
CS 450: Numerical Anlaysis1

Fast Fourier Transform

University of Illinois at Urbana-Champaign

1These slides have been drafted by Edgar Solomonik as lecture templates and supplementary
material for the book “Scientific Computing: An Introductory Survey” by Michael T. Heath (slides).

http://heath.cs.illinois.edu/scicomp/notes/index.html

Sparse Linear Systems and Time-independent PDEs

▶ The Poisson equation serves as a model problem for numerical methods:
▶ the 2D Poisson problem and resulting Kronecker product linear system are a

common benchmark,
▶ this system has the form T ⊗ I + I ⊗ T where T is tridiagonal.

▶ Dense, sparse direct, iterative, FFT, and Multigrid methods provide
increasingly good complexity for the problem:
▶ dense linear system solve costs O(n3) naively,
▶ nested dissection with Cholesky has O(n3/2) complexity and O(n log n) memory
▶ Conjugate-Gradient gives O(n3/2) complexity with O(n) memory
▶ FFT achieves O(n log n) cost and multigrid achieves O(n).

Multigrid
▶ Multigrid employs a hierarchy of grids to accelerate iterative methods:

▶ the residual equation Ax̂ = r on each fine grid, is approximately solved on the
next coarser grid,

▶ the equation is restricted by projection matrix P , so that PAP TP x̂ = Pr

▶ the interpolation operator (often given by P T) is used to obtain an approximate
x̂ based on the coarse grid approximate solution,

▶ at each level we perform some smoothing operations (e.g. Jacobi or Conjugate
Gradient) before restriction and after interpolation,

▶ at the coarsest level we typically solve directly.

▶ The multigrid method works by resolving high-frequency error components
on finer-grids and low-frequency error components on coarser grids:
▶ smoothers are usually effective at reducing local error, but slow at resolving

global (low-frequency) components of the error,
▶ on coarser grids, the low frequency error may be resolved more quickly.

Multigrid
▶ Consider the Galerkin approximation with linear finite elements to the

Poisson equation u′′ = f(t) with boundary conditions u(a) = u(b) = 0:

ϕ
(h)
i (t) =

(t− ti−1)/h : t ∈ [ti−1, ti]

(ti+1 − t)/h : t ∈ [ti, ti+1]

0 : otherwise

where t0 = t1 = a and tn+1 = tn = b. The weak form with grid spacing of h is∫ b

a
f(t)ϕ

(h)
i (t)dt = −

n∑
j=1

xj

∫ b

a
ϕ
(h)
j

′
(t)ϕ

(h)
i

′
(t)dt.

in multigrid, we define a coarse grid basis of (n− 1)/2 functions, which are
hat functions of twice the width,

ϕ
(2h)
i (t) =

1

2
ϕ
(h)
2i−2(t) + ϕ

(h)
2i−1(t) +

1

2
ϕ
(h)
2i (t) =

(t− ti−2)/2h : t ∈ [ti−2, ti]

(ti+2 − t)/2h : t ∈ [ti, ti+2]

0 : otherwise

Coarse Grid Matrix
▶ Multigrid restricts the residual equation on the fine grid A(h)x = r(h) to the

coarse grid: Let ϕ(2h) =
[
ϕ
(2h)
1 · · · ϕ

(2h)
(n−1)/2

]
and ϕ(h) =

[
ϕ
(h)
1 · · · ϕ

(h)
n

]
and define restriction matrix P so that ϕ(2h) = Pϕ(h), i.e.,

P =
1

2

1 2 1
1 2 1

.

 =

p
(1)

p(2)

...

 .

The coarse grid stiffness matrix is given by

a
(2h)
ij = −

∫ b

a
ϕ
(2h)
j

′
(t)ϕ

(2h)
i

′
(t)dt

= −p(i)

(∫ b

a
ϕ(h)′(t)ϕ(h)′T (t)dt

)
︸ ︷︷ ︸

−A(h)

p(j)T ,

A(2h) = PA(h)P T .

Restricting the Residual Equation
▶ Given the fine-grid residual r(h), we seek to use the coarse grid to

approximate x(h) so that Ax(h) ≈ r(h)

▶ Given a function in the coarse grid basis, u(2h) = x(2h)Tϕ(2h), we can express it
in the fine-grid basis via

u(2h) = x(2h)T Pϕ(h)︸ ︷︷ ︸
ϕ(2h)

= x(2h)TP︸ ︷︷ ︸
x(h)T

ϕ(h).

▶ Consequently, the solution to the restricted residual equation A(2h)x(2h) = r(2h)

will lead to an approximate residual equation solution on the fine grid with
x(h) = P Tx(2h).

▶ Noting this, we derive the form of the coarse grid residual,

r(2h) = A(2h)x(2h)

= PA(h)P Tx(2h) = PA(h)x(h)

= Pr(h).

Discrete Fourier Transform
▶ The solutions to hyperbolic PDEs like Poisson are wave-like and take on

simple representations in the frequency basis, both for continuous and
discretized equations. We define the discrete Fourier transform using

ω(n) = cos(2π/n)− i sin(2π/n) = e−2πi/n.

