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Eigenvalue Problems

Eigenvalue problems occur in many areas of science and
engineering, such as structural analysis

Eigenvalues are also important in analyzing numerical
methods

Theory and algorithms apply to complex matrices as well
as real matrices

With complex matrices, we use conjugate transpose, AH ,
instead of usual transpose, AT
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Eigenvalues and Eigenvectors

Standard eigenvalue problem : Given n× n matrix A, find
scalar λ and nonzero vector x such that

Ax = λx

λ is eigenvalue, and x is corresponding eigenvector

λ may be complex even if A is real

Spectrum = λ(A) = set of eigenvalues of A

Spectral radius = ρ(A) = max{|λ| : λ ∈ λ(A)}

Michael T. Heath Scientific Computing 4 / 87



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Eigenvalue Problems
Eigenvalues and Eigenvectors
Geometric Interpretation

Geometric Interpretation

Matrix expands or shrinks any vector lying in direction of
eigenvector by scalar factor

Expansion or contraction factor is given by corresponding
eigenvalue λ

Eigenvalues and eigenvectors decompose complicated
behavior of general linear transformation into simpler
actions
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Examples: Eigenvalues and Eigenvectors

A =

[
1 0
0 2

]
: λ1 = 1, x1 =

[
1
0

]
, λ2 = 2, x2 =

[
0
1

]
A =

[
1 1
0 2

]
: λ1 = 1, x1 =

[
1
0

]
, λ2 = 2, x2 =

[
1
1

]
A =

[
3 −1
−1 3

]
: λ1 = 2, x1 =

[
1
1

]
, λ2 = 4, x2 =

[
1
−1

]
A =

[
1.5 0.5
0.5 1.5

]
: λ1 = 2, x1 =

[
1
1

]
, λ2 = 1, x2 =

[
−1

1

]
A =

[
0 1
−1 0

]
: λ1 = i, x1 =

[
1
i

]
, λ2 = −i, x2 =

[
i
1

]
where i =

√
−1
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Characteristic Polynomial

Equation Ax = λx is equivalent to

(A− λI)x = 0

which has nonzero solution x if, and only if, its matrix is
singular
Eigenvalues of A are roots λi of characteristic polynomial

det(A− λI) = 0

in λ of degree n
Fundamental Theorem of Algebra implies that n× n matrix
A always has n eigenvalues, but they may not be real nor
distinct
Complex eigenvalues of real matrix occur in complex
conjugate pairs: if α+ iβ is eigenvalue of real matrix, then
so is α− iβ, where i =

√
−1
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Example: Characteristic Polynomial

Characteristic polynomial of previous example matrix is

det

([
3 −1
−1 3

]
− λ

[
1 0
0 1

])
=

det

([
3− λ −1
−1 3− λ

])
=

(3− λ)(3− λ)− (−1)(−1) = λ2 − 6λ+ 8 = 0

so eigenvalues are given by

λ =
6±
√

36− 32

2
, or λ1 = 2, λ2 = 4
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Companion Matrix

Monic polynomial

p(λ) = c0 + c1λ+ · · ·+ cn−1λ
n−1 + λn

is characteristic polynomial of companion matrix

Cn =


0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1


Roots of polynomial of degree > 4 cannot always
computed in finite number of steps
So in general, computation of eigenvalues of matrices of
order > 4 requires (theoretically infinite) iterative process
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Characteristic Polynomial, continued

Computing eigenvalues using characteristic polynomial is
not recommended because of

work in computing coefficients of characteristic polynomial
sensitivity of coefficients of characteristic polynomial
work in solving for roots of characteristic polynomial

Characteristic polynomial is powerful theoretical tool but
usually not useful computationally
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Example: Characteristic Polynomial

Consider

A =

[
1 ε
ε 1

]
where ε is positive number slightly smaller than

√
εmach

Exact eigenvalues of A are 1 + ε and 1− ε

Computing characteristic polynomial in floating-point
arithmetic, we obtain

det(A− λI) = λ2 − 2λ+ (1− ε2) = λ2 − 2λ+ 1

which has 1 as double root

Thus, eigenvalues cannot be resolved by this method even
though they are distinct in working precision
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Multiplicity and Diagonalizability

Multiplicity is number of times root appears when
polynomial is written as product of linear factors

Eigenvalue of multiplicity 1 is simple

Defective matrix has eigenvalue of multiplicity k > 1 with
fewer than k linearly independent corresponding
eigenvectors

Nondefective matrix A has n linearly independent
eigenvectors, so it is diagonalizable

X−1AX = D

where X is nonsingular matrix of eigenvectors
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Eigenspaces and Invariant Subspaces

Eigenvectors can be scaled arbitrarily: if Ax = λx, then
A(γx) = λ(γx) for any scalar γ, so γx is also eigenvector
corresponding to λ

Eigenvectors are usually normalized by requiring some
norm of eigenvector to be 1

