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Differential Equations

Differential equations involve derivatives of unknown
solution function

Ordinary differential equation (ODE): all derivatives are
with respect to single independent variable, often
representing time

Solution of differential equation is function in
infinite-dimensional space of functions

Numerical solution of differential equations is based on
finite-dimensional approximation

Differential equation is replaced by algebraic equation
whose solution approximates that of given differential
equation
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Order of ODE

Order of ODE is determined by highest-order derivative of
solution function appearing in ODE

ODE with higher-order derivatives can be transformed into
equivalent first-order system

We will discuss numerical solution methods only for
first-order ODEs

Most ODE software is designed to solve only first-order
equations

Michael T. Heath Scientific Computing 4 / 84



Ordinary Differential Equations
Numerical Solution of ODEs

Additional Numerical Methods

Differential Equations
Initial Value Problems
Stability

Higher-Order ODEs, continued

For k-th order ODE

y(k)(t) = f(t, y, y′, . . . , y(k−1))

define k new unknown functions

u1(t) = y(t), u2(t) = y′(t), . . . , uk(t) = y(k−1)(t)

Then original ODE is equivalent to first-order system
u′1(t)
u′2(t)

...
u′k−1(t)

u′k(t)

 =


u2(t)
u3(t)

...
uk(t)

f(t, u1, u2, . . . , uk)


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Example: Newton’s Second Law

Newton’s Second Law of Motion, F = ma, is second-order
ODE, since acceleration a is second derivative of position
coordinate, which we denote by y

Thus, ODE has form

y′′ = F/m

where F and m are force and mass, respectively

Defining u1 = y and u2 = y′ yields equivalent system of
two first-order ODEs [

u′1
u′2

]
=

[
u2
F/m

]
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Example, continued

We can now use methods for first-order equations to solve
this system

First component of solution u1 is solution y of original
second-order equation

Second component of solution u2 is velocity y′
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Ordinary Differential Equations

General first-order system of ODEs has form

y′(t) = f(t,y)

where y : R→ Rn, f : Rn+1 → Rn, and y′ = dy/dt denotes
derivative with respect to t,

y′1(t)
y′2(t)

...
y′n(t)

 =


dy1(t)/dt
dy2(t)/dt

...
dyn(t)/dt


Function f is given and we wish to determine unknown
function y satisfying ODE

For simplicity, we will often consider special case of single
scalar ODE, n = 1
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Initial Value Problems

By itself, ODE y′ = f(t,y) does not determine unique
solution function

This is because ODE merely specifies slope y′(t) of
solution function at each point, but not actual value y(t) at
any point

Infinite family of functions satisfies ODE, in general,
provided f is sufficiently smooth

To single out particular solution, value y0 of solution
function must be specified at some point t0
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Initial Value Problems, continued

Thus, part of given problem data is requirement that
y(t0) = y0, which determines unique solution to ODE

Because of interpretation of independent variable t as
time, think of t0 as initial time and y0 as initial value

Hence, this is termed initial value problem, or IVP

ODE governs evolution of system in time from its initial
state y0 at time t0 onward, and we seek function y(t) that
describes state of system as function of time
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Example: Initial Value Problem

Consider scalar ODE
y′ = y

Family of solutions is given by y(t) = c et, where c is any
real constant

Imposing initial condition y(t0) = y0 singles out unique
particular solution

For this example, if t0 = 0, then c = y0, which means that
solution is y(t) = y0e

t
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Example: Initial Value Problem

Family of solutions for ODE y′ = y
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Stability of Solutions

Solution of ODE is

Stable if solutions resulting from perturbations of initial
value remain close to original solution

Asymptotically stable if solutions resulting from
perturbations converge back to original solution

Unstable if solutions resulting from perturbations diverge
away from original solution without bound
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Example: Stable Solutions

Family of solutions for ODE y′ = 1
2
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Example: Asymptotically Stable Solutions

Family of solutions for ODE y′ = −y
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Example: Stability of Solutions

Consider scalar ODE y′ = λy, where λ is constant.

