
CS450 / ECE 491: Introduction to Scientific Computing

q Course webpage:  
https://relate.cs.illinois.edu/course/cs450-s25/

q Quizzes, homework, lecture notes, links to recorded lectures 
will be found on the Relate page.

q Homework and quiz submissions will also be submitted on the 
Relate page.
q Quizzes due before each lecture
q Homeworks are weekly, except for Exam weeks
q 4-cr hour will have two projects, counting for ~3 HWs

q Midterm exams (best 3 of 4) and final exam will be at CBTF.

https://relate.cs.illinois.edu/course/cs450-s25/


q Paul Fischer:  4320 Siebel 
q fischerp@illinois.edu    
q Off. Hours: Tue 12:30 - 1:30 
q                  Thu 12:30 - 1:30

q Hansheng Liu (TA)
q 2-3 Thu & TBD

q Jonathan Wang (TA)
q TBD

q Ruining Zhao
q Monday 4-5 PM
q Friday 2-3 PM

CS 450 Staff

q Office hours will be in the 
CS tutorial space in the 
basement of Siebel, save 
for my office hours on 
Thursday, which will be in 
my office.

q These are tentative hours

q Up-to-date schedule will 
be posted on the course 
Relate page.



Text Book: Scientific Computing, M. Heath

q The lectures will be designed to expand on and 
complement the text.

q HWs, quizzes, exams are mostly drawn from the 
text material.

q Slides / demos will be posted on the Relate page.

q Lectures will be recorded.



Scientific Computing

• What is scientific computing?

– Design and analysis of algorithms for numerically solving
mathematical problems in science and engineering

– Traditionally called numerical analysis

• Distinguishing features of scientific computing

– Deals with continuous quantities

– Considers e↵ects of approximations

• Why scientific computing?

– Simulation of natural phenomena

– Virtual prototyping of engineering designs



q Examples:
q Ocean currents:

q Pollution
q Saline
q Thermal transport

q Atmosphere
q Climate
q Weather

q Industrial processes
q Combustion

q Automotive engines
q Gas turbines

q Problem Characteristics:
q Large (sparse) linear systems: n=106 – 1012

q Demands:
q Accurate approximations
q Fast (low-cost) algorithms
q Stable algorithms

Simulation Example:  Convective TransportExample: Convective Transport
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Simulation Example:  Convective Transport

o Temperature distribution in hot + cold mixing at T-junction

o 100 million dofs:  20 hours runtime on 16384 cores
o Solve several 108 x 108 linear systems every second



q Related course material
q Linear systems     - chapter 2 
q Eigenvalues / eigenvectors   - chapter 4
q Interpolation     - chapter 7
q Numerical integration/differentiation  - chapter 8
q Initial value problems    - chapter 9
q Bounary value problems   - chapter 10
q Numerical PDEs (simplified)   - chapter 11

Numerical Simulation



q Related course material
q Linear / Nonlinear Least Squares  - chapter 3 
q Singular Value Decomposition   - chapter 3/4
q Nonlinear systems    - chapter 5
q Optimization     - chapter 6
q Interpolation     - chapter 7

Data Fitting / Optimization

q Examples
q Weather prediction (data assimilation)
q Image recognition
q Etc.



Main Topics / Take-Aways for Chapter 1 (1/2)

• Conditioning of a problem

• Condition number

• Stability of an algorithm

• Errors

– Relative / absolute error

– Total error = computational error + propagated-data error

– Truncation errors

– Rounding errors

• Floating point numbers: IEEE 64

• Floating point arithmetic

– Rounding errors

– Cancellation



Main Topics / Take-Aways for Chapter 1 (2/2)

• Floating point numbers: IEEE 64

• Floating point arithmetic

– Rounding errors

– The Standard Model: fl(a � b) = (a � b)(1 + ✏)

– Commutativity and associativity

– Cancellation



Well-Posed Problems

• Problem is well-posed if solution

– exists

– is unique

– depends continuously on problem data

Otherwise, problem is ill-posed

• Even if problem is well posed, solution may still be
sensitive to perturbations in input data

• Computational algorithm should not make sensitivity worse.
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General Strategy

• Replace di�cult problem by easier one having same or closely
related solution

– infinite dimensional problem �! finite dimensional one

– di↵erential equation �! algebraic equation

– nonlinear problem �! (sequence of) linear problems

– complicated �! simple

• Solution obtained may only approximate that of the original
problem
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General Strategy, Examples

• If p(x) = a0 + a1x + a2x2 + · · · + anxn is a polynomial ⇡ f (x), then
we can readily evaluate

R
p dx ⇡

R
f dx, where the original integral may

be inaccessible.

• Here, we have a finite-dimensional problem of finding n+ 1 coe�cients, aj,
such that p(x) ⇡ f (x).

• For nonlinear systems of the form A(x)x = f , we can set up an iteration of

the form A(xk)xk+1 = f , starting with an initial guess x0.

• This requires repeated solutions of linear systems, which is generally easier.

• More sophisticated iteration strategies can be used for rapid convergence

and robustness.
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Sources of Approximation

• Before computation

– modeling

– empirical measurements

– previous computations

• During computation

– truncation or discretization

– rounding

• Accuracy of final result reflects all of these

• Uncertainty in input may be amplified by problem

• Perturbations during computation may be amplified by algorithm
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Example: Approximation

• Computing surface area of Earth using formula A = 4⇡r2

involves several approximations

– Earth is modeled as a sphere, idealizing its true shape

– Value for radius is based on empirical measurements and
previous computations

– Value for ⇡ requres truncating infinite process

– Values for input data and results of arithmetic operations
are rounded in computer
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Aside:  About Shape of the Earth and Precision

q Degree of latitude at the north/south pole ~ 111.7 km

q Degree of latitude at the equator  ~ 110.5 km

q Measurements were carried out by 
French expeditions to Lapland and 
Ecuador in the 1730s to determine 
shape of the Earth, and to define 
the meter.

q Original definition of the meter was  
one 10millionth of the distance from 
the north pole to the equator.



Aside:  About Shape of the Earth and Precision

q Q:  What is the polar circumference 
of the Earth?

q A: 40 million meters = 40,000 km

q More modern measurements put 
this value at 40,008 km.

q So, the original measurements 
were accurate to 0.02% - in the 
final result!

q Many of the techniques discussed 
in this course, (least squares, 
Gauss-Seidel relaxation, normal 
distributions, etc.) were developed 
for accurate measurement of the 
Earth.   How accurate?



An Account of the Measurement of Two Sections of the Meridional Arc of India, Bounded by the Parallels of 18o 3’ 15” 
and 29o 30’ 48”. Everest, Lieut.-Colonel George. 1847

Measured to 9 digits!