The DFT matrix F ∈ Rn×n is given by fij = ωij
(n),

F =

1 1 1 1
1 ω1

(4) ω2
(4) ω3

(4)

1 ω2
(4) ω4

(4) ω6
(4)

1 ω3
(4) ω6

(4) ω9
(4)

▶ it is complex and symmetric (not Hermitian),
▶ it is unitary modulo scaling F ∗ = nF−1.

The discrete Fourier transform of vector v is Fv.

Fast Fourier Transform (FFT)
▶ Consider b = Fa, we have

∀j ∈ [0, n− 1] bj =

n−1∑
k=0

ωjk
(n)ak,

the FFT computes this recursively via 2 FFTs of dimension n/2, using
ω(n/2) = ω2

(n),

bj =

n/2−1∑
k=0

ω
j(2k)
(n) a2k +

n/2−1∑
k=0

ω
j(2k+1)
(n) a2k+1

=

n/2−1∑
k=0

ωjk
(n/2)a2k + ωj

(n)

n/2−1∑
k=0

ωjk
(n/2)a2k+1

Fast Fourier Transform Derivation
▶ The FFT leverages similarity between the first and second half of the output,

bj =

n/2−1∑
k=0

ωjk
(n/2)a2k︸ ︷︷ ︸
uj

+ωj
(n)

n/2−1∑
k=0

ωjk
(n/2)a2k+1︸ ︷︷ ︸
vj

corresponds closely to the entry shifted by n/2,

bj+n/2 =

n/2−1∑
k=0

ω
(j+n/2)k
(n/2) a2k + ω

j+n/2
(n)

n/2−1∑
k=0

ω
(j+n/2)k
(n/2) a2k+1

Now ω
(j+n/2)k
(n/2) = ωjk

(n/2) since (ω
n/2
(n/2))

k = 1k = 1 and using ω
n/2
(n) = −1,

bj+n/2 =

n/2−1∑
k=0

ωjk
(n/2)a2k︸ ︷︷ ︸
uj

−ωj
(n)

n/2−1∑
k=0

ωjk
(n/2)a2k+1︸ ︷︷ ︸
vj

FFT Algorithm Summary
▶ Let vectors u and v be two recursive FFTs, ∀j ∈ [0, n/2− 1]

uj =

n/2−1∑
k=0

ωjk
(n/2)a2k, vj =

n/2−1∑
k=0

ωjk
(n/2)a2k+1

▶ Given u and v scale using ”twiddle factors” zj = ωj
(n) · vj

▶ Then it suffices to combine the vectors as follows b =

[
u+ z
u− z

]
▶ The FFT has O(n log n) cost complexity:

There are two recursive calls of dimension n/2 and O(n) work for application
to twiddle factors and final summation, thus

T (n) = 2T (n) +O(n) = O(n log n).

Applications of the FFT
▶ We can rapidly multiply degree n polynomials by considering their values

ωi
(2n−1) for i ∈ {0, . . . , 2n− 1}

pc(ω
i
(2n−1)) = pa(ω

i
(2n−1))pb(ω

i
(2n−1))

▶ The product of coefficients of pa, pb with Vandermonde matrix vij = (ωi
(2n−1))

j ,
which is the DFT matrix, gives values of polynomials at 2n− 1 nodes.

▶ Interpolation to compute coefficients of pc from the products of values of pa and
pb at those nodes is multiplication by the inverted DFT matrix and is exact since
pc is degree 2n− 2.

▶ More generally the DFT can be used to solve any Toeplitz linear system
(convolution):
▶ A standard convolution has the form, ∀k ∈ [0, n− 1] ck =

∑k
j=0 ajbk−j .

▶ Convolution is equivalent to multiplications of polynomials with degree n/2− 1
and coefficients a and b, where the convolution computes the coefficients c of
the product of the two polynomials.

Convolution via DFT
▶ The Fourier transform method for computing a convolution is given by

ck =
1

n

∑
s

ω−ks
(n)

(∑
j

ωsj
(n)aj

)(∑
t

ωst
(n)bt

)

▶ Rearrange the order of the summations to see what happens to every product of
a and b

ck =
1

n

∑
s

∑
j

∑
t

ω
(j+t−k)s
(n) ajbt

▶ For any u = j + t− k ̸= 0, we observe
∑

s(ω
u
(n))

s = 0

▶ When j + t− k = 0 the products ω
(s+t−j)k
(n) = 1, so there are n nonzero terms

ajbk−j in the summation

Solving Numerical PDEs with the FFT

▶ 1D finite-difference schemes on a regular grid correspond to convolutions:
1D model problem is simply convolution with vector [1,−2, 1].

▶ For the 1D Poisson model problem, the eigenvectors of T corresponds to the
imaginary part of a minor of a 2(n+ 1)-dimensional DFT matrix:
▶ In particular, T = XDX−1 where xij is the imaginary part of fi+1,j+1 with

X ∈ Rn×n and F ∈ R2(n+1)×2(n+1).
▶ Consequently, T can be diagonalized and the overall system solved by FFT with

O(n log n) cost.

▶ Multidimensional Poisson can be handled with multidimensional FFT:
For example 2D FFT (1D FFT of each row then 1D FFT of each column) suffices
to solve the 2D Poisson problem.

Demo: Fast Fourier Transform

https://relate.cs.illinois.edu/course/cs450-s24/f/demos/upload/12-fft/Fast Fourier Transform.html

	Model Problem
	Multigrid
	Fast Fourier Transform