Solution is given by y(t) = y0 e
λt, where t0 = 0 is initial time

and y(0) = y0 is initial value

For real λ
λ > 0: all nonzero solutions grow exponentially, so every
solution is unstable
λ < 0: all nonzero solutions decay exponentially, so every
solution is not only stable, but asymptotically stable

For complex λ
Re(λ) > 0: unstable
Re(λ) < 0: asymptotically stable
Re(λ) = 0: stable but not asymptotically stable
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Example: Linear System of ODEs

Linear, homogeneous system of ODEs with constant
coefficients has form

y′ = Ay

where A is n× n matrix, and initial condition is y(0) = y0

Suppose A is diagonalizable, with eigenvalues λi and
corresponding eigenvectors vi, i = 1, . . . , n

Express y0 as linear combination y0 =
∑n

i=1 αivi

Then

y(t) =
n∑
i=1

αivie
λit

is solution to ODE satisfying initial condition y(0) = y0
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Example, continued

Eigenvalues of A with positive real parts yield
exponentially growing solution components

Eigenvalues with negative real parts yield exponentially
decaying solution components

Eigenvalues with zero real parts (i.e., pure imaginary) yield
oscillatory solution components

Solutions stable if Re(λi) ≤ 0 for every eigenvalue, and
asymptotically stable if Re(λi) < 0 for every eigenvalue, but
unstable if Re(λi) > 0 for any eigenvalue
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Stability of Solutions, continued

For general nonlinear system of ODEs y′ = f(t,y),
determining stability of solutions is more complicated

ODE can be linearized locally about solution y(t) by
truncated Taylor series, yielding linear ODE

z′ = Jf (t,y(t)) z

where Jf is Jacobian matrix of f with respect to y

Eigenvalues of Jf determine stability locally, but
conclusions drawn may not be valid globally
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Numerical Solution of ODEs

Analytical solution of ODE is closed-form formula that can
be evaluated at any point t

Numerical solution of ODE is table of approximate values
of solution function at discrete set of points

Numerical solution is generated by simulating behavior of
system governed by ODE

Starting at t0 with given initial value y0, we track trajectory
dictated by ODE

Evaluating f(t0,y0) tells us slope of trajectory at that point

We use this information to predict value y1 of solution at
future time t1 = t0 + h for some suitably chosen time
increment h
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Numerical Solution of ODEs, continued

Approximate solution values are generated step by step in
increments moving across interval in which solution is
sought

In stepping from one discrete point to next, we incur some
error, which means that next approximate solution value
lies on different solution from one we started on

Stability or instability of solutions determines, in part,
whether such errors are magnified or diminished with time
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Euler’s Method
For general system of ODEs y′ = f(t,y), consider Taylor
series

y(t+ h) = y(t) + hy′(t) +
h2

2
y′′(t) + · · ·

= y(t) + hf(t,y(t)) +
h2

2
y′′(t) + · · ·

Euler’s method results from dropping terms of second and
higher order to obtain approximate solution value

yk+1 = yk + hkf(tk,yk)

Euler’s method advances solution by extrapolating along
straight line whose slope is given by f(tk,yk)

Euler’s method is single-step method because it depends
on information at only one point in time to advance to next
point
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Example: Euler’s Method

Applying Euler’s method to ODE y′ = y with step size h, we
advance solution from time t0 = 0 to time t1 = t0 + h

y1 = y0 + hy′0 = y0 + hy0 = (1 + h)y0

Value for solution we obtain at t1 is not exact, y1 6= y(t1)

For example, if t0 = 0, y0 = 1, and h = 0.5, then y1 = 1.5,
whereas exact solution for this initial value is
y(0.5) = exp(0.5) ≈ 1.649

Thus, y1 lies on different solution from one we started on
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Example, continued

To continue numerical solution process, we take another
step from t1 to t2 = t1 + h = 1.0, obtaining
y2 = y1 + hy1 = 1.5 + (0.5)(1.5) = 2.25

Now y2 differs not only from true solution of original
problem at t = 1, y(1) = exp(1) ≈ 2.718, but it also differs
from solution through previous point (t1, y1), which has
approximate value 2.473 at t = 1