Absolute Error and Relative Error

• Absolute error: approximate value � true value

• Relative error: approximate value � true value

true value

• Equivalently,

approx value = (true value) ⇥ (1+rel error)

• True value usually unknown, so we estimate or bound
error rather than compute it exactly

• Relative error often taken relative to approximate value,
rather than (unknown) true value
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Approximate Relative Error

• If y = f (x) is true value and ŷ = f̂ (x̂) ⇡ y is approximate value, then

absolute error: �y := ŷ � y

relative error:
�y

y
=

�y

ŷ (1��y/ŷ)

⇡ �y

ŷ
(1 + �y/ŷ) (by Taylor series expansion)

=
�y

ŷ

✓
1 + O

✓
�y

y

◆◆
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Measuring Error

• Suppose x and y are vectors, x =

2

664

x1

x2
...
xn

3

775 , y =

2

664

y1

y2
...
yn

3

775

• Q: How do we measure error?

• A: Vector norms!
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Vector Norm

• Recall, a vector norm is a scalar function f (x) that returns a
“magnitude” of the input vector x.

• In symbols, often written kxk, potentially with a subscript such as kxk2
or kxk

W
to indicate a particular chosen measure or weight (W ).

• Define norm:

A function kxk : lRn �! lR is called a norm if and only if

1. kxk > 0 () x 6= 0.

2. k�xk = |�| kxk for all scalars �

3. Obeys triangle inequality, kx + yk  kxk + kyk
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Example: p-norms

• For integers p � 1 we define the p-norms,

kxk
p
=

��⇥ x1 ...xn
⇤�� = p

p
|x1|p + · · · + |xn|p

• p = 1, 21 are particularly important

• Demo: Vector Norms
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kxk
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Which Norm to Use?

• For finite-dimensional systems, with n fixed, we have the equivalence
of norms property.

• Given any two vector norms, k · k and k · k⇤, there exist positive constants,
c and C, possibly dependent on n, such that for all x 2 lRn,

ckxk⇤  kxk  Ckxk⇤

• The implication is that if k�yk⇤ �! 0 in one norm, it does so for all norms.

• Consequently, we can bound the error in the norm of our choosing, i.e.,
whatever is most convenient given the information available.
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Norms and Errors

• If we are computing a vector result, ŷ, the error is a vector, �y = ŷ� y.

• To answer the question, How large is the error?, we need to apply a norm.

Attempt 1:

Magnitude of error 6= ktrue valuek � kapproximate valuek

Wrong! How does this fail?

Attempt 2:

Magnitude of error = ktrue value � approximate valuek
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Data Error and Computational Error

• Typical problem: compute value of function f (x) : lR �! lR
for given argument

• x = true value of input

• f (x) = desired result

• x̂ = approximate (inexact) input

• f̂ = approximate function actually computed

• Total error: f̂ (x̂)� f (x) =

f̂ (x̂)� f (x̂) + f (x̂)� f (x)

computational error + propagated data error

• Algorithm as no e↵ect on propagated data error.
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Bounds on Total Error

• Total error: f̂ (x̂)� f (x) =

f̂ (x̂)� f (x̂) + f (x̂)� f (x)

computational error + propagated data error

• Total error: |f̂ (x̂)� f (x)| 

|f̂ (x̂)� f (x̂)| + |f (x̂)� f (x)|

|computational error| + |propagated data error|

7

General Strategy, Examples

• This is a standard trick in which we add and subtract the same quantity
to isolate separate e↵ects.

• We then bound each e↵ect independently, using appropriate analysis.

1



Truncation Error and Rounding Error

• Truncation error: di↵erence between true result (for actual input)
and result produced by given algorithm using exact arithmetic

– Due to approximations such as truncating infinite series or
terminating iterative sequence before convergence

Rounding error: di↵erence between result produced by
given algorithm using exact arithmetic and result produced
by same algorithm using limited precision arithmetic.

– Due to inexact representation of real numbers and arithmetic
operations on them terminating iterative sequence before convergence

• Computational error is sum of truncation and rounding error

• Truncation error dominates in practice. (WHY?)
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• If f (k)
exists (is bounded) on [x, x+ h], k = 0, . . . ,m, then there exists

a ⇠ 2 [x, x+ h] such that

f(x+ h) = f(x) + hf 0
(x) +

h2

2
f 00

(x) + · · · +
hm

m!
f (m)

(⇠).

• Take m = 2:

f(x+ h) � f(x)

h| {z }
computable

= f 0
(x)| {z }

desired result

+
h

2
f 00

(⇠)

• Truncation error: |h2f
00
(⇠)| ⇡ h

2f
00
(x) as h �! 0.

Q: Suppose |f 00
(x)| ⇡ 1.

Can we take h = 10
�30

and expect

����
f(x+ h) � f(x)

h
� f 0

(x)

����  10�30

2 ?

A: Only if we can compute every term in finite-di↵erence formula

(our algorithm) with su�cient accuracy.

Truncation Error Example

q Recall Taylor series:

taylor_demo.m

Taylor Series (Very important for SciComp!)

• If f
(
k) exists (is bounded) on [x, x + h], k = 0, . . . ,m, then there exists

a ⇠ 2 [x, x+ h] such that

f(x+ h) = f(x) + hf
0
(x) +

h
2

2
f
00
(x) + · · · +

h
m

m!
f(m)(⇠).

• Take m = 2:

f(x+ h) � f(x)

h| {z }
computable

= f
0
(x)| {z }

desired result

+
h

2
f
00
(⇠)

| {z }
truncation error

• Truncation error: h
2f

00
(⇠) ⇡ h

2f
00
(x) as h �! 0.

– To be precise,
h
2f

00
(⇠) =

h
2f

00
(x) +O(h

2
)

This simply says that, as we zoom in (h �! 0), f(x) looks like a line.

• Can use the Taylor series to generate approximations to f
0
(x), f

00
(x),

etc., by evaluating f at x, x± h, x± 2h.

• We then solve for the desired derivative and consider limh �! 0.

Q: Suppose |f 00
(x)| ⇡ 1.

Can we take h = 10
�30

and expect

����
f(x+ h) � f(x)

h
� f

0
(x)

����  10�30

2 ?

A: Only if we can compute every term in finite-di↵erence formula

(our algorithm) with su�cient accuracy.
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• Taylor series are fundamental to numerical methods and analysis.

• Newton’s method, optimization algorithms, and numerical solution of

di↵erential equations all rely on understanding the behavior of functions

in the neighborhood of a specific point or set of points.
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• Taylor series are fundamental to numerical methods and analysis.

• Newton’s method, optimization algorithms, and numerical solution of

di↵erential equations all rely on understanding the behavior of functions

in the neighborhood of a specific point or set of points.

