import numpy as np
import numpy.linalg as la
We start by choosing our quadrature nodes, the maximum degree which will be exact, as well as the interval $(a,b)$ on which we integrate:
nodes = [0, 1]
#nodes = [0, 0.5, 1]
#nodes = [3, 3.5, 4]
#nodes = [0, 1, 2]
#nodes = np.linspace(0, 1, 12)
max_degree = len(nodes)-1
a = nodes[0]
b = nodes[-1]
Next, we compute the transpose of the Vandermonde matrix $V^T$ and the integrals $\int_a^b x^i$ as rhs
:
nodes = np.array(nodes)
powers = np.arange(max_degree+1)
Vt = nodes ** powers.reshape(-1, 1)
rhs = 1/(powers+1) * (b**(powers+1) - a**(powers+1))
if len(nodes) <= 4:
print(Vt)
Set up the linear system for the weights:
$$ \begin{align*} \alpha_0 x_0^0 + \cdots + \alpha_{n-1} x_{n-1}^{0} &= \int_a^b x^0\\ \vdots &= \vdots \\ \alpha_0 x_0^{n-1} + \cdots + \alpha_{n-1} x_{n-1}^{n-1} &= \int_a^b x^{n-1} \end{align*} $$weights = la.solve(Vt, rhs)
print(weights)
Now we test our quadrature rule by integrating the monomials $\int_a^b x^i dx$ and comparing quadrature results to the true answers:
for i in range(len(nodes) + 1):
approx = weights @ nodes**i
true = 1/(i+1)*(b**(i+1) - a**(i+1))
print("Error at degree %d: %g" % (i, approx-true))