
Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Scientific Computing: An Introductory Survey
Chapter 3 – Linear Least Squares

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

Copyright c© 2002. Reproduction permitted
for noncommercial, educational use only.

Michael T. Heath Scientific Computing 1 / 61



Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Outline

1 Least Squares Data Fitting

2 Existence, Uniqueness, and Conditioning

3 Solving Linear Least Squares Problems

Michael T. Heath Scientific Computing 2 / 61



Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Least Squares
Data Fitting

Method of Least Squares

Measurement errors are inevitable in observational and
experimental sciences

Errors can be smoothed out by averaging over many
cases, i.e., taking more measurements than are strictly
necessary to determine parameters of system

Resulting system is overdetermined, so usually there is no
exact solution

In effect, higher dimensional data are projected into lower
dimensional space to suppress irrelevant detail

Such projection is most conveniently accomplished by
method of least squares
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Linear Least Squares

For linear problems, we obtain overdetermined linear
system Ax = b, with m× n matrix A, m > n

System is better written Ax ∼= b, since equality is usually
not exactly satisfiable when m > n

Least squares solution x minimizes squared Euclidean
norm of residual vector r = b−Ax,

min
x
‖r‖22 = min

x
‖b−Ax‖22
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Data Fitting

Given m data points (ti, yi), find n-vector x of parameters
that gives “best fit” to model function f(t,x),

min
x

m∑
i=1

(yi − f(ti,x))2

Problem is linear if function f is linear in components of x,

f(t,x) = x1φ1(t) + x2φ2(t) + · · ·+ xnφn(t)

where functions φj depend only on t

Problem can be written in matrix form as Ax ∼= b, with
aij = φj(ti) and bi = yi
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Data Fitting

Polynomial fitting

f(t,x) = x1 + x2t+ x3t
2 + · · ·+ xnt

n−1

is linear, since polynomial linear in coefficients, though
nonlinear in independent variable t

Fitting sum of exponentials

f(t,x) = x1e
x2t + · · ·+ xn−1e

xnt

is example of nonlinear problem

For now, we will consider only linear least squares
problems
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Example: Data Fitting

Fitting quadratic polynomial to five data points gives linear
least squares problem

Ax =


1 t1 t21
1 t2 t22
1 t3 t23
1 t4 t24
1 t5 t25


x1x2
x3

 ∼=

y1
y2
y3
y4
y5

 = b

Matrix whose columns (or rows) are successive powers of
independent variable is called Vandermonde matrix
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Example, continued

For data
t −1.0 −0.5 0.0 0.5 1.0
y 1.0 0.5 0.0 0.5 2.0

overdetermined 5× 3 linear system is

Ax =


1 −1.0 1.0
1 −0.5 0.25
1 0.0 0.0
1 0.5 0.25
1 1.0 1.0


x1x2
x3

 ∼=


1.0
0.5
0.0
0.5
2.0

 = b

Solution, which we will see later how to compute, is

x =
[
0.086 0.40 1.4

]T
so approximating polynomial is

p(t) = 0.086 + 0.4t+ 1.4t2
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Example, continued

Resulting curve and original data points are shown in graph

< interactive example >
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Existence and Uniqueness

Linear least squares problem Ax ∼= b always has solution

Solution is unique if, and only if, columns of A are linearly
independent, i.e., rank(A) = n, where A is m× n

If rank(A) < n, then A is rank-deficient, and solution of
linear least squares problem is not unique

For now, we assume A has full column rank n
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Normal Equations

To minimize squared Euclidean norm of residual vector

‖r‖22 = rTr = (b−Ax)T (b−Ax)

= bTb− 2xTATb + xTATAx

take derivative with respect to x and set it to 0,

2ATAx− 2ATb = 0

which reduces to n× n linear system of normal equations

ATAx = ATb
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Orthogonality

Vectors v1 and v2 are orthogonal if their inner product is
zero, vT1 v2 = 0

Space spanned by columns of m× n matrix A,
span(A) = {Ax : x ∈ Rn}, is of dimension at most n

If m > n, b generally does not lie in span(A), so there is no
exact solution to Ax = b

Vector y = Ax in span(A) closest to b in 2-norm occurs
when residual r = b−Ax is orthogonal to span(A),

0 = ATr = AT (b−Ax)

again giving system of normal equations

ATAx = ATb

Michael T. Heath Scientific Computing 12 / 61



Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Existence and Uniqueness
Orthogonality
Conditioning