Thus, we have moved to still another solution for this ODE
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Example, continued

For unstable solutions, errors in numerical solution grow with
time
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Example, continued

For stable solutions, errors in numerical solution may diminish
with time

< interactive example >
Michael T. Heath Scientific Computing 26 / 84

http://www.cs.illinois.edu/~heath/iem/ode/eulrmthd/


Ordinary Differential Equations
Numerical Solution of ODEs

Additional Numerical Methods

Euler’s Method
Accuracy and Stability
Implicit Methods and Stiffness

Errors in Numerical Solution of ODEs

Numerical methods for solving ODEs incur two distinct
types of error

Rounding error, which is due to finite precision of
floating-point arithmetic
Truncation error (discretization error ), which is due to
approximation method used and would remain even if all
arithmetic were exact

In practice, truncation error is dominant factor determining
accuracy of numerical solutions of ODEs, so we will
henceforth ignore rounding error
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Global Error and Local Error

Truncation error at any point tk can be broken down into

Global error : difference between computed solution and
true solution y(t) passing through initial point (t0,y0)

ek = yk − y(tk)

Local error : error made in one step of numerical method

`k = yk − uk−1(tk)

where uk−1(t) is true solution passing through previous
point (tk−1,yk−1)
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Global Error and Local Error, continued

Global error is not necessarily sum of local errors

Global error is generally greater than sum of local errors if
solutions are unstable, but may be less than sum if
solutions are stable

Having small global error is what we want, but we can
control only local error directly
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Global Error and Local Error, continued
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Global and Local Error, continued
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Order of Accuracy

Order of accuracy of numerical method is p if

`k = O(hp+1
k )

Then local error per unit step, `k/hk = O(hpk)

Under reasonable conditions, ek = O(hp), where h is
average step size

< interactive example >
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Stability

Numerical method is stable if small perturbations do not
cause resulting numerical solutions to diverge from each
other without bound

Such divergence of numerical solutions could be caused
by instability of solution to ODE, but can also be due to
numerical method itself, even when solutions to ODE are
stable
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Determining Stability and Accuracy

Simple approach to determining stability and accuracy of
numerical method is to apply it to scalar ODE y′ = λy,
where λ is (possibly complex) constant

Exact solution is given by y(t) = y0e
λt, where y(0) = y0 is

initial condition

Determine stability of numerical method by characterizing
growth of numerical solution

Determine accuracy of numerical method by comparing
exact and numerical solutions
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Example: Euler’s Method

Applying Euler’s method to y′ = λy using fixed step size h,

yk+1 = yk + hλyk = (1 + hλ)yk

which means that

yk = (1 + hλ)ky0

If Re(λ) < 0, exact solution decays to zero as t increases,
as does computed solution if

|1 + hλ| < 1

which holds if hλ lies inside circle in complex plane of
radius 1 centered at −1

< interactive example >
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Euler’s Method, continued

If λ is real, then hλ must lie in interval (−2, 0), so for λ < 0,
we must have

h ≤ − 2

λ

for Euler’s method to be stable

Growth factor 1 + hλ agrees with series expansion

ehλ = 1 + hλ+
(hλ)2

2
+

(hλ)3

6
+ · · ·

through terms of first order in h, so Euler’s method is
first-order accurate
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Euler’s Method, continued

For general system of ODEs y′ = f(t,y), consider Taylor
series

y(t+ h) = y(t) + hy′(t) +O(h2)
= y(t) + hf(t,y(t)) +O(h2)

If we take t = tk and h = hk, we obtain

y(tk+1) = y(tk) + hkf(tk,y(tk)) +O(h2k)

Subtracting this from Euler’s method,

ek+1 = yk+1 − y(tk+1)

= [yk − y(tk)] + hk[f(tk,yk)− f(tk,y(tk))]−O(h2k)
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Euler’s Method, continued

If there were no prior errors, then we would have
yk = y(tk), and differences in brackets on right side would
be zero, leaving only O(h2k) term, which is local error

This means that Euler’s method is first-order accurate
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Euler’s Method, continued