• In essence, numerical methods convert calculus from the continuous back

to the discrete.

• ( A way of avoiding caculus. :) )
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a ⇠ 2 [x, x+ h] such that

f(x+ h) = f(x) + hf 0
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h2

2
f 00

(x) + · · · +
hm

m!
f (m)

(⇠).
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h| {z }
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= f 0
(x)| {z }
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+
h

2
f 00

(⇠)
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Taylor Series (Very important for SciComp!)

• If f
(
k) exists (is bounded) on [x, x + h], k = 0, . . . ,m, then there exists

a ⇠ 2 [x, x+ h] such that

f(x+ h) = f(x) + hf
0
(x) +

h
2

2
f
00
(x) + · · · +

h
m

m!
f(m)(⇠).

• Take m = 2:

f(x+ h) � f(x)

h| {z }
computable

= f
0
(x)| {z }

desired result

+
h

2
f
00
(⇠)

| {z }
truncation error

• Truncation error: h
2f

00
(⇠) ⇡ h

2f
00
(x) as h �! 0.
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h
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(⇠) =

h
2f
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(x) +O(h

2
)

Q: Suppose |f 00
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�30

and expect
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� f
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Example: How Can We Use this Analysis

• Denote the finite-di↵erence formula as

�hf

�x
:=

f (x + h)� f (x)

h
= f

0
(x) +

h

2
f
00
(x) + O(h

2
)

for h fixed, “su�ciently small”

• Also evaluate:

�2hf

�x
:=

f (x + 2h)� f (x)

2h
= f

0
(x) +

2h

2
f
00
(x) + O(h

2
)

• Leading order error term is 2⇥ larger.

• Subtract second result from 2⇥ first to arrive at

2
�hf

�x
� �2hf

�x
= f

0
(x) + O(h

2
)

• Demo: fdi↵1.m
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Finite Di↵erences and Truncation/Round-O↵ Error

• Taylor Series:1

�f

�x
:=

f(x+ h) � f(x)

h| {z }
computable

= f
0(x)| {z }

desired result

+
h

2
f
00(⇠)

| {z }
truncation error

• So, expect eabs :=
��� �f�x � df

dx

��� = O(h) �! 0 as h �! 0.

• Computed value of �f
�x , using standard model,

⌧
�f

�x

�
=

hf(x+ h)i � hf(x)i
h

=
f(x+ h)(1 + ✏+) � f(x)(1 + ✏0)

h

=
f(x+ h) � f(x)

h
+

f(x+ h)✏+ � f(x)✏0
h

,

✏+, ✏0 random variables of arbitrary sign with magnitude  ✏M .

• This computed expression ignores round-o↵ in x, h, x+ h and division.
Can show (by Taylor series expansions) that those errors are benign.

• Use f(x+ h) = f(x) + hf
0(⇠) to write the first round-o↵ term as:

f(x+ h)✏+
h

=
(f(x) + hf

0(⇠))✏+
h

=
f(x)✏+

h
+ f

0(⇠)✏+ ⇡ f(x)✏+
h

.

• So, computed approximation is

⌧
�f

�x

�
=

�f

�x
+

✏+ � ✏0

h
f(x) + O(✏+) ⇡ f

0(x) +
h

2
f
00(⇠) +R

✏M

h
f(x).

where |R| < 2.

1Assuming f , f 0 and f 00 bounded on [x, x+ h].
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Round-Off Error

q In general, round-off error will prevent us from representing f(x) 
and f(x+h) with sufficient accuracy to reach such a result.

q Round-off is a principal concern in scientific computing.     (Though 
once you’re aware of it, you generally know how to avoid it as an 
issue.)

q Round-off results from having finite-precision arithmetic and finite-
precision storage in the computer.   (e.g., how would you store 1/3 
in a computer?)

q Most scientific computing is done either with 32-bit or 64-bit 
arithmetic, with 64-bit being predominant. (IEEE 754-2008)

q Because of implications for machine learning, vendors are now 
building hardware support for fast 16-bit operations and some 
scientific computing applications are trying to leverage this hard-
ware and also gain through reduced memory-bandwidth demands.



Round-Off Error
q We are of course all very familiar with round-off error.

q When we perform computation with pencil and paper, we 
inevitably truncate infinite-decimal results, and propagate 
these forward.

Round-off
error



Round-O↵ Example: Matrix Iteration

• Round-o↵ error is e↵ectively a source of noise (i.e., perturbation)

at every step of a calculation

• To illustrate, we consider the matrix iteration

xk = Axk�1 = A
2
xk�2 = · · · = A

k
x,

for a 2⇥ 2 matrix A with an initial vector x.

• Suppose (per chapter 4) that there are two distinct eigenvectors,
s1 and s2, and scalars (eigenvalues), �1 and �2, satisfying

As1 = �1s1 and As2 = �2s2.

1



Round-O↵ Example: Matrix Iteration, cont’d

• If x = a1s1 + a2s2, then

Ax = A (a1s1 + a2s2)

= a1As1 + a2As2

= a1�1s1 + a2�2s2

A
2
x = A (Ax)

= a1�
2
1s1 + a2�

2
2s2

A
k
x = a1�

k

1s1 + a2�
k

2s2

2



Round-O↵ Example: Matrix Iteration, cont’d

A
k
x = a1�

k

1s1 + a2�
k

1s2

• Let’s consider and example where a1 = 1 and a2 = 0, so x = s1.

• Then, in exact arithmetic, A
k
x = �

k
1s1.

• If the arithmetic is inexact, however, then we can expect

Ax = �
k

1 s1 + ✏ �
k

2 s2,

where ✏ is related to round-o↵ error in the associated arithmetic (or in

the representation of s1, perhaps).

• If |�2|  |�1|, then we will get something close to the expected result.

• However, if |�2| > |�1|, this small O(✏) perturbation will eventually

be amplified.

3



Round-O↵ Example: Matrix Iteration, cont’d

• Consider a case with

�1 = 0.9 �2 = 1.1

a1 = 1 a2 = 0

• We expect

– kxkk ⇠ 0.9
k
in the early iterations and

– kxkk ⇠ 1.1
k
for larger iteration counts, k.

4



Forward and Backward Error

• Suppose we want to compute y = f (x), where f : lR �! lR,
but obtain an approximate value, ŷ.

• Forward error: �y = ŷ � y

• Backward error: �x = x̂ � x , where f (x̂) = ŷ,

BIG DRAWING
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Backward Error Analysis

• Idea: approximate solution is exact solution to modified problem

• How much must the original problem change to give the obtained result?

• How much data error in the input would explain all error in
computed result?

• Approximate solution is good if it an exact solution to a nearby
problem

• Backward error is often easier to estimate than forward error.