Orthogonality, continued

Geometric relationships among b, r, and span(A) are
shown in diagram
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Orthogonal Projectors

Matrix P is orthogonal projector if it is idempotent
(P 2 = P ) and symmetric (P T = P )

Orthogonal projector onto orthogonal complement
span(P )⊥ is given by P⊥ = I − P

For any vector v,

v = (P + (I − P )) v = Pv + P⊥v

For least squares problem Ax ∼= b, if rank(A) = n, then

P = A(ATA)−1AT

is orthogonal projector onto span(A), and

b = Pb + P⊥b = Ax + (b−Ax) = y + r
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Pseudoinverse and Condition Number

Nonsquare m× n matrix A has no inverse in usual sense

If rank(A) = n, pseudoinverse is defined by

A+ = (ATA)−1AT

and condition number by

cond(A) = ‖A‖2 · ‖A+‖2

By convention, cond(A) =∞ if rank(A) < n

Just as condition number of square matrix measures
closeness to singularity, condition number of rectangular
matrix measures closeness to rank deficiency

Least squares solution of Ax ∼= b is given by x = A+ b
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Sensitivity and Conditioning

Sensitivity of least squares solution to Ax ∼= b depends on
b as well as A

Define angle θ between b and y = Ax by

cos(θ) =
‖y‖2
‖b‖2

=
‖Ax‖2
‖b‖2

Bound on perturbation ∆x in solution x due to perturbation
∆b in b is given by

‖∆x‖2
‖x‖2

≤ cond(A)
1

cos(θ)

‖∆b‖2
‖b‖2
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Sensitivity and Conditioning, contnued

Similarly, for perturbation E in matrix A,

‖∆x‖2
‖x‖2

/
(
[cond(A)]2 tan(θ) + cond(A)

) ‖E‖2
‖A‖2

Condition number of least squares solution is about
cond(A) if residual is small, but can be squared or
arbitrarily worse for large residual
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Normal Equations Method

If m× n matrix A has rank n, then symmetric n× n matrix
ATA is positive definite, so its Cholesky factorization

ATA = LLT

can be used to obtain solution x to system of normal
equations

ATAx = ATb

which has same solution as linear least squares problem
Ax ∼= b

Normal equations method involves transformations

rectangular −→ square −→ triangular
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Example: Normal Equations Method
For polynomial data-fitting example given previously,
normal equations method gives

ATA =

 1 1 1 1 1
−1.0 −0.5 0.0 0.5 1.0

1.0 0.25 0.0 0.25 1.0




1 −1.0 1.0
1 −0.5 0.25
1 0.0 0.0
1 0.5 0.25
1 1.0 1.0


=

5.0 0.0 2.5
0.0 2.5 0.0
2.5 0.0 2.125

 ,

ATb =

 1 1 1 1 1
−1.0 −0.5 0.0 0.5 1.0

1.0 0.25 0.0 0.25 1.0




1.0
0.5
0.0
0.5
2.0

 =

4.0
1.0
3.25


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Example, continued

Cholesky factorization of symmetric positive definite matrix
ATA gives

ATA =

5.0 0.0 2.5
0.0 2.5 0.0
2.5 0.0 2.125


=

2.236 0 0
0 1.581 0

1.118 0 0.935

2.236 0 1.118
0 1.581 0
0 0 0.935

 = LLT

Solving lower triangular system Lz = ATb by
forward-substitution gives z =

[
1.789 0.632 1.336

]T
Solving upper triangular system LTx = z by
back-substitution gives x =

[
0.086 0.400 1.429

]T
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Shortcomings of Normal Equations

Information can be lost in forming ATA and ATb

For example, take

A =

1 1
ε 0
0 ε


where ε is positive number smaller than

√
εmach

Then in floating-point arithmetic

ATA =

[
1 + ε2 1

1 1 + ε2

]
=

[
1 1
1 1

]
which is singular
Sensitivity of solution is also worsened, since

cond(ATA) = [cond(A)]2
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Augmented System Method

Definition of residual together with orthogonality
requirement give (m+ n)× (m+ n) augmented system[

I A
AT O

] [
r
x

]
=

[
b
0

]
Augmented system is not positive definite, is larger than
original system, and requires storing two copies of A

But it allows greater freedom in choosing pivots in
computing LDLT or LU factorization
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Augmented System Method, continued

Introducing scaling parameter α gives system[
αI A
AT O

] [
r/α
x

]
=

[
b
0

]
which allows control over relative weights of two
subsystems in choosing pivots

Reasonable rule of thumb is to take

α = max
i,j
|aij |/1000

Augmented system is sometimes useful, but is far from
ideal in work and storage required
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Orthogonal Transformations

We seek alternative method that avoids numerical
difficulties of normal equations
We need numerically robust transformation that produces
easier problem without changing solution
What kind of transformation leaves least squares solution
unchanged?