From previous derivation, global error is sum of local error
and propagated error
From Mean Value Theorem,

f(tk,yk)− f(tk,y(tk)) = Jf (tk, ξ)(yk − y(tk))

for some (unknown) value ξ, where Jf is Jacobian matrix
of f with respect to y
So we can express global error at step k + 1 as

ek+1 = (I + hkJf )ek + `k+1

Thus, global error is multiplied at each step by growth
factor I + hkJf
Errors do not grow if spectral radius ρ(I + hkJf ) ≤ 1,
which holds if all eigenvalues of hkJf lie inside circle in
complex plane of radius 1 centered at −1
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Stability of Numerical Methods for ODEs

In general, growth factor depends on

Numerical method, which determines form of growth factor

Step size h

Jacobian Jf , which is determined by particular ODE
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Step Size Selection

In choosing step size for advancing numerical solution of
ODE, we want to take large steps to reduce computational
cost, but must also take into account both stability and
accuracy

To yield meaningful solution, step size must obey any
stability restrictions

In addition, local error estimate is needed to ensure that
desired accuracy is achieved

With Euler’s method, for example, local error is
approximately (h2k/2)y

′′, so choose step size to satisfy

hk ≤
√
2 tol/‖y′′‖
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Step Size Selection, continued

We do not know value of y′′, but we can estimate it by
difference quotient

y′′ ≈
y′k − y′k−1
tk − tk−1

Other methods of obtaining error estimates are based on
difference between results obtained using methods of
different orders or different step sizes
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Implicit Methods

Euler’s method is explicit in that it uses only information at
time tk to advance solution to time tk+1

This may seem desirable, but Euler’s method has rather
limited stability region

Larger stability region can be obtained by using information
at time tk+1, which makes method implicit

Simplest example is backward Euler method

yk+1 = yk + hkf(tk+1,yk+1)

Method is implicit because we must evaluate f with
argument yk+1 before we know its value
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Implicit Methods, continued

This means that we must solve algebraic equation to
determine yk+1

Typically, we use iterative method such as Newton’s
method or fixed-point iteration to solve for yk+1

Good starting guess for iteration can be obtained from
explicit method, such as Euler’s method, or from solution at
previous time step

< interactive example >
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Example: Backward Euler Method
Consider nonlinear scalar ODE y′ = −y3 with initial
condition y(0) = 1

Using backward Euler method with step size h = 0.5, we
obtain implicit equation

y1 = y0 + hf(t1, y1) = 1− 0.5y31

for solution value at next step

This nonlinear equation for y1 could be solved by
fixed-point iteration or Newton’s method

To obtain starting guess for y1, we could use previous
solution value, y0 = 1, or we could use explicit method,
such as Euler’s method, which gives y1 = y0 − 0.5y30 = 0.5

Iterations eventually converge to final value y1 ≈ 0.7709

Michael T. Heath Scientific Computing 45 / 84



Ordinary Differential Equations
Numerical Solution of ODEs

Additional Numerical Methods

Euler’s Method
Accuracy and Stability
Implicit Methods and Stiffness

Implicit Methods, continued

Given extra trouble and computation in using implicit
method, one might wonder why we bother

Answer is that implicit methods generally have significantly
larger stability region than comparable explicit methods
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Backward Euler Method

To determine stability of backward Euler, we apply it to
scalar ODE y′ = λy, obtaining

yk+1 = yk + hλyk+1

(1− hλ)yk+1 = yk

yk =

(
1

1− hλ

)k
y0

Thus, for backward Euler to be stable we must have∣∣∣∣ 1

1− hλ

∣∣∣∣ ≤ 1

which holds for any h > 0 when Re(λ) < 0

So stability region for backward Euler method includes
entire left half of complex plane, or interval (−∞, 0) if λ is
real
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Backward Euler Method, continued

Growth factor

1

1− hλ
= 1 + hλ+ (hλ)2 + · · ·

agrees with expansion for eλh through terms of order h, so
backward Euler method is first-order accurate