Eigenspace = Sλ = {x : Ax = λx}

Subspace S of Rn (or Cn) is invariant if AS ⊆ S

For eigenvectors x1 · · · xp, span([x1 · · · xp]) is invariant
subspace
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Relevant Properties of Matrices

Properties of matrix A relevant to eigenvalue problems

Property Definition
diagonal aij = 0 for i 6= j
tridiagonal aij = 0 for |i− j| > 1
triangular aij = 0 for i > j (upper)

aij = 0 for i < j (lower)
Hessenberg aij = 0 for i > j + 1 (upper)

aij = 0 for i < j − 1 (lower)

orthogonal ATA = AAT = I
unitary AHA = AAH = I
symmetric A = AT

Hermitian A = AH

normal AHA = AAH
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Examples: Matrix Properties

Transpose:
[
1 2
3 4

]T
=

[
1 3
2 4

]
Conjugate transpose:

[
1 + i 1 + 2i
2− i 2− 2i

]H
=

[
1− i 2 + i
1− 2i 2 + 2i

]
Symmetric:

[
1 2
2 3

]
Nonsymmetric:

[
1 3
2 4

]
Hermitian:

[
1 1 + i

1− i 2

]
NonHermitian:

[
1 1 + i

1 + i 2

]
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Examples, continued

Orthogonal:
[
0 1
1 0

]
,

[
−1 0
0 −1

]
,

[ √
2/2

√
2/2

−
√

2/2
√

2/2

]
Unitary:

[
i
√

2/2
√

2/2

−
√

2/2 −i
√

2/2

]
Nonorthogonal:

[
1 1
1 2

]

Normal:

1 2 0
0 1 2
2 0 1


Nonnormal:

[
1 1
0 1

]
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Properties of Eigenvalue Problems

Properties of eigenvalue problem affecting choice of algorithm
and software

Are all eigenvalues needed, or only a few?

Are only eigenvalues needed, or are corresponding
eigenvectors also needed?

Is matrix real or complex?

Is matrix relatively small and dense, or large and sparse?

Does matrix have any special properties, such as
symmetry, or is it general matrix?
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Conditioning of Eigenvalue Problems

Condition of eigenvalue problem is sensitivity of
eigenvalues and eigenvectors to changes in matrix

Conditioning of eigenvalue problem is not same as
conditioning of solution to linear system for same matrix

Different eigenvalues and eigenvectors are not necessarily
equally sensitive to perturbations in matrix
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Conditioning of Eigenvalues

If µ is eigenvalue of perturbation A + E of nondefective
matrix A, then

|µ− λk| ≤ cond2(X) ‖E‖2

where λk is closest eigenvalue of A to µ and X is
nonsingular matrix of eigenvectors of A
Absolute condition number of eigenvalues is condition
number of matrix of eigenvectors with respect to solving
linear equations
Eigenvalues may be sensitive if eigenvectors are nearly
linearly dependent (i.e., matrix is nearly defective)
For normal matrix (AHA = AAH ), eigenvectors are
orthogonal, so eigenvalues are well-conditioned
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Conditioning of Eigenvalues

If (A + E)(x + ∆x) = (λ+ ∆λ)(x + ∆x), where λ is
simple eigenvalue of A, then

|∆λ| / ‖y‖2 · ‖x‖2
|yHx|

‖E‖2 =
1

cos(θ)
‖E‖2

where x and y are corresponding right and left
eigenvectors and θ is angle between them
For symmetric or Hermitian matrix, right and left
eigenvectors are same, so cos(θ) = 1 and eigenvalues are
inherently well-conditioned
Eigenvalues of nonnormal matrices may be sensitive
For multiple or closely clustered eigenvalues,
corresponding eigenvectors may be sensitive
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Problem Transformations

Shift : If Ax = λx and σ is any scalar, then
(A− σI)x = (λ− σ)x, so eigenvalues of shifted matrix are
shifted eigenvalues of original matrix

Inversion : If A is nonsingular and Ax = λx with x 6= 0,
then λ 6= 0 and A−1x = (1/λ)x, so eigenvalues of inverse
are reciprocals of eigenvalues of original matrix

Powers : If Ax = λx, then Akx = λkx, so eigenvalues of
power of matrix are same power of eigenvalues of original
matrix

Polynomial : If Ax = λx and p(t) is polynomial, then
p(A)x = p(λ)x, so eigenvalues of polynomial in matrix are
values of polynomial evaluated at eigenvalues of original
matrix
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Similarity Transformation

B is similar to A if there is nonsingular matrix T such that

B = T−1A T

Then

By = λy ⇒ T−1ATy = λy ⇒ A(Ty) = λ(Ty)

so A and B have same eigenvalues, and if y is
eigenvector of B, then x = Ty is eigenvector of A

Similarity transformations preserve eigenvalues and
eigenvectors are easily recovered
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Example: Similarity Transformation