Square matrix Q is orthogonal if QTQ = I

Multiplication of vector by orthogonal matrix preserves
Euclidean norm

‖Qv‖22 = (Qv)TQv = vTQTQv = vTv = ‖v‖22

Thus, multiplying both sides of least squares problem by
orthogonal matrix does not change its solution
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Triangular Least Squares Problems

As with square linear systems, suitable target in simplifying
least squares problems is triangular form

Upper triangular overdetermined (m > n) least squares
problem has form [

R
O

]
x ∼=

[
b1
b2

]
where R is n× n upper triangular and b is partitioned
similarly

Residual is
‖r‖22 = ‖b1 −Rx‖22 + ‖b2‖22
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Triangular Least Squares Problems, continued

We have no control over second term, ‖b2‖22, but first term
becomes zero if x satisfies n× n triangular system

Rx = b1

which can be solved by back-substitution

Resulting x is least squares solution, and minimum sum of
squares is

‖r‖22 = ‖b2‖22
So our strategy is to transform general least squares
problem to triangular form using orthogonal transformation
so that least squares solution is preserved
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QR Factorization
Given m× n matrix A, with m > n, we seek m×m
orthogonal matrix Q such that

A = Q

[
R
O

]
where R is n× n and upper triangular
Linear least squares problem Ax ∼= b is then transformed
into triangular least squares problem

QTAx =

[
R
O

]
x ∼=

[
c1
c2

]
= QTb

which has same solution, since

‖r‖22 = ‖b−Ax‖22 = ‖b−Q

[
R
O

]
x‖22 = ‖QTb−

[
R
O

]
x‖22
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Orthogonal Bases

If we partition m×m orthogonal matrix Q = [Q1 Q2],
where Q1 is m× n, then

A = Q

[
R
O

]
= [Q1 Q2]

[
R
O

]
= Q1R

is called reduced QR factorization of A

Columns of Q1 are orthonormal basis for span(A), and
columns of Q2 are orthonormal basis for span(A)⊥

Q1Q
T
1 is orthogonal projector onto span(A)

Solution to least squares problem Ax ∼= b is given by
solution to square system

QT
1 Ax = Rx = c1 = QT

1 b
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Computing QR Factorization

To compute QR factorization of m× n matrix A, with
m > n, we annihilate subdiagonal entries of successive
columns of A, eventually reaching upper triangular form

Similar to LU factorization by Gaussian elimination, but use
orthogonal transformations instead of elementary
elimination matrices

Possible methods include

Householder transformations
Givens rotations
Gram-Schmidt orthogonalization
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Householder Transformations
Householder transformation has form

H = I − 2
vvT

vTv

for nonzero vector v
H is orthogonal and symmetric: H = HT = H−1

Given vector a, we want to choose v so that

Ha =


α
0
...
0

 = α


1
0
...
0

 = αe1

Substituting into formula for H, we can take

v = a− αe1
and α = ±‖a‖2, with sign chosen to avoid cancellation
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Example: Householder Transformation
If a =

[
2 1 2

]T , then we take

v = a− αe1 =

2
1
2

− α
1

0
0

 =

2
1
2

−
α0

0


where α = ±‖a‖2 = ±3

Since a1 is positive, we choose negative sign for α to avoid

cancellation, so v =

2
1
2

−
−3

0
0

 =

5
1
2


To confirm that transformation works,

Ha = a− 2
vTa

vTv
v =

2
1
2

− 2
15

30

5
1
2

 =

−3
0
0


< interactive example >
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Householder QR Factorization

To compute QR factorization of A, use Householder
transformations to annihilate subdiagonal entries of each
successive column

Each Householder transformation is applied to entire
matrix, but does not affect prior columns, so zeros are
preserved

