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Nonlinear Equations

Given function f , we seek value x for which

f(x) = 0

Solution x is root of equation, or zero of function f

So problem is known as root finding or zero finding
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Nonlinear Equations

Two important cases

Single nonlinear equation in one unknown, where

f : R→ R

Solution is scalar x for which f(x) = 0

System of n coupled nonlinear equations in n unknowns,
where

f : Rn → Rn

Solution is vector x for which all components of f are zero
simultaneously, f(x) = 0
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Examples: Nonlinear Equations

Example of nonlinear equation in one dimension

x2 − 4 sin(x) = 0

for which x = 1.9 is one approximate solution

Example of system of nonlinear equations in two
dimensions

x21 − x2 + 0.25 = 0

−x1 + x22 + 0.25 = 0

for which x =
[
0.5 0.5

]T is solution vector
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Existence and Uniqueness

Existence and uniqueness of solutions are more
complicated for nonlinear equations than for linear
equations

For function f : R→ R, bracket is interval [a, b] for which
sign of f differs at endpoints

If f is continuous and sign(f(a)) 6= sign(f(b)), then
Intermediate Value Theorem implies there is x∗ ∈ [a, b]
such that f(x∗) = 0

There is no simple analog for n dimensions
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Examples: One Dimension

Nonlinear equations can have any number of solutions

exp(x) + 1 = 0 has no solution

exp(−x)− x = 0 has one solution

x2 − 4 sin(x) = 0 has two solutions

x3 + 6x2 + 11x− 6 = 0 has three solutions

sin(x) = 0 has infinitely many solutions
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Example: Systems in Two Dimensions
x21 − x2 + γ = 0

−x1 + x22 + γ = 0

Michael T. Heath Scientific Computing 8 / 55



Nonlinear Equations
Numerical Methods in One Dimension

Methods for Systems of Nonlinear Equations

Nonlinear Equations
Solutions and Sensitivity
Convergence

Multiplicity

If f(x∗) = f ′(x∗) = f ′′(x∗) = · · · = f (m−1)(x∗) = 0 but
f (m)(x∗) 6= 0 (i.e., mth derivative is lowest derivative of f
that does not vanish at x∗), then root x∗ has multiplicity m

If m = 1 (f(x∗) = 0 and f ′(x∗) 6= 0), then x∗ is simple root
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Sensitivity and Conditioning

Conditioning of root finding problem is opposite to that for
evaluating function

Absolute condition number of root finding problem for root
x∗ of f : R→ R is 1/|f ′(x∗)|

Root is ill-conditioned if tangent line is nearly horizontal

In particular, multiple root (m > 1) is ill-conditioned

Absolute condition number of root finding problem for root
x∗ of f : Rn → Rn is ‖J−1f (x∗)‖, where Jf is Jacobian
matrix of f ,

{Jf (x)}ij = ∂fi(x)/∂xj

Root is ill-conditioned if Jacobian matrix is nearly singular
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Michael T. Heath Scientific Computing 11 / 55



Nonlinear Equations
Numerical Methods in One Dimension

Methods for Systems of Nonlinear Equations

Nonlinear Equations
Solutions and Sensitivity
Convergence

Sensitivity and Conditioning

What do we mean by approximate solution x̂ to nonlinear
system,

‖f(x̂)‖ ≈ 0 or ‖x̂− x∗‖ ≈ 0 ?

First corresponds to “small residual,” second measures
closeness to (usually unknown) true solution x∗

Solution criteria are not necessarily “small” simultaneously

Small residual implies accurate solution only if problem is
well-conditioned
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Convergence Rate

For general iterative methods, define error at iteration k by

ek = xk − x∗

where xk is approximate solution and x∗ is true solution

For methods that maintain interval known to contain
solution, rather than specific approximate value for
solution, take error to be length of interval containing
solution

Sequence converges with rate r if

lim
k→∞

‖ek+1‖
‖ek‖r

= C

for some finite nonzero constant C
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Convergence Rate, continued

Some particular cases of interest

r = 1: linear (C < 1)

r > 1: superlinear

r = 2: quadratic

Convergence Digits gained
rate per iteration
linear constant
superlinear increasing
quadratic double
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Interval Bisection Method