From eigenvalues and eigenvectors for previous example,[
3 −1
−1 3

] [
1 1
1 −1

]
=

[
1 1
1 −1

] [
2 0
0 4

]
and hence[

0.5 0.5
0.5 −0.5

] [
3 −1
−1 3

] [
1 1
1 −1

]
=

[
2 0
0 4

]
So original matrix is similar to diagonal matrix, and
eigenvectors form columns of similarity transformation
matrix
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Diagonal Form

Eigenvalues of diagonal matrix are diagonal entries, and
eigenvectors are columns of identity matrix

Diagonal form is desirable in simplifying eigenvalue
problems for general matrices by similarity transformations

But not all matrices are diagonalizable by similarity
transformation

Closest one can get, in general, is Jordan form, which is
nearly diagonal but may have some nonzero entries on first
superdiagonal, corresponding to one or more multiple
eigenvalues
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Triangular Form

Any matrix can be transformed into triangular (Schur ) form
by similarity, and eigenvalues of triangular matrix are
diagonal entries
Eigenvectors of triangular matrix less obvious, but still
straightforward to compute
If

A− λI =

U11 u U13

0 0 vT

O 0 U33


is triangular, then U11y = u can be solved for y, so that

x =

 y
−1
0


is corresponding eigenvector

Michael T. Heath Scientific Computing 25 / 87



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Block Triangular Form

If

A =


A11 A12 · · · A1p

A22 · · · A2p

. . .
...

App


with square diagonal blocks, then

λ(A) =

p⋃
j=1

λ(Ajj)

so eigenvalue problem breaks into p smaller eigenvalue
problems
Real Schur form has 1× 1 diagonal blocks corresponding
to real eigenvalues and 2× 2 diagonal blocks
corresponding to pairs of complex conjugate eigenvalues
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Forms Attainable by Similarity
A T B

distinct eigenvalues nonsingular diagonal
real symmetric orthogonal real diagonal
complex Hermitian unitary real diagonal
normal unitary diagonal
arbitrary real orthogonal real block triangular

(real Schur)
arbitrary unitary upper triangular

(Schur)
arbitrary nonsingular almost diagonal

(Jordan)

Given matrix A with indicated property, matrices B and T
exist with indicated properties such that B = T−1AT
If B is diagonal or triangular, eigenvalues are its diagonal
entries
If B is diagonal, eigenvectors are columns of T
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Power Iteration

Simplest method for computing one eigenvalue-
eigenvector pair is power iteration, which repeatedly
multiplies matrix times initial starting vector

Assume A has unique eigenvalue of maximum modulus,
say λ1, with corresponding eigenvector v1

Then, starting from nonzero vector x0, iteration scheme

xk = Axk−1

converges to multiple of eigenvector v1 corresponding to
dominant eigenvalue λ1

Michael T. Heath Scientific Computing 28 / 87



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Convergence of Power Iteration

To see why power iteration converges to dominant
eigenvector, express starting vector x0 as linear
combination

x0 =

n∑
i=1

αivi

where vi are eigenvectors of A
Then

xk = Axk−1 = A2xk−2 = · · · = Akx0 =

n∑
i=1

λki αivi = λk1

(
α1v1 +

n∑
i=2

(λi/λ1)
kαivi

)
Since |λi/λ1| < 1 for i > 1, successively higher powers go
to zero, leaving only component corresponding to v1
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Example: Power Iteration
Ratio of values of given component of xk from one iteration
to next converges to dominant eigenvalue λ1

For example, if A =

[
1.5 0.5
0.5 1.5

]
and x0 =

[
0
1

]
, we obtain

k xTk ratio
0 0.0 1.0
1 0.5 1.5 1.500
2 1.5 2.5 1.667
3 3.5 4.5 1.800
4 7.5 8.5 1.889
5 15.5 16.5 1.941
6 31.5 32.5 1.970
7 63.5 64.5 1.985
8 127.5 128.5 1.992

Ratio is converging to dominant eigenvalue, which is 2
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Limitations of Power Iteration

Power iteration can fail for various reasons

Starting vector may have no component in dominant
eigenvector v1 (i.e., α1 = 0) — not problem in practice
because rounding error usually introduces such
component in any case

There may be more than one eigenvalue having same
(maximum) modulus, in which case iteration may converge
to linear combination of corresponding eigenvectors

For real matrix and starting vector, iteration can never
converge to complex vector

Michael T. Heath Scientific Computing 31 / 87



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Normalized Power Iteration

Geometric growth of components at each iteration risks
eventual overflow (or underflow if λ1 < 1)

Approximate eigenvector should be normalized at each
iteration, say, by requiring its largest component to be 1 in
modulus, giving iteration scheme

yk = Axk−1

xk = yk/‖yk‖∞

With normalization, ‖yk‖∞ → |λ1|, and xk → v1/‖v1‖∞
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Example: Normalized Power Iteration