In applying Householder transformation H to arbitrary
vector u,

Hu =

(
I − 2

vvT

vTv

)
u = u−

(
2
vTu

vTv

)
v

which is much cheaper than general matrix-vector
multiplication and requires only vector v, not full matrix H
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Householder QR Factorization, continued

Process just described produces factorization

Hn · · ·H1A =

[
R
O

]
where R is n× n and upper triangular

If Q = H1 · · ·Hn, then A = Q

[
R
O

]
To preserve solution of linear least squares problem,
right-hand side b is transformed by same sequence of
Householder transformations

Then solve triangular least squares problem
[
R
O

]
x ∼= QTb

Michael T. Heath Scientific Computing 33 / 61



Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Normal Equations
Orthogonal Methods
SVD

Householder QR Factorization, continued

For solving linear least squares problem, product Q of
Householder transformations need not be formed explicitly

R can be stored in upper triangle of array initially
containing A

Householder vectors v can be stored in (now zero) lower
triangular portion of A (almost)

Householder transformations most easily applied in this
form anyway
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Example: Householder QR Factorization

For polynomial data-fitting example given previously, with

A =


1 −1.0 1.0
1 −0.5 0.25
1 0.0 0.0
1 0.5 0.25
1 1.0 1.0

 , b =


1.0
0.5
0.0
0.5
2.0


Householder vector v1 for annihilating subdiagonal entries
of first column of A is

v1 =


1
1
1
1
1

−

−2.236

0
0
0
0

 =


3.236

1
1
1
1


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Example, continued

Applying resulting Householder transformation H1 yields
transformed matrix and right-hand side

H1A =


−2.236 0 −1.118

0 −0.191 −0.405
0 0.309 −0.655
0 0.809 −0.405
0 1.309 0.345

 , H1b =


−1.789
−0.362
−0.862
−0.362

1.138


Householder vector v2 for annihilating subdiagonal entries
of second column of H1A is

v2 =


0

−0.191
0.309
0.809
1.309

−


0
1.581

0
0
0

 =


0

−1.772
0.309
0.809
1.309


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Example, continued

Applying resulting Householder transformation H2 yields

H2H1A =


−2.236 0 −1.118

0 1.581 0
0 0 −0.725
0 0 −0.589
0 0 0.047

 , H2H1b =


−1.789

0.632
−1.035
−0.816

0.404


Householder vector v3 for annihilating subdiagonal entries
of third column of H2H1A is

v3 =


0
0

−0.725
−0.589

0.047

−


0
0

0.935
0
0

 =


0
0

−1.660
−0.589

0.047


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Example, continued

Applying resulting Householder transformation H3 yields

H3H2H1A =


−2.236 0 −1.118

0 1.581 0
0 0 0.935
0 0 0
0 0 0

 , H3H2H1b =


−1.789

0.632
1.336
0.026
0.337


Now solve upper triangular system Rx = c1 by
back-substitution to obtain x =

[
0.086 0.400 1.429

]T
< interactive example >
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Givens Rotations

Givens rotations introduce zeros one at a time
Given vector

[
a1 a2

]T , choose scalars c and s so that[
c s
−s c

] [
a1
a2

]
=

[
α
0

]
with c2 + s2 = 1, or equivalently, α =

√
a21 + a22

Previous equation can be rewritten[
a1 a2
a2 −a1

] [
c
s

]
=

[
α
0

]
Gaussian elimination yields triangular system[

a1 a2
0 −a1 − a22/a1

] [
c
s

]
=

[
α

−αa2/a1

]
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Givens Rotations, continued

Back-substitution then gives

s =
αa2

a21 + a22
and c =

αa1
a21 + a22

Finally, c2 + s2 = 1, or α =
√
a21 + a22, implies

c =
a1√
a21 + a22

and s =
a2√
a21 + a22
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Example: Givens Rotation

Let a =
[
4 3

]T
To annihilate second entry we compute cosine and sine

c =
a1√
a21 + a22

=
4

5
= 0.8 and s =

a2√
a21 + a22

=
3

5
= 0.6

Rotation is then given by

G =

[
c s
−s c

]
=

[
0.8 0.6
−0.6 0.8

]
To confirm that rotation works,

Ga =

[
0.8 0.6
−0.6 0.8

] [
4
3

]
=

[
5
0

]
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Givens QR Factorization

More generally, to annihilate selected component of vector
in n dimensions, rotate target component with another
component 

