import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as pt
x = np.linspace(-1, 1, 100)
pt.xlim([-1.2, 1.2])
pt.ylim([-1.2, 1.2])
for k in range(10): # crank up
pt.plot(x, np.cos(k*np.arccos(x)))
What if we interpolate random data?
n = 50 # crank up
i = np.arange(n, dtype=np.float64)
# Chebyshev nodes:
#nodes = np.cos((2*(i+1)-1)/(2*n)*np.pi)
# Equispace nodes:
nodes = np.linspace(-1, 1, n)
pt.plot(nodes, 0*nodes, "o")
V = np.cos(i*np.arccos(nodes.reshape(-1, 1)))
data = np.random.randn(n)
coeffs = la.solve(V, data)
x = np.linspace(-1, 1, 1000)
Vfull = np.cos(i*np.arccos(x.reshape(-1, 1)))
pt.plot(x, np.dot(Vfull, coeffs))
pt.plot(nodes, data, "o")
n = 10 # crank up
i = np.arange(n, dtype=np.float64)
nodes = np.cos((2*(i+1)-1)/(2*n)*np.pi)
V = np.cos(i*np.arccos(nodes.reshape(-1, 1)))
la.cond(V)