Bisection method begins with initial bracket and repeatedly
halves its length until solution has been isolated as accurately
as desired

while ((b− a) > tol) do
m = a+ (b− a)/2
if sign(f(a)) = sign(f(m)) then

a = m
else

b = m
end

end

< interactive example >
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Example: Bisection Method

f(x) = x2 − 4 sin(x) = 0

a f(a) b f(b)

1.000000 −2.365884 3.000000 8.435520
1.000000 −2.365884 2.000000 0.362810
1.500000 −1.739980 2.000000 0.362810
1.750000 −0.873444 2.000000 0.362810
1.875000 −0.300718 2.000000 0.362810
1.875000 −0.300718 1.937500 0.019849
1.906250 −0.143255 1.937500 0.019849
1.921875 −0.062406 1.937500 0.019849
1.929688 −0.021454 1.937500 0.019849
1.933594 −0.000846 1.937500 0.019849
1.933594 −0.000846 1.935547 0.009491
1.933594 −0.000846 1.934570 0.004320
1.933594 −0.000846 1.934082 0.001736
1.933594 −0.000846 1.933838 0.000445Michael T. Heath Scientific Computing 16 / 55
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Bisection Method, continued
Bisection method makes no use of magnitudes of function
values, only their signs

Bisection is certain to converge, but does so slowly

At each iteration, length of interval containing solution
reduced by half, convergence rate is linear, with r = 1 and
C = 0.5

One bit of accuracy is gained in approximate solution for
each iteration of bisection

Given starting interval [a, b], length of interval after k
iterations is (b− a)/2k, so achieving error tolerance of tol
requires ⌈

log2

(
b− a
tol

)⌉
iterations, regardless of function f involved
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Fixed-Point Problems

Fixed point of given function g : R→ R is value x such that

x = g(x)

Many iterative methods for solving nonlinear equations use
fixed-point iteration scheme of form

xk+1 = g(xk)

where fixed points for g are solutions for f(x) = 0

Also called functional iteration, since function g is applied
repeatedly to initial starting value x0

For given equation f(x) = 0, there may be many equivalent
fixed-point problems x = g(x) with different choices for g
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Example: Fixed-Point Problems

If f(x) = x2 − x− 2, then fixed points of each of functions

g(x) = x2 − 2

g(x) =
√
x+ 2

g(x) = 1 + 2/x

g(x) =
x2 + 2

2x− 1

are solutions to equation f(x) = 0
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Example: Fixed-Point Problems
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Example: Fixed-Point Iteration
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Example: Fixed-Point Iteration
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Convergence of Fixed-Point Iteration

If x∗ = g(x∗) and |g′(x∗)| < 1, then there is interval
containing x∗ such that iteration

xk+1 = g(xk)

converges to x∗ if started within that interval

If |g′(x∗)| > 1, then iterative scheme diverges

Asymptotic convergence rate of fixed-point iteration is
usually linear, with constant C = |g′(x∗)|

But if g′(x∗) = 0, then convergence rate is at least
quadratic

< interactive example >
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Newton’s Method

Truncated Taylor series

f(x+ h) ≈ f(x) + f ′(x)h

is linear function of h approximating f near x

Replace nonlinear function f by this linear function, whose
zero is h = −f(x)/f ′(x)

Zeros of original function and linear approximation are not
identical, so repeat process, giving Newton’s method

xk+1 = xk −
f(xk)

f ′(xk)
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Newton’s Method, continued

Newton’s method approximates nonlinear function f near xk by
tangent line at f(xk)

Michael T. Heath Scientific Computing 25 / 55



Nonlinear Equations
Numerical Methods in One Dimension

Methods for Systems of Nonlinear Equations

Bisection Method
Fixed-Point Iteration and Newton’s Method
Additional Methods

Example: Newton’s Method
Use Newton’s method to find root of

f(x) = x2 − 4 sin(x) = 0

Derivative is
f ′(x) = 2x− 4 cos(x)

so iteration scheme is

xk+1 = xk −
x2k − 4 sin(xk)

2xk − 4 cos(xk)

Taking x0 = 3 as starting value, we obtain
x f(x) f ′(x) h

3.000000 8.435520 9.959970 −0.846942
2.153058 1.294772 6.505771 −0.199019
1.954039 0.108438 5.403795 −0.020067
1.933972 0.001152 5.288919 −0.000218
1.933754 0.000000 5.287670 0.000000
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Convergence of Newton’s Method