Repeating previous example with normalized scheme,

k xTk ‖yk‖∞
0 0.000 1.0
1 0.333 1.0 1.500
2 0.600 1.0 1.667
3 0.778 1.0 1.800
4 0.882 1.0 1.889
5 0.939 1.0 1.941
6 0.969 1.0 1.970
7 0.984 1.0 1.985
8 0.992 1.0 1.992

< interactive example >
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Geometric Interpretation

Behavior of power iteration depicted geometrically

Initial vector x0 = v1 + v2 contains equal components in
eigenvectors v1 and v2 (dashed arrows)

Repeated multiplication by A causes component in v1
(corresponding to larger eigenvalue, 2) to dominate, so
sequence of vectors xk converges to v1
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Power Iteration with Shift

Convergence rate of power iteration depends on ratio
|λ2/λ1|, where λ2 is eigenvalue having second largest
modulus

May be possible to choose shift, A− σI, such that∣∣∣∣λ2 − σλ1 − σ

∣∣∣∣ < ∣∣∣∣λ2λ1
∣∣∣∣

so convergence is accelerated

Shift must then be added to result to obtain eigenvalue of
original matrix
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Example: Power Iteration with Shift

In earlier example, for instance, if we pick shift of σ = 1,
(which is equal to other eigenvalue) then ratio becomes
zero and method converges in one iteration

In general, we would not be able to make such fortuitous
choice, but shifts can still be extremely useful in some
contexts, as we will see later
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Inverse Iteration

If smallest eigenvalue of matrix required rather than
largest, can make use of fact that eigenvalues of A−1 are
reciprocals of those of A, so smallest eigenvalue of A is
reciprocal of largest eigenvalue of A−1

This leads to inverse iteration scheme

Ayk = xk−1

xk = yk/‖yk‖∞

which is equivalent to power iteration applied to A−1

Inverse of A not computed explicitly, but factorization of A
used to solve system of linear equations at each iteration
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Inverse Iteration, continued

Inverse iteration converges to eigenvector corresponding
to smallest eigenvalue of A

Eigenvalue obtained is dominant eigenvalue of A−1, and
hence its reciprocal is smallest eigenvalue of A in modulus
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Example: Inverse Iteration

Applying inverse iteration to previous example to compute
smallest eigenvalue yields sequence

k xTk ‖yk‖∞
0 0.000 1.0
1 −0.333 1.0 0.750
2 −0.600 1.0 0.833
3 −0.778 1.0 0.900
4 −0.882 1.0 0.944
5 −0.939 1.0 0.971
6 −0.969 1.0 0.985

which is indeed converging to 1 (which is its own reciprocal
in this case)

< interactive example >
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Inverse Iteration with Shift

As before, shifting strategy, working with A− σI for some
scalar σ, can greatly improve convergence

Inverse iteration is particularly useful for computing
eigenvector corresponding to approximate eigenvalue,
since it converges rapidly when applied to shifted matrix
A− λI, where λ is approximate eigenvalue

Inverse iteration is also useful for computing eigenvalue
closest to given value β, since if β is used as shift, then
desired eigenvalue corresponds to smallest eigenvalue of
shifted matrix
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Rayleigh Quotient

Given approximate eigenvector x for real matrix A,
determining best estimate for corresponding eigenvalue λ
can be considered as n× 1 linear least squares
approximation problem

xλ ∼= Ax

From normal equation xTxλ = xTAx, least squares
solution is given by

λ =
xTAx

xTx

This quantity, known as Rayleigh quotient, has many useful
properties
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Example: Rayleigh Quotient

Rayleigh quotient can accelerate convergence of iterative
methods such as power iteration, since Rayleigh quotient
xTkAxk/x

T
k xk gives better approximation to eigenvalue at

iteration k than does basic method alone
For previous example using power iteration, value of
Rayleigh quotient at each iteration is shown below

k xTk ‖yk‖∞ xTkAxk/x
T
k xk

0 0.000 1.0
1 0.333 1.0 1.500 1.500
2 0.600 1.0 1.667 1.800
3 0.778 1.0 1.800 1.941
4 0.882 1.0 1.889 1.985
5 0.939 1.0 1.941 1.996
6 0.969 1.0 1.970 1.999
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Rayleigh Quotient Iteration

Given approximate eigenvector, Rayleigh quotient yields
good estimate for corresponding eigenvalue

Conversely, inverse iteration converges rapidly to
eigenvector if approximate eigenvalue is used as shift, with
one iteration often sufficing

These two ideas combined in Rayleigh quotient iteration

σk = xTkAxk/x
T
k xk

(A− σkI)yk+1 = xk

xk+1 = yk+1/‖yk+1‖∞
starting from given nonzero vector x0
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Rayleigh Quotient Iteration, continued

Rayleigh quotient iteration is especially effective for
symmetric matrices and usually converges very rapidly