Growth factor of backward Euler method for general
system of ODEs y′ = f(t,y) is (I − hJf )−1, whose
spectral radius is less than 1 provided all eigenvalues of
hJf lie outside circle in complex plane of radius 1 centered
at 1

Thus, stability region of backward Euler for general system
of ODEs is entire left half of complex plane
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Unconditionally Stable Methods

Thus, for computing stable solution backward Euler is
stable for any positive step size, which means that it is
unconditionally stable

Great virtue of unconditionally stable method is that
desired accuracy is only constraint on choice of step size

Thus, we may be able to take much larger steps than for
explicit method of comparable order and attain much
higher overall efficiency despite requiring more
computation per step

Although backward Euler method is unconditionally stable,
its accuracy is only of first order, which severely limits its
usefulness
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Trapezoid Method
Higher-order accuracy can be achieved by averaging Euler
and backward Euler methods to obtain implicit trapezoid
method

yk+1 = yk + hk (f(tk,yk) + f(tk+1,yk+1)) /2

To determine its stability and accuracy, we apply it to scalar
ODE y′ = λy, obtaining

yk+1 = yk + h (λyk + λyk+1) /2

yk =

(
1 + hλ/2

1− hλ/2

)k
y0

Method is stable if ∣∣∣∣1 + hλ/2

1− hλ/2

∣∣∣∣ < 1

which holds for any h > 0 when Re(λ) < 0
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Trapezoid Method, continued

Thus, trapezoid method is unconditionally stable

Its growth factor

1 + hλ/2

1− hλ/2
=

(
1 +

hλ

2

)(
1 +

hλ

2
+

(
hλ

2

)2

+

(
hλ

2

)3

+ · · ·

)

= 1 + hλ+
(hλ)2

2
+

(hλ)3

4
+ · · ·

agrees with expansion of ehλ through terms of order h2, so
trapezoid method is second-order accurate

For general system of ODEs y′ = f(t,y), trapezoid
method has growth factor (I + 1

2hJf )(I − 1
2hJf )

−1, whose
spectral radius is less than 1 provided eigenvalues of hJf
lie in left half of complex plane < interactive example >
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Implicit Methods, continued

We have now seen two examples of implicit methods that
are unconditionally stable, but not all implicit methods have
this property

Implicit methods generally have larger stability regions
than explicit methods, but allowable step size is not always
unlimited

Implicitness alone is not sufficient to guarantee stability
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Stiff Differential Equations

Asymptotically stable solutions converge with time, and
this has favorable property of damping errors in numerical
solution

But if convergence of solutions is too rapid, then difficulties
of different type may arise

Such ODE is said to be stiff
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Stiff ODEs, continued

Stiff ODE corresponds to physical process whose
components have disparate time scales or whose time
scale is small compared to interval over which it is studied

System of ODEs y′ = f(t,y) is stiff if eigenvalues of its
Jacobian matrix Jf differ greatly in magnitude

There may be eigenvalues with

large negative real parts, corresponding to strongly damped
components of solution, or
large imaginary parts, corresponding to rapidly oscillating
components of solution
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Stiff ODEs, continued
Some numerical methods are inefficient for stiff ODEs
because rapidly varying component of solution forces very
small step sizes to maintain stability

Stability restriction depends on rapidly varying component
of solution, but accuracy restriction depends on slowly
varying component, so step size may be more severely
restricted by stability than by required accuracy

For example, Euler’s method is extremely inefficient for
solving stiff ODEs because of severe stability limitation on
step size

Backward Euler method is suitable for stiff ODEs because
of its unconditional stability

Stiff ODEs need not be difficult to solve numerically,
provided suitable method is chosen
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Example: Stiff ODE

Consider scalar ODE

y′ = −100y + 100t+ 101

with initial condition y(0) = 1

General solution is y(t) = 1 + t+ ce−100t, and particular
solution satisfying initial condition is y(t) = 1 + t
(i.e., c = 0)

Since solution is linear, Euler’s method is theoretically
exact for this problem

However, to illustrate effect of using finite precision
arithmetic, let us perturb initial value slightly
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Example, continued