13



Backward Error Analysis

• User wants: y = f(x).

• Algorithm produces: ŷ = f̂(x).

• Backward error analysis asks

– Is there an x̂ near x such that f(x̂) = ŷ?

• Why is this useful?

– Maybe original data known only to tolerance ✏ � |x� x̂|.

– In other words,

We can’t distinguish small errors induced by the
algorithm from acceptably small errors in the input.

• User wants: y = f(x).

• Algorithm produces: ŷ = f̂(x).

• Backward error analysis asks

– Is there an x̂ near x such that f(x̂) = ŷ?

• Why is this useful?

– Maybe original data known only to tolerance ✏ � |x� x̂|.

– In other words,

We can’t distinguish small errors induced by the
algorithm from acceptably small errors in the input.

• User wants: y = f(x).

• Algorithm produces: ŷ = f̂(x).

• Backward error analysis asks

– Is there an x̂ near x such that f(x̂) = ŷ?

• Why is this useful?

– Maybe original data known only to tolerance ✏ � |x� x̂|.

– In other words,

We can’t distinguish small errors induced by the
algorithm from acceptably small errors in the input.

• User wants: y = f(x).

• Algorithm produces: ŷ = f̂(x).

• Backward error analysis asks

– Is there an x̂ near x such that f(x̂) = ŷ?

• Why is this useful?

– Maybe original data known only to tolerance ✏ � |x� x̂|.

– In other words,

We can’t distinguish small errors induced by the
algorithm from acceptably small errors in the input.

• User wants: y = f (x).

• Algorithm produces: ŷ = f̂ (x).

• Backward error analysis asks

– Is there an x̂ near x such that f (x̂) = ŷ?

• Uses for backward error

• Original data might be known only to tolerance ✏ > |x� x̂|.
In other words, We can’t distinguish small errors induced by
the algorithm from acceptably small errors in the input.

• We will see later that we can often bound the forward error in terms of
the condition number times the backward error.
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Example: Forward and Backward Error

• As approximation to y =
p
2, ŷ = 1.4 has absolute forward

error

|�y| = |ŷ � y| = |1.4� 1.41421 . . . | ⇡ 0.0142,

or relative forward error of about 1 percent

• Since 1.42 = 1.96, absolute backward error is

|�x| = |x̂ � x| = |1.96� 2| = 0.04,

or relative backward error of 2 percent

12



Example: Backward Error Analysis

• Approximating cosine function f (x) = cos(x) by truncating Taylor series
after two terms gives

ŷ = f̂ (x) = 1 � x
2

2

• Forward error is given by

�y = ŷ � y = f̂ (x) � f (x) = 1 � x
2

2
� cos(x)

• To determine backward error, need x̂ such that f (x̂) = f̂ (x).

• For cosine function, x̂ = arccos(f̂ (x)) = arccos(ŷ)

14



Example: Backward Error Analysis, continued

• For x = 1,

y = f (1) = cos(1) ⇡ 0.5403

ŷ = f̂ (1) = 1 � 12

2
= 0.5

x̂ = arccos(ŷ) = arccos(0.5) ⇡ 1.0472

• Forward error: �y = ŷ � y ⇡ 0.5� 0.5403 = �.0403

• Backward error: �x = x̂� x ⇡ 1.0472� 1 = 0.0472

15

Relative forward error    ~ 8%
Relative backward error ~ 5%



Backward Error Analysis for Finite Difference Example

• User wants: y = f(x).

• Algorithm produces: ŷ = f̂(x).

• Backward error analysis asks

– Is there an x̂ near x such that f(x̂) = ŷ?

• Why is this useful?

– Maybe original data known only to tolerance ✏ � |x� x̂|.

– In other words,

We can’t distinguish small errors induced by the
algorithm from acceptably small errors in the input.

• User wants: y = f(x).

• Algorithm produces: ŷ = f̂(x).

• Backward error analysis asks

– Is there an x̂ near x such that f(x̂) = ŷ?

• Why is this useful?

– Maybe original data known only to tolerance ✏ � |x� x̂|.

– In other words,

We can’t distinguish small errors induced by the
algorithm from acceptably small errors in the input.

x+ h
x+ h

• By Mean Value Theorem, there exists an x̂ 2 [x, x+ h] such that

f 0
(x̂) =

f(x+ h)� f(x)

h
.

(Assuming f is di↵erentiable on [x, x+ h].)

• Backward error for the finite di↵erence approximation is bounded by |h|,
assuming no round-o↵ error.



Sensitivity and Conditioning

• Problem is insensitive, or well-conditioned, if relative
change in input causes similar relative change in solution (output)

• Problem is sensitive, or ill-conditioned, if relative change in solution
can be much larger than the relative change in the input data

17



Condition Number

• Condition number is a measure of the
sensitivity of the problem

cond =
| relative change in output |
| relative change in input |

=
| [f (x̂) � f (x)]/f (x)] |

| (x̂) � x)/x | =
|(ŷ � y)/y|
|(x̂� x)/x| =

|�y/y|
|�x/x|

=
| relative forward error|
| relative backward error|

18



Note about Condition Number

• It’s tempting to say that a large condition number indicates that a
small change in the input implies a large change in the output.

• However, to be dimensionally correct, we need to be more precise.

• A large condition number indicates that a small relative change
in input implies a large relative change in the output:

cond =
| relative change in output |
| relative change in input | =

|(ŷ � y)/y|
|(x̂� x)/x| =

|�y/y|
|�x/x|

• We, can, however also define an absolute condition number, which
is useful when x or y are zero.

• This is the perturbation in y that is generated by a perturbation in x,

condabs =
|(ŷ � y)|
|(x̂� x)| =

|�y|
|�x|
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Condition Number, continued

• Condition number is amplification factor relating relative forward error to
relative backward error

| relative forward error | = cond ⇥ | relative backward error |

• In general, condition number varies with input and in practice we don’t
know it exactly.

• We might be able find a rough estimate or upper bound over the domain
of inputs, so the relationship becomes

| relative forward error | . cond ⇥ | relative backward error |

• Thus, the condition number allows us to bound the forward error in terms
of the backward error, which might be easier to estimate.

2



Example: Evaluating a Function

• Evaluating f (x) with an approximate input x̂ = x +�x

instead of the true input x yields

Absolute forward error: f (x +�x) � f (x) ⇡ f
0(x)�x

Relative forward error: f(x+�x)� f(x)
f(x) ⇡ f

0(x)�x

f(x)

Condition number: cond ⇡
���f

0(x)�x/f(x)
�x/x

���
���f

0(x)�x/f(x)
�x/x

��� =
���xf

0(x)
f(x)

���

• Relative error in function value can be much larger or
smaller than that in input, depending on f and x.
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Example: Sensitivity

• tan(x) is sensitive for arguments near ⇡/2.