Using different shift at each iteration means matrix must be
refactored each time to solve linear system, so cost per
iteration is high unless matrix has special form that makes
factorization easy

Same idea also works for complex matrices, for which
transpose is replaced by conjugate transpose, so Rayleigh
quotient becomes xHAx/xHx
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Example: Rayleigh Quotient Iteration

Using same matrix as previous examples and randomly
chosen starting vector x0, Rayleigh quotient iteration
converges in two iterations

k xTk σk
0 0.807 0.397 1.896
1 0.924 1.000 1.998
2 1.000 1.000 2.000
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Deflation

After eigenvalue λ1 and corresponding eigenvector x1

have been computed, then additional eigenvalues
λ2, . . . , λn of A can be computed by deflation, which
effectively removes known eigenvalue

Let H be any nonsingular matrix such that Hx1 = αe1,
scalar multiple of first column of identity matrix
(Householder transformation is good choice for H)

Then similarity transformation determined by H transforms
A into form

HAH−1 =

[
λ1 bT

0 B

]
where B is matrix of order n− 1 having eigenvalues
λ2, . . . , λn
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Deflation, continued

Thus, we can work with B to compute next eigenvalue λ2

Moreover, if y2 is eigenvector of B corresponding to λ2,
then

x2 = H−1
[
α
y2

]
, where α =

bTy2

λ2 − λ1
is eigenvector corresponding to λ2 for original matrix A,
provided λ1 6= λ2

Process can be repeated to find additional eigenvalues
and eigenvectors
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Deflation, continued

Alternative approach lets u1 be any vector such that
uT1 x1 = λ1

Then A− x1u
T
1 has eigenvalues 0, λ2, . . . , λn

Possible choices for u1 include

u1 = λ1x1, if A is symmetric and x1 is normalized so that
‖x1‖2 = 1

u1 = λ1y1, where y1 is corresponding left eigenvector (i.e.,
ATy1 = λ1y1) normalized so that yT

1 x1 = 1

u1 = ATek, if x1 is normalized so that ‖x1‖∞ = 1 and kth
component of x1 is 1
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Simultaneous Iteration

Simplest method for computing many eigenvalue-
eigenvector pairs is simultaneous iteration, which
repeatedly multiplies matrix times matrix of initial starting
vectors

Starting from n× p matrix X0 of rank p, iteration scheme is

Xk = AXk−1

span(Xk) converges to invariant subspace determined by
p largest eigenvalues of A, provided |λp| > |λp+1|

Also called subspace iteration
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Orthogonal Iteration

As with power iteration, normalization is needed with
simultaneous iteration

Each column of Xk converges to dominant eigenvector, so
columns of Xk become increasingly ill-conditioned basis
for span(Xk)

Both issues can be addressed by computing QR
factorization at each iteration

Q̂kRk = Xk−1

Xk = AQ̂k

where Q̂kRk is reduced QR factorization of Xk−1

This orthogonal iteration converges to block triangular
form, and leading block is triangular if moduli of
consecutive eigenvalues are distinct
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QR Iteration

For p = n and X0 = I, matrices

Ak = Q̂H
k AQ̂k

generated by orthogonal iteration converge to triangular or
block triangular form, yielding all eigenvalues of A

QR iteration computes successive matrices Ak without
forming above product explicitly

Starting with A0 = A, at iteration k compute QR
factorization

QkRk = Ak−1

and form reverse product

Ak = RkQk
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QR Iteration, continued

Successive matrices Ak are unitarily similar to each other

Ak = RkQk = QH
k Ak−1Qk

Diagonal entries (or eigenvalues of diagonal blocks) of Ak

converge to eigenvalues of A

Product of orthogonal matrices Qk converges to matrix of
corresponding eigenvectors

If A is symmetric, then symmetry is preserved by QR
iteration, so Ak converge to matrix that is both triangular
and symmetric, hence diagonal
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Example: QR Iteration

Let A0 =

[
7 2
2 4

]
Compute QR factorization

A0 = Q1R1 =

[
.962 −.275
.275 .962

] [
7.28 3.02

0 3.30

]
and form reverse product

A1 = R1Q1 =

[
7.83 .906
.906 3.17

]
Off-diagonal entries are now smaller, and diagonal entries
closer to eigenvalues, 8 and 3
Process continues until matrix is within tolerance of being
diagonal, and diagonal entries then closely approximate
eigenvalues
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QR Iteration with Shifts

Convergence rate of QR iteration can be accelerated by
incorporating shifts

QkRk = Ak−1 − σkI
Ak = RkQk + σkI

where σk is rough approximation to eigenvalue

Good shift can be determined by computing eigenvalues of
2× 2 submatrix in lower right corner of matrix
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Example: QR Iteration with Shifts

Repeat previous example, but with shift of σ1 = 4, which is
lower right corner entry of matrix
We compute QR factorization

