with boundary conditions $u(a)=u(b)=0$:

$$
\phi_{i}^{(h)}(t)= \begin{cases}\left(t-t_{i-1}\right) / h & : t \in\left[t_{i-1}, t_{i}\right] \\ \left(t_{i+1}-t\right) / h & : t \in\left[t_{i}, t_{i+1}\right] \\ 0 & : \text { otherwise }\end{cases}
$$

where $t_{0}=t_{1}=a$ and $t_{n+1}=t_{n}=b$. The weak form with grid spacing of h is

$$
\int_{a}^{b} f(t) \phi_{i}^{(h)}(t) d t=-\sum_{j=1}^{n} x_{j} \int_{a}^{b} \phi_{j}^{(h)^{\prime}}(t) \phi_{i}^{(h)^{\prime}}(t) d t
$$

in multigrid, we define a coarse grid basis of $(n-1) / 2$ functions, which are hat functions of twice the width,

$$
\phi_{i}^{(2 h)}(t)=\frac{1}{2} \phi_{2 i-2}^{(h)}(t)+\phi_{2 i-1}^{(h)}(t)+\frac{1}{2} \phi_{2 i}^{(h)}(t)= \begin{cases}\left(t-t_{i-2}\right) / 2 h & : t \in\left[t_{i-2}, t_{i}\right] \\ \left(t_{i+2}-t\right) / 2 h & : t \in\left[t_{i}, t_{i+2}\right] \\ 0 & : \text { otherwise }\end{cases}
$$

Coarse Grid Matrix

- Multigrid restricts the residual equation on the fine grid $\boldsymbol{A}^{(h)} \boldsymbol{x}=\boldsymbol{r}^{(h)}$ to the coarse grid: Let $\phi^{(2 h)}=\left[\begin{array}{lll}\phi_{1}^{(2 h)} & \cdots & \phi_{(n-1) / 2}^{(2 h)}\end{array}\right]$ and $\phi^{(h)}=\left[\begin{array}{lll}\phi_{1}^{(h)} & \cdots & \phi_{n}^{(h)}\end{array}\right]$ and define restriction matrix \boldsymbol{P} so that $\phi^{(2 h)}=\boldsymbol{P} \boldsymbol{\phi}^{(h)}$, i.e.,

$$
\boldsymbol{P}=\frac{1}{2}\left[\begin{array}{ccccc}
1 & 2 & 1 & & \\
& 1 & 2 & 1 & \\
& & \ddots & \ddots & \ddots
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{p}^{(1)} \\
\boldsymbol{p}^{(2)} \\
\vdots
\end{array}\right] .
$$

The coarse grid stiffness matrix is given by

$$
\begin{aligned}
a_{i j}^{(2 h)} & =-\int_{a}^{b} \phi_{j}^{(2 h)^{\prime}}(t) \phi_{i}^{(2 h)^{\prime}}(t) d t \\
& =-\boldsymbol{p}^{(i)} \underbrace{\left(\int_{a}^{b} \boldsymbol{\phi}^{(h)^{\prime}}(t) \boldsymbol{\phi}^{(h)^{\prime} T}(t) d t\right)}_{-\boldsymbol{A}^{(h)}} \boldsymbol{p}^{(j)^{T}} \\
\boldsymbol{A}^{(2 h)} & =\boldsymbol{P} \boldsymbol{A}^{(h)} \boldsymbol{P}^{T}
\end{aligned}
$$

Restricting the Residual Equation

- Given the fine-grid residual $\boldsymbol{r}^{(h)}$, we seek to use the coarse grid to approximate $\boldsymbol{x}^{(h)}$ so that $\boldsymbol{A} \boldsymbol{x}^{(h)} \approx \boldsymbol{r}^{(h)}$
- Given a function in the coarse grid basis, $u^{(2 h)}=\boldsymbol{x}^{(2 h)^{T}} \phi^{(2 h)}$, we can express it in the fine-grid basis via

$$
u^{(2 h)}=\boldsymbol{x}^{(2 h)^{T}} \underbrace{\boldsymbol{P} \phi^{(h)}}_{\boldsymbol{\phi}^{(2 h)}}=\underbrace{\boldsymbol{x}^{(2 h)^{T}} \boldsymbol{P}}_{\boldsymbol{x}^{(h)^{T}}} \phi^{(h)}
$$