• tan(1.57078) ⇡ 6.12490 ⇥ 104

• tan(1.57079) ⇡ 1.58058 ⇥ 105

• Relative change in output is a quarter million
times larger than relative change in input

• For x = 1.57078, cond ⇡ 2.48275 ⇥ 105

4
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Condition Number Examples

Using the formula, cond =

����
x f 0(x)

f(x)

���� , what is

the condition number of the following?

f(x) = a x

f(x) =
a

x

f(x) = a+ x

q Q:  In our finite difference example, where did things go wrong?



Condition Number Examples

cond =

����
x f

0(x)

f(x)

���� ,

For f(x) = ax, f 0 = a, cond =
��x a
ax

�� = 1.

For f(x) =
a

x
, f 0 = �ax

�2, cond =
���x

�a
x2
a
x

��� = 1.

For f(x) = a+ x, f 0 = 1, cond =
�� x·1
a+x

�� = |x|
|a+x| .

• The condition number for (a+ x) is <1 if a and x are of the same sign,
but it is >1 if they are of opposite sign, and potentially � 1 if the are
of opposite sign but close to the same magnitude.

This ill-conditioning is often referred to as cancellation.

• Subtraction of two positive (or negative) values of nearly the same
magnitude is ill-conditioned.

• Multiplication and division are benign.

• Addition of two positive (or negative) values is also OK.

• In our finite di↵erence example, the culprit is the subtraction, more
than the division by a small number.

x̂ = x+�x

For IEEE double-precision

p = 53 ✏mach = 2�p = 2�53 ⇡ 10�16

L = �1022 UFL = 2L = 2�1022 ⇡ 10�308

U = 1023 OFL ⇡ 2U = 21023 ⇡ 10308

Q: How many atoms in the Universe?



Condition Number Examples

cond =

����
x f 0

(x)

f(x)

���� ,

For f(x) = ax, f 0
= a, cond =

��x a
ax

�� = 1.

For f(x) =
a

x
, f 0

= �ax�2
, cond =

���x
�a
x2
a
x

��� = 1.

For f(x) = a+ x, f 0
= 1, cond =

�� x·1
a+x

�� =
1

|a+x| .

• The condition number for (a+ x) is <1 if a and x are of the same sign,

but it is >1 if they are of opposite sign, and potentially � 1 if the are

of opposite sign but close to the same magnitude.

• Subtraction of two positive (or negative) values of nearly the same

magnitude is ill-conditioned.

• Multiplication and division are benign.

• Addition of two positive (or negative) values is also OK.

• In our finite di↵erence example, the culprit is the subtraction, more

than the division by a small number.

• In our finite di↵erence example, the culprit is the subtraction, more
than the division by a small number.

x̂ = x +�x

• If f (x) is also ill-conditioned, then perturbations (i.e., round-o↵) in x + h

and x can also contribute to (and possibly dominate) round-o↵ error.

13

Well-Posed Problems

�hx

�x
:=

f (x + h) � f (x)

h

1



Stability

• Algorithm is stable if returned result is relatively
insensitive to perturbations during the computation

• Stability of algorithms is analogous to conditioning
of problems

• From point of view of backward error analysis, algorithm is
stable if returned result is exact solution to a nearby problem

• For a stable algorithm, e↵ect of computational error is no worse
than the e↵ect of a small data error in input

5



Accuracy

• Accuracy: closeness of computed solution to true solution
of problem

• Stability alone does not guarantee accurate results

• Accuracy depends on conditioning of problem as well as
stability of algorithm

• Inaccuracy can result from applying a stable algorithm to an ill-conditioned
problem or unstable algorithm to well-conditioned problem

• Applying stable algorithm to well-conditioned problem will yield an accurate
solution

6



Examples of Potentially Unstable Algorithms

q Examples of potentially unstable algorithms include

q Gaussian elimination without pivoting

q Using the normal equations to solve linear least squares problems

q High-order polynomial interpolation with unstable bases (e.g.,     
monomials or Lagrange polynomials on uniformly spaced nodes)



Unavoidable Source of Noise in the Input

q Numbers in the computer are represented in finite precision.

q Therefore, unless our set of input numbers, x, are perfectly 
representable in the given mantissa, we already have an error   
and our actual input is thus

  

q The next topic discusses the set of representable numbers.

q We’ll sometimes refer to this set of “floating point numbers” as F.

q We’ll primarily be concerned with two things –
q the relative precision, 
q the maximum absolute value representable.

cond =

����
x f 0

(x)

f(x)

���� ,

For f(x) = ax, f 0
= a, cond =

��x a
ax

�� = 1.

For f(x) =
a

x
, f 0

= �ax�2
, cond =

���x
�a
x2
a
x

��� = 1.

For f(x) = a+ x, f 0
= 1, cond =

�� x·1
a+x

�� =
1

|a+x| .

• The condition number for (a+ x) is <1 if a and x are of the same sign,

but it is >1 if they are of opposite sign, and potentially � 1 if the are

of opposite sign but close to the same magnitude.

• Subtraction of two positive (or negative) values of nearly the same

magnitude is ill-conditioned.

• Multiplication and division are benign.

• Addition of two positive (or negative) values is also OK.

• In our finite di↵erence example, the culprit is the subtraction, more

than the division by a small number.

x̂ = x+�x



Floating-Point Numbers

• Floating-point number system is characterized by four integers

� base or radix

p precision

(L,U) exponent range

• Number is represented as

x = ±
✓
d0 +

d1
�

+
d2
�2

+ · · · dp�1

�p�1

◆
�E

– Here, we have p digits, d0, d1, . . . , dp�1.

– Each digit is in the range 0  di  � � 1.

– Representations are typically normalized, meaning that d0 6= 0.

– The exponent is in the interval L  E  U.

• Modern computers use base � = 2 (i.e., binary representation).



Floating-Point Number Examples

• Base 10 x = ±1.2345678901234567⇥ 10
±9

• Base 2 x = ±1.0101010101010101⇥ 2
±1001

(⇥2
±9
)

• Base 16 x = ±1.23456789abcdef01⇥ 16
±9



Floating-Point Numbers, continued

• Portions of floating-point numbers are designated as

– exponent: E

– mantissa: d0d1 · · · dp�1

– fraction: d1d2 · · · dp�1

• Sign, exponent, and mantissa are stored in separate

fixed-width fields of each floating-point word.



Typical Floating-Point Systems

Parameters for floating-point systems

System � p L U

IEEE DP 2 53 -1022 1023
IEEE SP 2 24 -126 127
IEEE HP 2 24 -126 127
Cray 2 48 -16383 16384

• Most modern computers use binary (� = 2) arithmetic

• IEEE floating-point systems are now almost universal

• Jim Cody lecture on “pre-IEEE” days

7



Normalization

• Floating-point systems are normalized if leading digit, d0 is
always nonzero for any entry 6= 0.