A0 − σ1I = Q1R1 =

[
.832 .555
.555 −.832

] [
3.61 1.66

0 1.11

]
and form reverse product, adding back shift to obtain

A1 = R1Q1 + σ1I =

[
7.92 .615
.615 3.08

]
After one iteration, off-diagonal entries smaller compared
with unshifted algorithm, and eigenvalues closer
approximations to eigenvalues

< interactive example >
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Preliminary Reduction

Efficiency of QR iteration can be enhanced by first
transforming matrix as close to triangular form as possible
before beginning iterations

Hessenberg matrix is triangular except for one additional
nonzero diagonal immediately adjacent to main diagonal

Any matrix can be reduced to Hessenberg form in finite
number of steps by orthogonal similarity transformation, for
example using Householder transformations

Symmetric Hessenberg matrix is tridiagonal

Hessenberg or tridiagonal form is preserved during
successive QR iterations
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Preliminary Reduction, continued

Advantages of initial reduction to upper Hessenberg or
tridiagonal form

Work per QR iteration is reduced from O(n3) to O(n2) for
general matrix or O(n) for symmetric matrix

Fewer QR iterations are required because matrix nearly
triangular (or diagonal) already

If any zero entries on first subdiagonal, then matrix is block
triangular and problem can be broken into two or more
smaller subproblems
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Preliminary Reduction, continued

QR iteration is implemented in two-stages
symmetric −→ tridiagonal −→ diagonal

or

general −→ Hessenberg −→ triangular

Preliminary reduction requires definite number of steps,
whereas subsequent iterative stage continues until
convergence

In practice only modest number of iterations usually
required, so much of work is in preliminary reduction

Cost of accumulating eigenvectors, if needed, dominates
total cost
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Cost of QR Iteration

Approximate overall cost of preliminary reduction and QR
iteration, counting both additions and multiplications

Symmetric matrices
4
3n

3 for eigenvalues only
9n3 for eigenvalues and eigenvectors

General matrices

10n3 for eigenvalues only
25n3 for eigenvalues and eigenvectors

Michael T. Heath Scientific Computing 59 / 87



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Krylov Subspace Methods

Krylov subspace methods reduce matrix to Hessenberg (or
tridiagonal) form using only matrix-vector multiplication
For arbitrary starting vector x0, if

Kk =
[
x0 Ax0 · · · Ak−1x0

]
then

K−1n AKn = Cn

where Cn is upper Hessenberg (in fact, companion matrix)
To obtain better conditioned basis for span(Kn), compute
QR factorization

QnRn = Kn

so that
QH
n AQn = RnCnR

−1
n ≡H

with H upper Hessenberg
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Krylov Subspace Methods

Equating kth columns on each side of equation
AQn = QnH yields recurrence

Aqk = h1kq1 + · · ·+ hkkqk + hk+1,kqk+1

relating qk+1 to preceding vectors q1, . . . , qk

Premultiplying by qHj and using orthonormality,

hjk = qHj Aqk, j = 1, . . . , k

These relationships yield Arnoldi iteration, which produces
unitary matrix Qn and upper Hessenberg matrix Hn

column by column using only matrix-vector multiplication
by A and inner products of vectors
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Arnoldi Iteration

x0 = arbitrary nonzero starting vector
q1 = x0/‖x0‖2
for k = 1, 2, . . .

uk = Aqk
for j = 1 to k

hjk = qHj uk
uk = uk − hjkqj

end
hk+1,k = ‖uk‖2
if hk+1,k = 0 then stop
qk+1 = uk/hk+1,k

end
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Arnoldi Iteration, continued

If
Qk =

[
q1 · · · qk

]
then

Hk = QH
k AQk

is upper Hessenberg matrix

Eigenvalues of Hk, called Ritz values, are approximate
eigenvalues of A, and Ritz vectors given by Qky, where y
is eigenvector of Hk, are corresponding approximate
eigenvectors of A

Eigenvalues of Hk must be computed by another method,
such as QR iteration, but this is easier problem if k � n
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Arnoldi Iteration, continued

Arnoldi iteration fairly expensive in work and storage
because each new vector qk must be orthogonalized
against all previous columns of Qk, and all must be stored
for that purpose.