- Consequently, the solution to the restricted residual equation $\boldsymbol{A}^{(2 h)} \boldsymbol{x}^{(2 h)}=\boldsymbol{r}^{(2 h)}$ will lead to an approximate residual equation solution on the fine grid with $\boldsymbol{x}^{(h)}=\boldsymbol{P}^{T} \boldsymbol{x}^{(2 h)}$.
- Noting this, we derive the form of the coarse grid residual,

$$
\begin{aligned}
\boldsymbol{r}^{(2 h)} & =\boldsymbol{A}^{(2 h)} \boldsymbol{x}^{(2 h)} \\
& =\boldsymbol{P} \boldsymbol{A}^{(h)} \boldsymbol{P}^{T} \boldsymbol{x}^{(2 h)}=\boldsymbol{P} \boldsymbol{A}^{(h)} \boldsymbol{x}^{(h)} \\
& =\boldsymbol{P} \boldsymbol{r}^{(h)}
\end{aligned}
$$

Discrete Fourier Transform

- The solutions to hyperbolic PDEs like Poisson are wave-like and take on simple representations in the frequency basis, both for continuous and discretized equations. We define the discrete Fourier transform using

$$
\omega_{(n)}=\cos (2 \pi / n)-i \sin (2 \pi / n)=e^{-2 \pi i / n}
$$

The DFT matrix $\boldsymbol{F} \in \mathbb{R}^{n \times n}$ is given by $f_{i j}=\omega_{(n)}^{i j}$,

$$
\boldsymbol{F}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \omega_{(4)}^{1} & \omega_{(4)}^{2} & \omega_{(4)}^{3} \\
1 & \omega_{(4)}^{2} & \omega_{(4)}^{4} & \omega_{(4)}^{6} \\
1 & \omega_{(4)}^{3} & \omega_{(4)}^{6} & \omega_{(4)}^{9}
\end{array}\right]
$$

- it is complex and symmetric (not Hermitian),
- it is unitary modulo scaling $\boldsymbol{F}^{*}=n \boldsymbol{F}^{-1}$.

The discrete Fourier transform of vector \boldsymbol{v} is $\boldsymbol{F v}$.

Fast Fourier Transform (FFT)

- Consider $\boldsymbol{b}=\boldsymbol{F a}$, we have

$$
\forall j \in[0, n-1] \quad b_{j}=\sum_{k=0}^{n-1} \omega_{(n)}^{j k} a_{k},
$$

the FFT computes this recursively via 2 FFTs of dimension $n / 2$, using $\omega_{(n / 2)}=\omega_{(n)}^{2}$,

$$
\begin{aligned}
b_{j} & =\sum_{k=0}^{n / 2-1} \omega_{(n)}^{j(2 k)} a_{2 k}+\sum_{k=0}^{n / 2-1} \omega_{(n)}^{j(2 k+1)} a_{2 k+1} \\
& =\sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{j k} a_{2 k}+\omega_{(n)}^{j} \sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{j k} a_{2 k+1}
\end{aligned}
$$

Fast Fourier Transform Derivation

- The FFT leverages similarity between the first and second half of the output,

$$
b_{j}=\underbrace{\sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{j k} a_{2 k}}_{u_{j}}+\omega_{(n)}^{j} \underbrace{\sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{j k} a_{2 k+1}}_{v_{j}}
$$

corresponds closely to the entry shifted by $n / 2$,

$$
b_{j+n / 2}=\sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{(j+n / 2) k} a_{2 k}+\omega_{(n)}^{j+n / 2} \sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{(j+n / 2) k} a_{2 k+1}
$$

$$
\operatorname{Now} \omega_{(n / 2)}^{(j+n / 2) k}=\omega_{(n / 2)}^{j k} \operatorname{since}\left(\omega_{(n / 2)}^{n / 2}\right)^{k}=1^{k}=1 \text { and using } \omega_{(n)}^{n / 2}=-1
$$

$$
b_{j+n / 2}=\underbrace{\sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{j k} a_{2 k}}_{u_{j}}-\omega_{(n)}^{j} \underbrace{\sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{j k} a_{2 k+1}}_{v_{j}}
$$