• In normalized systems, mantissa m of nonzero
floating-point number always satisfies 1  m < �

• Reasons for normalization:

• representation of each number is unique

• no digits wasted on leading zeros

• leading bit need not be stored in binary systems

https://bartaz.github.io/ieee754-visualization/

8



Normalized Mantissa Examples

q Decimal:

q           1.2345

q           9.814 x 10-2

q Binary:

q           1.010  x 2-3

q           1.111 x 24

Not normalized:

   .00101



Rounding Error

Binary Representation of ⇡

• In 64-bit floating point,

⇡64 ⇡ 1.1001001000011111101101010100010001000010110100011⇥ 21

• In reality,

⇡ = 1.10010010000111111011010101000100010000101101000110000100011010 · · ·⇥ 21

• They will (potentially) di↵er in the 53rd bit...

⇡ � ⇡64 = 0.00000000000000000000000000000000000000000000000000000100011010 · · ·⇥ 21



Properties of Floating-Point Systems

• Floating-point number system is finite and discrete

• Total number of normalized floating point numbers is
2(� � 1) �p�1 (U � L + 1) + 1

• Smallest positive normalized number: UFL = �
L

• Largest floating-point number: OFL = �
U+1(1� �

�p)

• Floating-point numbers equally spaced only between
successive powers of �

• Not all real numbers exactly representable; those that are
are called machine numbers, 2 F̂

9



Example Floating-Point System

• Tick marks indicate all 25 numbers in floating point system
having � = 2, p = 3, L = �1, and U = 1

• UFL = (1.00)2 ⇥ 2�1 = (0.5)10

• OFL = (1.11)2 ⇥ 21 = (3.5)10

• At su�ciently high magnification, normalized floating-point
systems look grainy and unevenly spaced

Example: numbers.m

10



Rounding Rules

• If real number x is not exactly representable, then it is
approximated by “nearby” number in F̂ , fl(x)

• This process is called rounding, and error introduced
is called rounding error

• Two commonly used rounding rules,

• chop: truncate base-� expansion of x after (p� 1)st digit;
also call round toward zero

• round to nearest: fl(x) is nearest element of F̂ to x, using floating-point
number whose last stored digit is even in case of tie; also called round
to even

Round to nearest is most accurate and is default rounding rule in IEEE
standard

11



Machine Precision

• Probably the most important number in a floating point system is machine
precision (or machine epsilon or unit roundo↵, denoted by ✏mach or ✏M .

• With rounding by chopping, ✏M = �
1�p

• With rounding to nearest, ✏M = 1
2�

1�p

• Alternative definition is smallest number ✏ such that fl(1 + ✏) > 1, where
“fl() is the result of assigning the argument to the element of F̂ according
to the rounding rule

• Maximum relative error in representing real number x in F̂ is given by
����
fl(x) � x

x

����  ✏M

11



Machine Precision, continued

• The relationship
����
fl(x) � x

x

����  ✏M

can be re-expressed as

fl(x) = x (1 + ✏x)

with |✏x|  ✏M

• The advantage of this expression is that the approximation is
expressed as an equality, which is easier to work with

13



Machine Precision, continued

• For IEEE floating point systems

• ✏M = 2�24 ⇡ 10�7 in single (32-bit) precision

• ✏M = 2�53 ⇡ 10�16 in single (64-bit) precision

• So IEEE single (FP32) and double (FP64) precision systems have about 7
and 16 decimal digits of precision, respectively

14



Advantage of Floating Point

q By sacrificing a few bits to the exponent, floating point allows us 
to represent a Huge range of numbers….

q All numbers have same relative precision.
q The numbers are not uniformly spaced.

q Many more between 0 and 10 than between 10 and 100!



Relative Precision Example

Let’s look at the highlighted entry from the preceding slide.

x = 3141592653589793238462643383279502884197169399375105820974944.9230781... = ⇡ ⇥ 1060

x̂ = 3141592653589793000000000000000000000000000000000000000000000.0000000... ⇡ ⇡ ⇥ 1060

x� x̂ = 238462643383279502884197169399375105820974944.9230781... = 2.3846...⇥ 1044

⇡ .7590501687441757⇥ 10�16 ⇥ x

< 1.110223024625157e� 16 ⇥ x

⇡ ✏mach ⇥ x.

• The di↵erence between x := ⇡ ⇥ 1060 and x̂ := fl(⇡ ⇥ 1060) is large:

x� x̂ ⇡ 2.4⇥ 1044.

• The relative error, however, is

x� x̂

x
⇡ 2.4⇥ 1044

⇡ ⇥ 1060
⇡ 0.8⇥ 10�16 < ✏mach



Machine Precision, continued

• Unit roundo↵, ✏M , should not be confused with the underflow level, UFL

• Unit roundo↵, ✏M , is determined by the number of digits (or bits) in the
mantissa, whereas underflow level UFL is determined by the number digits
or bits in the exponent field

• In all practical floating-point systems,

0 < UFL ⌧ ✏M ⌧ OFL

15



Machine Precision, continued

0 < UFL ⌧ ✏M ⌧ OFL

• Despite the remarkably small magnitude of UFL, there is (potentially) a
mechanism to represent numbers between UFL and 0 by using denormal-
ized numbers (leading bit 6= 1).

• Most (fast) floating-point hardware does not support them and operations
with them can be thousands of times slower than working with normalized
elements of F̂

• Practically, any denormalized number ⇡ 0, so flushing these values to 0 is
not harmful

• The principal reason to support “d-norms” is that it guarantees
fl(x� y) = 0 i↵ fl(x) = fl(y).

• This property, and the extended precision a↵orded by d-norms, can be im-
portant in low-precision (FP32, FP16) arithmetic.

16



Summary of Ranges for IEEE Double Precision

p = 53 ✏mach = 2�p = 2�53 ⇡ 10�16

L = �1022 UFL = 2L = 2�1022 ⇡ 10�308

U = 1023 OFL ⇡ 2U = 21023 ⇡ 10308

Q: How many atoms in the Universe?

p = 53 ✏mach = 2�p = 2�53 ⇡ 10�16

L = �1022 UFL = 2L = 2�1022 ⇡ 10�308

U = 1023 OFL ⇡ 2U = 21023 ⇡ 10308

Q: How many atoms in the Universe?

Q:   How many atoms in the Universe?

Q:   How many positive FP64 numbers < 1?