So Arnoldi process usually restarted periodically with
carefully chosen starting vector

Ritz values and vectors produced are often good
approximations to eigenvalues and eigenvectors of A after
relatively few iterations
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Lanczos Iteration
Work and storage costs drop dramatically if matrix is
symmetric or Hermitian, since recurrence then has only
three terms and Hk is tridiagonal (so usually denoted Tk)

q0 = 0
β0 = 0
x0 = arbitrary nonzero starting vector
q1 = x0/‖x0‖2
for k = 1, 2, . . .

uk = Aqk
αk = qHk uk
uk = uk − βk−1qk−1 − αkqk
βk = ‖uk‖2
if βk = 0 then stop
qk+1 = uk/βk

end
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Lanczos Iteration, continued

αk and βk are diagonal and subdiagonal entries of
symmetric tridiagonal matrix Tk

As with Arnoldi, Lanczos iteration does not produce
eigenvalues and eigenvectors directly, but only tridiagonal
matrix Tk, whose eigenvalues and eigenvectors must be
computed by another method to obtain Ritz values and
vectors

If βk = 0, then algorithm appears to break down, but in that
case invariant subspace has already been identified (i.e.,
Ritz values and vectors are already exact at that point)
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Lanczos Iteration, continued

In principle, if Lanczos algorithm were run until k = n,
resulting tridiagonal matrix would be orthogonally similar to
A

In practice, rounding error causes loss of orthogonality,
invalidating this expectation

Problem can be overcome by reorthogonalizing vectors as
needed, but expense can be substantial

Alternatively, can ignore problem, in which case algorithm
still produces good eigenvalue approximations, but multiple
copies of some eigenvalues may be generated
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Krylov Subspace Methods, continued

Great virtue of Arnoldi and Lanczos iterations is their ability
to produce good approximations to extreme eigenvalues
for k � n

Moreover, they require only one matrix-vector multiplication
by A per step and little auxiliary storage, so are ideally
suited to large sparse matrices

If eigenvalues are needed in middle of spectrum, say near
σ, then algorithm can be applied to matrix (A− σI)−1,
assuming it is practical to solve systems of form
(A− σI)x = y
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Example: Lanczos Iteration

For 29× 29 symmetric matrix with eigenvalues 1, . . . , 29,
behavior of Lanczos iteration is shown below
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Jacobi Method
One of oldest methods for computing eigenvalues is Jacobi
method, which uses similarity transformation based on
plane rotations
Sequence of plane rotations chosen to annihilate
symmetric pairs of matrix entries, eventually converging to
diagonal form
Choice of plane rotation slightly more complicated than in
Givens method for QR factorization
To annihilate given off-diagonal pair, choose c and s so that

JTAJ =

[
c −s
s c

] [
a b
b d

] [
c s
−s c

]
=

[
c2a− 2csb+ s2d c2b+ cs(a− d)− s2b

c2b+ cs(a− d)− s2b c2d+ 2csb+ s2a

]
is diagonal
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Jacobi Method, continued

Transformed matrix diagonal if

c2b+ cs(a− d)− s2b = 0

Dividing both sides by c2b, we obtain

1 +
s

c

(a− d)

b
− s2

c2
= 0

Making substitution t = s/c, we get quadratic equation

1 + t
(a− d)

b
− t2 = 0

for tangent t of angle of rotation, from which we can
recover c = 1/(

√
1 + t2) and s = c · t

Advantageous numerically to use root of smaller
magnitude
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Example: Plane Rotation

Consider 2× 2 matrix

A =

[
1 2
2 1

]
Quadratic equation for tangent reduces to t2 = 1, so
t = ±1

Two roots of same magnitude, so we arbitrarily choose
t = −1, which yields c = 1/

√
2 and s = −1/

√
2

Resulting plane rotation J gives

JTAJ =

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

] [
1 2
2 1

] [
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

]
=

[
3 0
0 −1

]
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Jacobi Method, continued

Starting with symmetric matrix A0 = A, each iteration has
form

Ak+1 = JTk AkJk

where Jk is plane rotation chosen to annihilate a
symmetric pair of entries in Ak

Plane rotations repeatedly applied from both sides in
systematic sweeps through matrix until off-diagonal mass
of matrix is reduced to within some tolerance of zero

Resulting diagonal matrix orthogonally similar to original
matrix, so diagonal entries are eigenvalues, and
eigenvectors are given by product of plane rotations
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Jacobi Method, continued

Jacobi method is reliable, simple to program, and capable
of high accuracy, but converges rather slowly and difficult
to generalize beyond symmetric matrices

Except for small problems, more modern methods usually
require 5 to 10 times less work than Jacobi

One source of inefficiency is that previously annihilated
entries can subsequently become nonzero again, thereby
requiring repeated annihilation

Newer methods such as QR iteration preserve zero entries
introduced into matrix
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Example: Jacobi Method