1 0 0 0 0
0 c 0 s 0
0 0 1 0 0
0 −s 0 c 0
0 0 0 0 1



a1
a2
a3
a4
a5

 =


a1
α
a3
0
a5


By systematically annihilating successive entries, we can
reduce matrix to upper triangular form using sequence of
Givens rotations

Each rotation is orthogonal, so their product is orthogonal,
producing QR factorization
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Givens QR Factorization

Straightforward implementation of Givens method requires
about 50% more work than Householder method, and also
requires more storage, since each rotation requires two
numbers, c and s, to define it

These disadvantages can be overcome, but requires more
complicated implementation

Givens can be advantageous for computing QR
factorization when many entries of matrix are already zero,
since those annihilations can then be skipped

< interactive example >
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Gram-Schmidt Orthogonalization

Given vectors a1 and a2, we seek orthonormal vectors q1
and q2 having same span

This can be accomplished by subtracting from second
vector its projection onto first vector and normalizing both
resulting vectors, as shown in diagram

< interactive example >
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Gram-Schmidt Orthogonalization

Process can be extended to any number of vectors
a1, . . . ,ak, orthogonalizing each successive vector against
all preceding ones, giving classical Gram-Schmidt
procedure

for k = 1 to n
qk = ak
for j = 1 to k − 1

rjk = qTj ak
qk = qk − rjkqj

end
rkk = ‖qk‖2
qk = qk/rkk

end
Resulting qk and rjk form reduced QR factorization of A
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Modified Gram-Schmidt

Classical Gram-Schmidt procedure often suffers loss of
orthogonality in finite-precision

Also, separate storage is required for A, Q, and R, since
original ak are needed in inner loop, so qk cannot overwrite
columns of A

Both deficiencies are improved by modified Gram-Schmidt
procedure, with each vector orthogonalized in turn against
all subsequent vectors, so qk can overwrite ak
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Modified Gram-Schmidt QR Factorization

Modified Gram-Schmidt algorithm

for k = 1 to n
rkk = ‖ak‖2
qk = ak/rkk
for j = k + 1 to n

rkj = qTk aj
aj = aj − rkjqk

end
end

< interactive example >
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Rank Deficiency

If rank(A) < n, then QR factorization still exists, but yields
singular upper triangular factor R, and multiple vectors x
give minimum residual norm

Common practice selects minimum residual solution x
having smallest norm

Can be computed by QR factorization with column pivoting
or by singular value decomposition (SVD)

Rank of matrix is often not clear cut in practice, so relative
tolerance is used to determine rank
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Example: Near Rank Deficiency

Consider 3× 2 matrix

A =

0.641 0.242
0.321 0.121
0.962 0.363


Computing QR factorization,

R =

[
1.1997 0.4527

0 0.0002

]
R is extremely close to singular (exactly singular to 3-digit
accuracy of problem statement)
If R is used to solve linear least squares problem, result is
highly sensitive to perturbations in right-hand side
For practical purposes, rank(A) = 1 rather than 2, because
columns are nearly linearly dependent
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QR with Column Pivoting

Instead of processing columns in natural order, select for
reduction at each stage column of remaining unreduced
submatrix having maximum Euclidean norm

If rank(A) = k < n, then after k steps, norms of remaining
unreduced columns will be zero (or “negligible” in
finite-precision arithmetic) below row k

Yields orthogonal factorization of form

QTAP =

[
R S
O O

]
where R is k × k, upper triangular, and nonsingular, and
permutation matrix P performs column interchanges
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QR with Column Pivoting, continued

Basic solution to least squares problem Ax ∼= b can now
be computed by solving triangular system Rz = c1, where
c1 contains first k components of QTb, and then taking

x = P

[
z
0

]
Minimum-norm solution can be computed, if desired, at
expense of additional processing to annihilate S

rank(A) is usually unknown, so rank is determined by
monitoring norms of remaining unreduced columns and
terminating factorization when maximum value falls below
chosen tolerance

< interactive example >
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Singular Value Decomposition

Singular value decomposition (SVD) of m× n matrix A has
form

A = UΣV T

where U is m×m orthogonal matrix, V is n× n
orthogonal matrix, and Σ is m× n diagonal matrix, with

σij =

{
0 for i 6= j
σi ≥ 0 for i = j

Diagonal entries σi, called singular values of A, are
usually ordered so that σ1 ≥ σ2 ≥ · · · ≥ σn