With step size h = 0.1, first few steps for given initial values
are

t 0.0 0.1 0.2 0.3 0.4

exact sol. 1.00 1.10 1.20 1.30 1.40
Euler sol. 0.99 1.19 0.39 8.59 −64.2
Euler sol. 1.01 1.01 2.01 −5.99 67.0

Computed solution is incredibly sensitive to initial value, as
each tiny perturbation results in wildly different solution

Any point deviating from desired particular solution, even
by only small amount, lies on different solution, for which
c 6= 0, and therefore rapid transient of general solution is
present

< interactive example >
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Example, continued

Euler’s method bases its projection on derivative at current
point, and resulting large value causes numerical solution
to diverge radically from desired solution

Jacobian for this ODE is Jf = −100, so stability condition
for Euler’s method requires step size h < 0.02, which we
are violating
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Example, continued

Backward Euler method has no trouble solving this
problem and is extremely insensitive to initial value

t 0.0 0.1 0.2 0.3 0.4

exact sol. 1.00 1.10 1.20 1.30 1.40
BE sol. 0.00 1.01 1.19 1.30 1.40
BE sol. 2.00 1.19 1.21 1.30 1.40

Even with very large perturbation in initial value, by using
derivative at next point rather than current point, transient
is quickly damped out and backward Euler solution
converges to desired solution after only few steps

This behavior is consistent with unconditional stability of
backward Euler method for stable solutions
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Example, continued

< interactive example >
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Numerical Methods for ODEs

There are many different methods for solving ODEs, most of
which are of one of following types

Taylor series

Runge-Kutta

Extrapolation

Multistep

Multivalue

We briefly consider each of these types of methods

Michael T. Heath Scientific Computing 61 / 84



Ordinary Differential Equations
Numerical Solution of ODEs

Additional Numerical Methods

Single-Step Methods
Extrapolation Methods
Multistep Methods

Taylor Series Methods

Euler’s method can be derived from Taylor series
expansion

By retaining more terms in Taylor series, we can generate
higher-order single-step methods

For example, retaining one additional term in Taylor series

y(t+ h) = y(t) + hy′(t) +
h2

2
y′′(t) +

h3

6
y′′′(t) + · · ·

gives second-order method

yk+1 = yk + hk y
′
k +

h2k
2
y′′k
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Taylor Series Methods, continued

This approach requires computation of higher derivatives
of y, which can be obtained by differentiating y′ = f(t,y)
using chain rule, e.g.,

y′′ = ft(t,y) + fy(t,y)y
′

= ft(t,y) + fy(t,y)f(t,y)

where subscripts indicate partial derivatives with respect to
given variable

As order increases, expressions for derivatives rapidly
become too complicated to be practical to compute, so
Taylor series methods of higher order have not often been
used in practice

< interactive example >
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Runge-Kutta Methods

Runge-Kutta methods are single-step methods similar in
motivation to Taylor series methods, but they do not require
computation of higher derivatives

Instead, Runge-Kutta methods simulate effect of higher
derivatives by evaluating f several times between tk and
tk+1

Simplest example is second-order Heun’s method

yk+1 = yk +
hk
2

(k1 + k2)

where

k1 = f(tk,yk)

k2 = f(tk + hk,yk + hkk1)
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Runge-Kutta Methods, continued

Heun’s method is analogous to implicit trapezoid method,
but remains explicit by using Euler prediction yk + hkk1
instead of y(tk+1) in evaluating f at tk+1

Best known Runge-Kutta method is classical fourth-order
scheme

yk+1 = yk +
hk
6

(k1 + 2k2 + 2k3 + k4)

where

k1 = f(tk,yk)

k2 = f(tk + hk/2,yk + (hk/2)k1)

k3 = f(tk + hk/2,yk + (hk/2)k2)

k4 = f(tk + hk,yk + hkk3)

< interactive example >
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Runge-Kutta Methods, continued

To proceed to time tk+1, Runge-Kutta methods require no
history of solution prior to time tk, which makes them
self-starting at beginning of integration, and also makes it
easy to change step size during integration

These facts also make Runge-Kutta methods relatively
easy to program, which accounts in part for their popularity