Exceptional Values

• IEEE floating-point standard provides special values to indicate exceptional
situations

• Inf, which stands for “infinity,” results from dividing a finite number by
0, (e.g., 1/0)

• NaN, which stands for “not a number,” results from undefined or indeter-
minate operations such as 0/0, 0*Inf, or Inf/Inf

• Inf and NaN are implemented in IEEE arithmetic through special reserved
values of the exponent field

• Note that 0 is also a special number as it is not normalized

17



Several low-precision formats            (Wikipedia bfloat16)



Sources of Error in Floating-Point Arithmetic

• Addition or subtraction: Shifting of mantissa to make exponents match
may cause loss of some (possibly all) digits of smaller number

• Multiplication: Product of two p-digit mantissas contains up to 2p digits,
so result may not be representable

• Division: Quotient of two p-digit mantissas may contain more than p digits,
such as nonterminating representation of 1/3 in base 10 or of 1/10 in binary

• Result of floating-point arithmetic operation my di↵er from result of corre-
sponding real arithmetic operation on same operands

18



Example: Floating-Point Arithmetic

• Consider the following statements, executed in FP64 with matlab

format longe % Set output format to sci. notation, all digits

x=1000000/3

y=333333

d=x-y

which produces the following results

x = 3.333333333333333e + 05

y = 3.333330000000000e + 05

d = 3.333333333139308e� 01,

• We color the output of the di↵erence in blue and red, where blue indicates
the correct digits of x that remain after subtraction, and red indicates so-
called garbage digits.

• Note that flushing the red digits to 0 would not be more accurate than the
garbage bits that are shown above, as the values of interest would be all
“3”s in this case

• This is an example of cancellation than the garbage bits that are shown
above, as the values of interest would be all “3”s in this case

19



Floating-Point Arithmetic, continued

• Real result may also fail to be representable because exponent is beyond
available range

• Overflow is more serious than underflow because there is no good approxi-
mation to arbitrarily large magnitudes, whereas 0 is often a good approxi-
mation for arbitrarily small magnitudes

• Overflow is generally fatal, whereas underflow may be silently set to 0

20



Resume Here for Lec. 3



Standard Model for Floating Point Arithmetic
x = 1

• Ideally, for x, y 2 F , x flop y = fl(x op y), with op = +, -, / , *.

• This standard met by IEEE.

• Analysis is streamlined using the Standard Model:

fl(x op y) = (x op y)(1 + �), |�|  ✏mach,

which is more conveniently analyzed by backward error analysis.

• For example, with op = +,

fl(x+ y) = (x+ y)(1 + �) = x(1 + �) + y(1 + �).

• With this type of analysis, we can examine, say, floating-point multipli-
cation.

x(1 + �x) · y(1 + �y) = x · y(1 + �x + �y + �x · �y) ⇡ x · y(1 + �x + �y),

which says that our relative error in multiplication is approximately (�x+
�y).



Floating-Point Arithmetic, continued

• Ideally, x flop y = fl(x op y), i.e., floating-point arithmetic operations
produce correctly rounded results

• Computers satisfying IEEE floating-point standard achieve this ideal as long
as x op y is within range of F̂

• Some familiar laws of real arithmetic, however, are not necessarily valid in
floating-point system

• Floating-point addition and multiplication are commutative,
but not associative

• Example: ✏ := 0.9✏M
(1 + ✏) + ✏ = 1

1 + (✏ + ✏) > 1

22



Example: Summing a Series

• Infinite series
1X

n=1

1

n

is divergent, yet evaluates to a finite number in floating-point arithmetic

• Possible explanations

• Partial sum eventually overflows

• 1/n eventually underflows

• Partial sum ceases to change once 1/n become negligible
relative to partial sum

1

n
< ✏M

n�1X

k=1

1

k

• Q: How long would it take to realize failure in FP32? FP64?

21
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Time to Sum

• If Sn :=

nX

k=1

1

k

Sn+1 = Sn +
1

n + 1

= Sn

✓
1 +

1

Sn

1

n + 1

◆

= Sn if

✓
1

Sn

1

n + 1

◆
< ✏M

• (Guess) Estimate Sn ⇡ 100.

• With ✏M ⇡ 10
�16

, summation stops changing when

100 · (n + 1) ⇡ 10
16

=) n ⇡ 10
14,

so need about 10
14

operations.

• Suppose we can sustain 1 GFLOPS = 10
9
op/sec.

• Time =
number of ops

rate
=

1014ops

109ops/sec
= 10

5
seconds ⇡ 30 hours
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Cancellation

• Subtraction between two p-digit numbers having same sign and similar

magnitudes yields a result with fewer than p digits, so it is in principle

exactly representable

• The problem, as we saw in the earlier example, is that we can be left

with just a small number of significant digits in the result

• It is often helpful to make a small correction, when possible, to

avoid cancellation between a pair of numbers that are converging

to the same value

1



Cancellation Example

q Cancellation leads to promotion of garbage into “significant” digits

x = 1 . 0 1 1 0 0 1 0 1 b b g g g g e

y = 1 . 0 1 1 0 0 1 0 1 b0 b0 g g g g e

x� y = 0 . 0 0 0 0 0 0 0 0 b00 b00 g g g g e

= b00 . b00 g g g g ? ? ? ? ? ? ? ? ? e� 9



Cancellation, continued

• Despite exactness of result, cancellation often implies serious

loss of information

• Operands are often uncertain due to rounding or other previous

errors, so relative uncertainty in di↵erence may be large

• Example:

✏ := 0.9✏M
(1 + ✏)� (1� ✏) = 0 in floating point

True result, however, is 2✏

• The issue is that subraction of two quantities of equal sign and

similar magnitude is ill-conditioned

2



Cancellation, continued

• The most significant (leading) digits are lost to cancellation, whereas

digits lost in rounding are least significant

• Because of this e↵ect, it’s generally a bad idea to compute small

quantities as the di↵erence of relatively large quantities

• For example, summing the series

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

for x ⌧ �1 may fail due to cancellation

fp test.m

3



fp_test.m



Example: Quadratic Formula

• Two solutions of ax
2
+ bx + c = 0 are

x =
�b +

p
b2 � 4ac

2a
and x =

�b�
p
b2 � 4ac

2a

• Suppose b < 0 and b
2 � 4ac.