Columns ui of U and vi of V are called left and right
singular vectors
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Example: SVD

SVD of A =


1 2 3
4 5 6
7 8 9
10 11 12

 is given by UΣV T =


.141 .825 −.420 −.351
.344 .426 .298 .782
.547 .0278 .664 −.509
.750 −.371 −.542 .0790




25.5 0 0
0 1.29 0
0 0 0
0 0 0


 .504 .574 .644
−.761 −.057 .646
.408 −.816 .408



< interactive example >
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Applications of SVD

Minimum norm solution to Ax ∼= b is given by

x =
∑
σi 6=0

uTi b

σi
vi

For ill-conditioned or rank deficient problems, “small”
singular values can be omitted from summation to stabilize
solution

Euclidean matrix norm : ‖A‖2 = σmax

Euclidean condition number of matrix : cond(A) =
σmax

σmin

Rank of matrix : number of nonzero singular values

Michael T. Heath Scientific Computing 54 / 61



Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Normal Equations
Orthogonal Methods
SVD

Pseudoinverse

Define pseudoinverse of scalar σ to be 1/σ if σ 6= 0, zero
otherwise
Define pseudoinverse of (possibly rectangular) diagonal
matrix by transposing and taking scalar pseudoinverse of
each entry
Then pseudoinverse of general real m× n matrix A is
given by

A+ = V Σ+UT

Pseudoinverse always exists whether or not matrix is
square or has full rank
If A is square and nonsingular, then A+ = A−1

In all cases, minimum-norm solution to Ax ∼= b is given by
x = A+ b
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Orthogonal Bases

SVD of matrix, A = UΣV T , provides orthogonal bases for
subspaces relevant to A

Columns of U corresponding to nonzero singular values
form orthonormal basis for span(A)

Remaining columns of U form orthonormal basis for
orthogonal complement span(A)⊥

Columns of V corresponding to zero singular values form
orthonormal basis for null space of A

Remaining columns of V form orthonormal basis for
orthogonal complement of null space of A
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Lower-Rank Matrix Approximation
Another way to write SVD is

A = UΣV T = σ1E1 + σ2E2 + · · ·+ σnEn

with Ei = uiv
T
i

Ei has rank 1 and can be stored using only m+ n storage
locations
Product Eix can be computed using only m+ n
multiplications
Condensed approximation to A is obtained by omitting
from summation terms corresponding to small singular
values
Approximation using k largest singular values is closest
matrix of rank k to A
Approximation is useful in image processing, data
compression, information retrieval, cryptography, etc.

< interactive example >
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Total Least Squares

Ordinary least squares is applicable when right-hand side
b is subject to random error but matrix A is known
accurately

When all data, including A, are subject to error, then total
least squares is more appropriate

Total least squares minimizes orthogonal distances, rather
than vertical distances, between model and data

Total least squares solution can be computed from SVD of
[A, b]
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Comparison of Methods

Forming normal equations matrix ATA requires about
n2m/2 multiplications, and solving resulting symmetric
linear system requires about n3/6 multiplications

Solving least squares problem using Householder QR
factorization requires about mn2 − n3/3 multiplications

If m ≈ n, both methods require about same amount of
work

If m� n, Householder QR requires about twice as much
work as normal equations

Cost of SVD is proportional to mn2 + n3, with
proportionality constant ranging from 4 to 10, depending on
algorithm used
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Comparison of Methods, continued

Normal equations method produces solution whose
relative error is proportional to [cond(A)]2

Required Cholesky factorization can be expected to break
down if cond(A) ≈ 1/

√
εmach or worse

Householder method produces solution whose relative
error is proportional to

cond(A) + ‖r‖2 [cond(A)]2

which is best possible, since this is inherent sensitivity of
solution to least squares problem

Householder method can be expected to break down (in
back-substitution phase) only if cond(A) ≈ 1/εmach or worse

Michael T. Heath Scientific Computing 60 / 61



Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Normal Equations
Orthogonal Methods
SVD

Comparison of Methods, continued

Householder is more accurate and more broadly
applicable than normal equations

These advantages may not be worth additional cost,
however, when problem is sufficiently well conditioned that
normal equations provide sufficient accuracy

For rank-deficient or nearly rank-deficient problems,
Householder with column pivoting can produce useful
solution when normal equations method fails outright

SVD is even more robust and reliable than Householder,
but substantially more expensive
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