Unfortunately, classical Runge-Kutta methods provide no
error estimate on which to base choice of step size
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Runge-Kutta Methods, continued

Fehlberg devised embedded Runge-Kutta method that
uses six function evaluations per step to produce both
fifth-order and fourth-order estimates of solution, whose
difference provides estimate for local error

Another embedded Runge-Kutta method is due to
Dormand and Prince

This approach has led to automatic Runge-Kutta solvers
that are effective for many problems, but which are
relatively inefficient for stiff problems or when very high
accuracy is required

It is possible, however, to define implicit Runge-Kutta
methods with superior stability properties that are suitable
for solving stiff ODEs
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Extrapolation Methods

Extrapolation methods are based on use of single-step
method to integrate ODE over given interval tk ≤ t ≤ tk+1

using several different step sizes hi, and yielding results
denoted by Y (hi)

This gives discrete approximation to function Y (h), where
Y (0) = y(tk+1)

Interpolating polynomial or rational function Ŷ (h) is fit to
these data, and Ŷ (0) is then taken as approximation to
Y (0)

Extrapolation methods are capable of achieving very high
accuracy, but they are much less efficient and less flexible
than other methods for ODEs, so they are not often used
unless extremely high accuracy is required and cost is not
significant factor < interactive example >
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Multistep Methods

Multistep methods use information at more than one
previous point to estimate solution at next point

Linear multistep methods have form

yk+1 =

m∑
i=1

αiyk+1−i + h

m∑
i=0

βif(tk+1−i,yk+1−i)

Parameters αi and βi are determined by polynomial
interpolation

If β0 = 0, method is explicit, but if β0 6= 0, method is implicit

Implicit methods are usually more accurate and stable than
explicit methods, but require starting guess for yk+1
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Multistep Methods, continued

Starting guess is conveniently supplied by explicit method,
so the two are used as predictor-corrector pair

One could use corrector repeatedly (i.e., fixed-point
iteration) until some convergence tolerance is met, but it
may not be worth expense

So fixed number of corrector steps, often only one, may be
used instead, giving PECE scheme (predict, evaluate,
correct, evaluate)

Although it has no effect on value of yk+1, second
evaluation of f in PECE scheme yields improved value of
y′k+1 for future use
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Multistep Methods, continued

Alternatively, nonlinear equation for yk+1 given by implicit
multistep method can be solved by Newton’s method or
similar method, again with starting guess supplied by
solution at previous step or by explicit multistep method

Newton’s method or close variant of it is essential when
using an implicit multistep method designed for stiff ODEs,
as fixed-point iteration fails to converge for reasonable step
sizes

< interactive example >
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Examples: Multistep Methods

Simplest second-order accurate explicit two-step method is

yk+1 = yk +
h

2
(3y′k − y′k−1)

Simplest second-order accurate implicit method is
trapezoid method

yk+1 = yk +
h

2
(y′k+1 + y

′
k)

One of most popular pairs of multistep methods is explicit
fourth-order Adams-Bashforth predictor

yk+1 = yk +
h

24
(55y′k − 59y′k−1 + 37y′k−2 − 9y′k−3)

and implicit fourth-order Adams-Moulton corrector

yk+1 = yk +
h

24
(9y′k+1 + 19y′k − 5y′k−1 + y

′
k−2)
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Examples: Multistep Methods

Backward differentiation formulas form another important
family of implicit multistep methods

BDF methods, typified by popular formula

yk+1 =
1

11
(18yk − 9yk−1 + 2yk−2) +

6h

11
y′k+1

are effective for solving stiff ODEs

< interactive example >
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Multistep Adams Methods

Stability and accuracy of some Adams methods are
summarized below

Stability threshold indicates left endpoint of stability interval
for scalar ODE
Error constant indicates coefficient of hp+1 term in local
truncation error, where p is order of method

Explicit Methods
Stability Error

Order threshold constant
1 −2 1/2
2 −1 5/12
3 −6/11 3/8
4 −3/10 251/720

Implicit Methods
Stability Error

Order threshold constant
1 −∞ −1/2
2 −∞ −1/12
3 −6 −1/24
4 −3 −19/720

Implicit methods are both more stable and more accurate
than corresponding explicit methods of same order
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Properties of Multistep Methods