Newton’s method transforms nonlinear equation f(x) = 0
into fixed-point problem x = g(x), where

g(x) = x− f(x)/f ′(x)

and hence
g′(x) = f(x)f ′′(x)/(f ′(x))2

If x∗ is simple root (i.e., f(x∗) = 0 and f ′(x∗) 6= 0), then
g′(x∗) = 0

Convergence rate of Newton’s method for simple root is
therefore quadratic (r = 2)

But iterations must start close enough to root to converge

< interactive example >
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Newton’s Method, continued

For multiple root, convergence rate of Newton’s method is only
linear, with constant C = 1− (1/m), where m is multiplicity

k f(x) = x2 − 1 f(x) = x2 − 2x+ 1

0 2.0 2.0
1 1.25 1.5
2 1.025 1.25
3 1.0003 1.125
4 1.00000005 1.0625
5 1.0 1.03125

Michael T. Heath Scientific Computing 28 / 55



Nonlinear Equations
Numerical Methods in One Dimension

Methods for Systems of Nonlinear Equations

Bisection Method
Fixed-Point Iteration and Newton’s Method
Additional Methods

Secant Method

For each iteration, Newton’s method requires evaluation of
both function and its derivative, which may be inconvenient
or expensive

In secant method, derivative is approximated by finite
difference using two successive iterates, so iteration
becomes

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)

Convergence rate of secant method is normally
superlinear, with r ≈ 1.618
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Secant Method, continued

Secant method approximates nonlinear function f by secant
line through previous two iterates

< interactive example >
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Example: Secant Method

Use secant method to find root of

f(x) = x2 − 4 sin(x) = 0

Taking x0 = 1 and x1 = 3 as starting guesses, we obtain

x f(x) h

1.000000 −2.365884
3.000000 8.435520 −1.561930
1.438070 −1.896774 0.286735
1.724805 −0.977706 0.305029
2.029833 0.534305 −0.107789
1.922044 −0.061523 0.011130
1.933174 −0.003064 0.000583
1.933757 0.000019 −0.000004
1.933754 0.000000 0.000000
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Higher-Degree Interpolation

Secant method uses linear interpolation to approximate
function whose zero is sought

Higher convergence rate can be obtained by using
higher-degree polynomial interpolation

For example, quadratic interpolation (Muller’s method) has
superlinear convergence rate with r ≈ 1.839

Unfortunately, using higher degree polynomial also has
disadvantages

interpolating polynomial may not have real roots
roots may not be easy to compute
choice of root to use as next iterate may not be obvious
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Inverse Interpolation

Good alternative is inverse interpolation, where xk are
interpolated as function of yk = f(xk) by polynomial p(y),
so next approximate solution is p(0)

Most commonly used for root finding is inverse quadratic
interpolation
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Inverse Quadratic Interpolation

Given approximate solution values a, b, c, with function
values fa, fb, fc, next approximate solution found by fitting
quadratic polynomial to a, b, c as function of fa, fb, fc, then
evaluating polynomial at 0

Based on nontrivial derivation using Lagrange
interpolation, we compute

u = fb/fc, v = fb/fa, w = fa/fc

p = v(w(u− w)(c− b)− (1− u)(b− a))
q = (w − 1)(u− 1)(v − 1)

then new approximate solution is b+ p/q

Convergence rate is normally r ≈ 1.839

< interactive example >
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Example: Inverse Quadratic Interpolation

Use inverse quadratic interpolation to find root of

f(x) = x2 − 4 sin(x) = 0

Taking x = 1, 2, and 3 as starting values, we obtain
x f(x) h

1.000000 −2.365884
2.000000 0.362810
3.000000 8.435520
1.886318 −0.244343 −0.113682
1.939558 0.030786 0.053240
1.933742 −0.000060 −0.005815
1.933754 0.000000 0.000011
1.933754 0.000000 0.000000
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Linear Fractional Interpolation

Interpolation using rational fraction of form

φ(x) =
x− u
vx− w

is especially useful for finding zeros of functions having
horizontal or vertical asymptotes
φ has zero at x = u, vertical asymptote at x = w/v, and
horizontal asymptote at y = 1/v

Given approximate solution values a, b, c, with function
values fa, fb, fc, next approximate solution is c+ h, where

h =
(a− c)(b− c)(fa − fb)fc

(a− c)(fc − fb)fa − (b− c)(fc − fa)fb
Convergence rate is normally r ≈ 1.839, same as for
quadratic interpolation (inverse or regular)
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Example: Linear Fractional Interpolation