FFT Algorithm Summary

- Let vectors \boldsymbol{u} and \boldsymbol{v} be two recursive FFTs, $\forall j \in[0, n / 2-1]$

$$
u_{j}=\sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{j k} a_{2 k}, \quad v_{j}=\sum_{k=0}^{n / 2-1} \omega_{(n / 2)}^{j k} a_{2 k+1}
$$

- Given u and v scale using "twiddle factors" $z_{j}=\omega_{(n)}^{j} \cdot v_{j}$
- Then it suffices to combine the vectors as follows $\boldsymbol{b}=\left[\begin{array}{l}\boldsymbol{u}+\boldsymbol{z} \\ \boldsymbol{u}-\boldsymbol{z}\end{array}\right]$
- The FFT has $O(n \log n)$ cost complexity:

There are two recursive calls of dimension $n / 2$ and $O(n)$ work for application to twiddle factors and final summation, thus

$$
T(n)=2 T(n)+O(n)=O(n \log n)
$$

Applications of the FFT

- We can rapidly multiply degree n polynomials by considering their values $\omega_{(2 n-1)}^{i}$ for $i \in\{0, \ldots, 2 n-1\}$

$$
p_{c}\left(\omega_{(2 n-1)}^{i}\right)=p_{a}\left(\omega_{(2 n-1)}^{i}\right) p_{b}\left(\omega_{(2 n-1)}^{i}\right)
$$

- The product of coefficients of p_{a}, p_{b} with Vandermonde matrix $v_{i j}=\left(\omega_{(2 n-1)}^{i}\right)^{j}$, which is the DFT matrix, gives values of polynomials at $2 n-1$ nodes.
- Interpolation to compute coefficients of p_{c} from the products of values of p_{a} and p_{b} at those nodes is multiplication by the inverted DFT matrix and is exact since p_{c} is degree $2 n-2$.
- More generally the DFT can be used to solve any Toeplitz linear system (convolution):
- A standard convolution has the form, $\forall k \in[0, n-1] \quad c_{k}=\sum_{j=0}^{k} a_{j} b_{k-j}$.
- Convolution is equivalent to multiplications of polynomials with degree $n / 2-1$ and coefficients \boldsymbol{a} and b, where the convolution computes the coefficients c of the product of the two polynomials.

Convolution via DFT

- The Fourier transform method for computing a convolution is given by

$$
c_{k}=\frac{1}{n} \sum_{s} \omega_{(n)}^{-k s}\left(\sum_{j} \omega_{(n)}^{s j} a_{j}\right)\left(\sum_{t} \omega_{(n)}^{s t} b_{t}\right)
$$

- Rearrange the order of the summations to see what happens to every product of a and b

$$
c_{k}=\frac{1}{n} \sum_{s} \sum_{j} \sum_{t} \omega_{(n)}^{(j+t-k) s} a_{j} b_{t}
$$

- For any $u=j+t-k \neq 0$, we observe $\sum_{s}\left(\omega_{(n)}^{u}\right)^{s}=0$
- When $j+t-k=0$ the products $\omega_{(n)}^{(s+t-j) k}=1$, so there are n nonzero terms $a_{j} b_{k-j}$ in the summation

Solving Numerical PDEs with the FFT

- 1D finite-difference schemes on a regular grid correspond to convolutions:

1D model problem is simply convolution with vector $[1,-2,1]$.

- For the 1D Poisson model problem, the eigenvectors of \boldsymbol{T} corresponds to the imaginary part of a minor of a $2(n+1)$-dimensional DFT matrix:
- In particular, $\boldsymbol{T}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$ where $x_{i j}$ is the imaginary part of $f_{i+1, j+1}$ with $\boldsymbol{X} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{F} \in \mathbb{R}^{2(n+1) \times 2(n+1)}$.
- Consequently, T can be diagonalized and the overall system solved by FFT with $O(n \log n)$ cost.
- Multidimensional Poisson can be handled with multidimensional FFT:

For example 2D FFT (1D FFT of each row then 1D FFT of each column) suffices to solve the 2D Poisson problem.

[^0]: ${ }^{1}$ These slides have been drafted by Edgar Solomonik as lecture templates and supplementary material for the book "Scientific Computing: An Introductory Survey" by Michael T. Heath (slides).