• Evaluation of �b +
p
b2 � 4ac is OK

• Possible cancellation for �b�
p
b2 � 4ac in second solution

5



• Rewrite second solution as

x =
�b�

p
b2 � 4ac

2a
· (�b +

p
b2 � 4ac)

(�b +
p
b2 � 4ac)

=
b
2 � (b

2 � 4ac)

2a · (�b +
p
b2 � 4ac)

=
2c

�b +
p
b2 � 4ac

which avoids the �b�
p
b2 · · · cancellation
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Example: Standard Deviation

• Mean and standard deviation of a sequence:

x̄ =
1

n

nX

i=1

xi and � =

"
1

n� 1

nX

i=1

(xi � x̄)2
#1

2

• Mathematically equivalent formula

� =

"
1

n� 1

 
nX

i=1

x2i � nx̄2
!#1

2

allows “on-the-fly” evaluation of � without two passes through the data

• Single cancellation at end of one-pass formula is more damaging numerically

than all cancellations in two-pass formula combined
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Example: Finite Di↵erences and Truncation/Round-O↵ Error

• Taylor Series:

�f

�x
:=

f (x + h) � f (x)

h| {z }
computable

= f
0
(x)| {z }

desired result

+
h

2
f
00
(⇠)

| {z }
truncation error

• So, expect eabs :=

����f
�x

� df

dx

��� = O(h) �! 0 as h �! 0.

• Assuming f (x) is well-condtioned, computed value of
�f

�x
using standard model is

⌧
�f

�x

�
=

hf (x + h)i � hf (x)i
h

=
f (x + h)(1 + ✏+) � f (x)(1 + ✏0)

h

=
f (x + h) � f (x)

h
+

f (x + h)✏+ � f (x)✏0

h
,

– ✏+, ✏0 random variables of arbitrary sign with magnitude  ✏M .

– This computed expression ignores round-o↵ in x, h, x + h and division.

– Those errors are benign if f is well-conditioned (i.e., ✏M |xf 0
(x)/f | ⌧ 1)
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• Use f (x + h) = f (x) + hf
0
(⇠) to write the first round-o↵ term as:

f (x + h)✏+

h
=

(f (x) + hf
0
(⇠))✏+

h
=

f (x)✏+

h
+ f

0
(⇠)✏+ ⇡ f (x)✏+

h
.

• Round-o↵ error is thus

f (x + h)✏+ � f (x)✏0

h
= f (x)

✏+ � ✏0

h
+ ✏+f

0
(⇠) ⇡ f (x)

✏+ � ✏0

h
= f (x)

✏M

h
R,

where R is a random variable with |R| < 2.

• So, computed approximation is

⌧
�f

�x

�
=

�f

�x
+

✏+ � ✏0

h
f (x) + O(✏+)

⇡ f
0
(x) +

h

2
f
00
(x)

| {z }
TE

+ R
✏M

h
f (x)

| {z }
RE

.

• Notice, crucially, that the units of each term on the right match.

• This is a good way to check your work.
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Finite Di↵erences and Truncation/Round-O↵ Error

• Taylor Series:1

�f

�x
:=

f(x+ h) � f(x)

h| {z }
computable

= f
0(x)| {z }

desired result

+
h

2
f
00(⇠)

| {z }
truncation error

• So, expect eabs :=
��� �f�x � df

dx

��� = O(h) �! 0 as h �! 0.

• Computed value of �f
�x , using standard model,

⌧
�f

�x

�
=

hf(x+ h)i � hf(x)i
h

=
f(x+ h)(1 + ✏+) � f(x)(1 + ✏0)

h

=
f(x+ h) � f(x)

h
+

f(x+ h)✏+ � f(x)✏0
h

,

✏+, ✏0 random variables of arbitrary sign with magnitude  ✏M .

• This computed expression ignores round-o↵ in x, h, x+ h and division.
Can show (by Taylor series expansions) that those errors are benign.

• Use f(x+ h) = f(x) + hf
0(⇠) to write the first round-o↵ term as:

f(x+ h)✏+
h

=
(f(x) + hf

0(⇠))✏+
h

=
f(x)✏+

h
+ f

0(⇠)✏+ ⇡ f(x)✏+
h

.

• So, computed approximation is

⌧
�f

�x

�
=

�f

�x
+

✏+ � ✏0

h
f(x) + O(✏+) ⇡ f

0(x) +
h

2
f
00(⇠) +R

✏M

h
f(x).

where |R| < 2.

1Assuming f , f 0 and f 00 bounded on [x, x+ h].

Finite Di↵erences and Truncation/Round-O↵ Error
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Review/Summary of a Couple of Topics

• Floating-Point representation summary

• Equivalence of vector norms
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Summary: Binary Representations

Representations (normalized, unless otherwise indicated):

bfloat16
8 bit exponent

7 bit fraction ✏M = 2
�7 ⇡ .008

OFL ⇡ 10
38

UFL ⇡ 10
�38

minval denorm ⇡ 10
�40

IEEE half-precision 16-bit float
5 bit exponent

10 bit fraction ✏M = 2
�10 ⇡ 10

�3

OFL ⇡ 65504

UFL ⇡ 10
�4

minval denorm ⇡ 10
�7

IEEE 754 single-precision 32-bit float
8 bit exponent

23 bit fraction ✏M = 2
�23 ⇡ 10

�7

OFL ⇡ 10
38

UFL ⇡ 10
�38

minval denorm ⇡ 10
�45

IEEE 754 double-precision 64-bit float
11 bit exponent

52 bit fraction ✏M = 2
�52 ⇡ 10

�16

OFL ⇡ 10
308

UFL ⇡ 10
�308

minval denorm ⇡ 10
�324
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308

UFL ⇡ 10
�308

minval denorm ⇡ 10
�324

1

• dnorms are rather superfluous in 64-bit and can slow arithmetic 
operations by 1000x if implemented in software

• In lower precision, however, they can significantly extend the dynamic 
and potentially valuable if implement in hardware 



Much Ado about (almost) Nothing

• Remarkably, there is conflicting information about what value, exactly, is

recognized as machine precision, ✏M .

• With round-to-nearest, ✏M is technically 2
�53 ⇡ 10

�16
in IEEE FP64.

• Matlab and numpy, however, they indicate ✏M = 2
�52 ⇡ 2⇥ 10

�16

• The following from Wikipedia clarifies the ambiguity

2
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Review: Vector Norms Example

• Unit sphere in two dimensions for k · k
1
, k · k

2
, and k · k1 norms

• For indicated vector x = [�1.6 1.2]T , norms are

kxk
1
= 2.8, kxk

2
= 2.0, kxk1 = 1.6

3

1-norm = 1

2-norm = 1



Norm Equivalence Review

• For any x 2 lRn, kxk
1
� kxk

2
� kxk1

• We also have

kxk
1


p
nkxk

2
, kxk

2


p
nkxk1, kxk

1
 nkxk1

• Thus norms di↵er by at most a constant and are hence equivalent.

• If one is small, they all must be proportionally small.

• More generally, for any pair of vector norms, k · k� and k · k⇤, with n
fixed, we have positive constants c and C (which depend on n), such that

c kxk�  kxk⇤  C kxk�
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• Hint:  Consider x = [ 1  1 … 1 ]T