Use linear fractional interpolation to find root of

f(x) = x2 − 4 sin(x) = 0

Taking x = 1, 2, and 3 as starting values, we obtain
x f(x) h

1.000000 −2.365884
2.000000 0.362810
3.000000 8.435520
1.906953 −0.139647 −1.093047
1.933351 −0.002131 0.026398
1.933756 0.000013 −0.000406
1.933754 0.000000 −0.000003

< interactive example >
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Safeguarded Methods

Rapidly convergent methods for solving nonlinear
equations may not converge unless started close to
solution, but safe methods are slow

Hybrid methods combine features of both types of
methods to achieve both speed and reliability

Use rapidly convergent method, but maintain bracket
around solution

If next approximate solution given by fast method falls
outside bracketing interval, perform one iteration of safe
method, such as bisection
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Safeguarded Methods, continued

Fast method can then be tried again on smaller interval
with greater chance of success

Ultimately, convergence rate of fast method should prevail

Hybrid approach seldom does worse than safe method,
and usually does much better

Popular combination is bisection and inverse quadratic
interpolation, for which no derivatives required

Michael T. Heath Scientific Computing 39 / 55



Nonlinear Equations
Numerical Methods in One Dimension

Methods for Systems of Nonlinear Equations

Bisection Method
Fixed-Point Iteration and Newton’s Method
Additional Methods

Zeros of Polynomials

For polynomial p(x) of degree n, one may want to find all n
of its zeros, which may be complex even if coefficients are
real

Several approaches are available

Use root-finding method such as Newton’s or Muller’s
method to find one root, deflate it out, and repeat
Form companion matrix of polynomial and use eigenvalue
routine to compute all its eigenvalues
Use method designed specifically for finding all roots of
polynomial, such as Jenkins-Traub
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Systems of Nonlinear Equations

Solving systems of nonlinear equations is much more difficult
than scalar case because

Wider variety of behavior is possible, so determining
existence and number of solutions or good starting guess
is much more complex

There is no simple way, in general, to guarantee
convergence to desired solution or to bracket solution to
produce absolutely safe method

Computational overhead increases rapidly with dimension
of problem
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Fixed-Point Iteration

Fixed-point problem for g : Rn → Rn is to find vector x such
that

x = g(x)

Corresponding fixed-point iteration is

xk+1 = g(xk)

If ρ(G(x∗)) < 1, where ρ is spectral radius and G(x) is
Jacobian matrix of g evaluated at x, then fixed-point
iteration converges if started close enough to solution

Convergence rate is normally linear, with constant C given
by spectral radius ρ(G(x∗))

If G(x∗) = O, then convergence rate is at least quadratic
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Newton’s Method

In n dimensions, Newton’s method has form

xk+1 = xk − J(xk)
−1f(xk)

where J(x) is Jacobian matrix of f ,

{J(x)}ij =
∂fi(x)

∂xj

In practice, we do not explicitly invert J(xk), but instead
solve linear system

J(xk)sk = −f(xk)

for Newton step sk, then take as next iterate

xk+1 = xk + sk
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Example: Newton’s Method

Use Newton’s method to solve nonlinear system

f(x) =

[
x1 + 2x2 − 2
x21 + 4x22 − 4

]
= 0

Jacobian matrix is Jf (x) =

[
1 2

2x1 8x2

]
If we take x0 =

[
1 2

]T , then

f(x0) =

[
3

13

]
, Jf (x0) =

[
1 2
2 16

]

Solving system
[
1 2
2 16

]
s0 =

[
−3
−13

]
gives s0 =

[
−1.83
−0.58

]
,

so x1 = x0 + s0 =
[
−0.83 1.42

]T
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Example, continued
Evaluating at new point,

f(x1) =

[
0

4.72

]
, Jf (x1) =

[
1 2

−1.67 11.3

]

Solving system
[

1 2
−1.67 11.3

]
s1 =

[
0

−4.72

]
gives

s1 =
[
0.64 −0.32

]T , so x2 = x1 + s1 =
[
−0.19 1.10

]T
Evaluating at new point,

f(x2) =

[
0

0.83

]
, Jf (x2) =

[
1 2

−0.38 8.76

]
Iterations eventually convergence to solution x∗ =

[
0 1

]T
< interactive example >
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Convergence of Newton’s Method