They are not self-starting, since several previous values of
yk are needed initially

Changing step size is complicated, since interpolation
formulas are most conveniently based on equally spaced
intervals for several consecutive points

Good local error estimate can be determined from
difference between predictor and corrector

They are relatively complicated to program

Being based on interpolation, they can efficiently provide
solution values at output points other than integration
points
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Properties of Multistep, continued

Implicit methods have much greater region of stability than
explicit methods, but must be iterated to convergence to
enjoy this benefit fully

PECE scheme is actually explicit, though in a somewhat
complicated way

Although implicit methods are more stable than explicit
methods, they are still not necessarily unconditionally
stable

No multistep method of greater than second order is
unconditionally stable, even if it is implicit

Properly designed implicit multistep method can be very
effective for solving stiff ODEs
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Multivalue Methods

With multistep methods it is difficult to change step size,
since past history of solution is most easily maintained at
equally spaced intervals

Like multistep methods, multivalue methods are also
based on polynomial interpolation, but avoid some
implementation difficulties associated with multistep
methods

One key idea motivating multivalue methods is observation
that interpolating polynomial itself can be evaluated at any
point, not just at equally spaced intervals

Equal spacing associated with multistep methods is artifact
of representation as linear combination of successive
solution and derivative values with fixed weights
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Multivalue Methods, continued

Another key idea in implementing multivalue methods is
representing interpolating polynomial so that parameters
are values of solution and its derivatives at tk

This approach is analogous to using Taylor, rather than
Lagrange, representation of polynomial

Solution is advanced in time by simple transformation of
representation from one point to next, and it is easy to
change step size

Multivalue methods are mathematically equivalent to
multistep methods but are more convenient and flexible to
implement, so most modern software implementations are
based on them
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Example: Multivalue Method

Consider four-value method for solving scalar ODE

y′ = f(t, y)

Instead of representing interpolating polynomial by its
value at four different points, we represent it by its value
and first three derivatives at single point tk

yk =


yk
hy′k

(h2/2)y′′k
(h3/6)y′′′k


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Example: Multivalue Method

By differentiating Taylor series

y(tk + h) = y(tk) + hy′ +
h2

2
y′′ +

h3

6
y′′′k + · · ·

three times, we see that corresponding values at next point
tk+1 = tk + h are given approximately by transformation

ŷk+1 = Byk

where matrix B is given by

B =


1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1


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Example: Multivalue Method

We have not yet used ODE, however, so we add correction
term to foregoing prediction to obtain final value

yk+1 = ŷk+1 + αr

where r is fixed 4-vector and

α = h(f(tk+1, yk+1)− ŷ′k+1)

For consistency, i.e., for ODE to be satisfied, we must have
r2 = 1

Remaining three components of r can be chosen in
various ways, resulting in different methods, analogous to
different choices of parameters in multistep methods
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Example, continued

For example, four-value method with

r =
[
3
8 1 3

4
1
6

]T
is equivalent to implicit fourth-order Adams-Moulton
method given earlier
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Multivalue Methods, continued

It is easy to change step size with multivalue methods: we
need merely rescale components of yk to reflect new step
size

It is also easy to change order of method simply by
changing components of r

These two capabilities, combined with sophisticated tests
and strategies for deciding when to change order and step
size, have led to development of powerful and efficient
software packages for solving ODEs based on
variable-order/variable-step methods
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Variable-Order/Variable-Step Solvers

Such routines are analogous to adaptive quadrature
routines: they automatically adapt to given problem,
varying order and step size of integration method as
necessary to meet user-supplied error tolerance efficiently

Such routines often have options for solving either stiff or
nonstiff problems, and some even detect stiffness
automatically and select appropriate method accordingly

Ability to change order easily also obviates need for
special starting procedures: one can simply start with
first-order method, which requires no additional starting
values, and let automatic order/step size selection
procedure increase order as needed for required accuracy
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