Let A0 =

1 0 2
0 2 1
2 1 1


First annihilate (1,3) and (3,1) entries using rotation

J0 =

0.707 0 −0.707
0 1 0

0.707 0 0.707


to obtain

A1 = JT0 A0J0 =

 3 0.707 0
0.707 2 0.707

0 0.707 −1


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Example, continued

Next annihilate (1,2) and (2,1) entries using rotation

J1 =

0.888 −0.460 0
0.460 0.888 0

0 0 1


to obtain

A2 = JT1 A1J1 =

3.366 0 0.325
0 1.634 0.628

0.325 0.628 −1


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Example, continued

Next annihilate (2,3) and (3,2) entries using rotation

J2 =

1 0 0
0 0.975 −0.221
0 0.221 0.975


to obtain

A3 = JT2 A2J2 =

3.366 0.072 0.317
0.072 1.776 0
0.317 0 −1.142


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Example, continued

Beginning new sweep, again annihilate (1,3) and (3,1)
entries using rotation

J3 =

0.998 0 −0.070
0 1 0

0.070 0 0.998


to obtain

A4 = JT3 A3J3 =

3.388 0.072 0
0.072 1.776 −0.005

0 −0.005 −1.164


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Example, continued

Process continues until off-diagonal entries reduced to as
small as desired

Result is diagonal matrix orthogonally similar to original
matrix, with the orthogonal similarity transformation given
by product of plane rotations

< interactive example >
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Bisection or Spectrum-Slicing

For real symmetric matrix, can determine how many
eigenvalues are less than given real number σ

By systematically choosing various values for σ (slicing
spectrum at σ) and monitoring resulting count, any
eigenvalue can be isolated as accurately as desired

For example, symmetric indefinite factorization A = LDLT

makes inertia (numbers of positive, negative, and zero
eigenvalues) of symmetric matrix A easy to determine

By applying factorization to matrix A− σI for various
values of σ, individual eigenvalues can be isolated as
accurately as desired using interval bisection technique
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Sturm Sequence

Another spectrum-slicing method for computing individual
eigenvalues is based on Sturm sequence property of
symmetric matrices

Let A be symmetric matrix and let pr(σ) denote
determinant of leading principal minor of order r of A− σI

Then zeros of pr(σ) strictly separate those of pr−1(σ), and
number of agreements in sign of successive members of
sequence pr(σ), for r = 1, . . . , n, equals number of
eigenvalues of A strictly greater than σ

Determinants pr(σ) are easy to compute if A is
transformed to tridiagonal form before applying Sturm
sequence technique
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Divide-and-Conquer Method

Express symmetric tridiagonal matrix T as

T =

[
T1 O
O T2

]
+ β uuT

Can now compute eigenvalues and eigenvectors of smaller
matrices T1 and T2

To relate these back to eigenvalues and eigenvectors of
original matrix requires solution of secular equation, which
can be done reliably and efficiently

Applying this approach recursively yields
divide-and-conquer algorithm for symmetric tridiagonal
eigenproblems
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Relatively Robust Representation

With conventional methods, cost of computing eigenvalues
of symmetric tridiagonal matrix is O(n2), but if orthogonal
eigenvectors are also computed, then cost rises to O(n3)

Another possibility is to compute eigenvalues first at O(n2)
cost, and then compute corresponding eigenvectors
separately using inverse iteration with computed
eigenvalues as shifts

Key to making this idea work is computing eigenvalues and
corresponding eigenvectors to very high relative accuracy
so that expensive explicit orthogonalization of eigenvectors
is not needed

RRR algorithm exploits this approach to produce
eigenvalues and orthogonal eigenvectors at O(n2) cost

Michael T. Heath Scientific Computing 83 / 87



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Generalized Eigenvalue Problems

Generalized eigenvalue problem has form

Ax = λBx

where A and B are given n× n matrices
If either A or B is nonsingular, then generalized
eigenvalue problem can be converted to standard
eigenvalue problem, either

(B−1A)x = λx or (A−1B)x = (1/λ)x

This is not recommended, since it may cause
loss of accuracy due to rounding error
loss of symmetry if A and B are symmetric

Better alternative for generalized eigenvalue problems is
QZ algorithm
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QZ Algorithm

If A and B are triangular, then eigenvalues are given by
λi = aii/bii, for bii 6= 0

QZ algorithm reduces A and B simultaneously to upper
triangular form by orthogonal transformations

First, B is reduced to upper triangular form by orthogonal
transformation from left, which is also applied to A

Next, transformed A is reduced to upper Hessenberg form
by orthogonal transformation from left, while maintaining
triangular form of B, which requires additional
transformations from right
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QZ Algorithm, continued

Finally, analogous to QR iteration, A is reduced to
triangular form while still maintaining triangular form of B,
which again requires transformations from both sides

Eigenvalues can now be determined from mutually
triangular form, and eigenvectors can be recovered from
products of left and right transformations, denoted by Q
and Z
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Computing SVD

Singular values of A are nonnegative square roots of
eigenvalues of ATA, and columns of U and V are
orthonormal eigenvectors of AAT and ATA, respectively

Algorithms for computing SVD work directly with A, without
forming AAT or ATA, to avoid loss of information
associated with forming these matrix products explicitly

SVD is usually computed by variant of QR iteration, with A
first reduced to bidiagonal form by orthogonal
transformations, then remaining off-diagonal entries are
annihilated iteratively

SVD can also be computed by variant of Jacobi method,
which can be useful on parallel computers or if matrix has
special structure
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