Differentiating corresponding fixed-point operator

g(x) = x− J(x)−1f(x)

and evaluating at solution x∗ gives

G(x∗) = I − (J(x∗)−1J(x∗) +

n∑
i=1

fi(x
∗)Hi(x

∗)) = O

where Hi(x) is component matrix of derivative of J(x)−1

Convergence rate of Newton’s method for nonlinear
systems is normally quadratic, provided Jacobian matrix
J(x∗) is nonsingular

But it must be started close enough to solution to converge
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Cost of Newton’s Method

Cost per iteration of Newton’s method for dense problem in n
dimensions is substantial

Computing Jacobian matrix costs n2 scalar function
evaluations

Solving linear system costs O(n3) operations
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Secant Updating Methods

Secant updating methods reduce cost by

Using function values at successive iterates to build
approximate Jacobian and avoiding explicit evaluation of
derivatives
Updating factorization of approximate Jacobian rather than
refactoring it each iteration

Most secant updating methods have superlinear but not
quadratic convergence rate

Secant updating methods often cost less overall than
Newton’s method because of lower cost per iteration
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Broyden’s Method

Broyden’s method is typical secant updating method

Beginning with initial guess x0 for solution and initial
approximate Jacobian B0, following steps are repeated
until convergence

x0 = initial guess
B0 = initial Jacobian approximation
for k = 0, 1, 2, . . .

Solve Bk sk = −f(xk) for sk
xk+1 = xk + sk
yk = f(xk+1)− f(xk)
Bk+1 = Bk + ((yk −Bksk)s

T
k )/(s

T
k sk)

end
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Broyden’s Method, continued

Motivation for formula for Bk+1 is to make least change to
Bk subject to satisfying secant equation

Bk+1(xk+1 − xk) = f(xk+1)− f(xk)

In practice, factorization of Bk is updated instead of
updating Bk directly, so total cost per iteration is only O(n2)
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Example: Broyden’s Method

Use Broyden’s method to solve nonlinear system

f(x) =

[
x1 + 2x2 − 2
x21 + 4x22 − 4

]
= 0

If x0 =
[
1 2

]T , then f(x0) =
[
3 13

]T , and we choose

B0 = Jf (x0) =

[
1 2
2 16

]
Solving system [

1 2
2 16

]
s0 =

[
−3
−13

]
gives s0 =

[
−1.83
−0.58

]
, so x1 = x0 + s0 =

[
−0.83
1.42

]
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Example, continued

Evaluating at new point x1 gives f(x1) =

[
0

4.72

]
, so

y0 = f(x1)− f(x0) =

[
−3
−8.28

]
From updating formula, we obtain

B1 =

[
1 2
2 16

]
+

[
0 0

−2.34 −0.74

]
=

[
1 2

−0.34 15.3

]
Solving system[

1 2
−0.34 15.3

]
s1 =

[
0

−4.72

]
gives s1 =

[
0.59
−0.30

]
, so x2 = x1 + s1 =

[
−0.24
1.120

]
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Example, continued

Evaluating at new point x2 gives f(x2) =

[
0

1.08

]
, so

y1 = f(x2)− f(x1) =

[
0

−3.64

]
From updating formula, we obtain

B2 =

[
1 2

−0.34 15.3

]
+

[
0 0

1.46 −0.73

]
=

[
1 2

1.12 14.5

]

Iterations continue until convergence to solution x∗ =

[
0
1

]
< interactive example >
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Robust Newton-Like Methods

Newton’s method and its variants may fail to converge
when started far from solution

Safeguards can enlarge region of convergence of
Newton-like methods

Simplest precaution is damped Newton method, in which
new iterate is

xk+1 = xk + αksk

where sk is Newton (or Newton-like) step and αk is scalar
parameter chosen to ensure progress toward solution

Parameter αk reduces Newton step when it is too large,
but αk = 1 suffices near solution and still yields fast
asymptotic convergence rate
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Trust-Region Methods

Another approach is to maintain estimate of trust region
where Taylor series approximation, upon which Newton’s
method is based, is sufficiently accurate for resulting
computed step to be reliable

Adjusting size of trust region to constrain step size when
necessary usually enables progress toward solution even
starting far away, yet still permits rapid converge once near
solution

Unlike damped Newton method, trust region method may
modify direction as well as length of Newton step

More details on this approach will be given in Chapter 6
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