
Chapter 3: Linear Least Squares

Outline:

0. Introduction to Projection

1. Least Squares Data Fitting

2. Existence, Uniqueness, and Conditioning

3. Solving Linear Least Squares Problems
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R(A)

b

r

y = Ax 2 R(A)

• b = r + Ax 62 R(A)

• y = Ax – projection of b onto R(A)

• r = b � Ax – residual vector, ? R(A)

Projection, r ? R(A), happens only for a very special choice of x.
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R(A)

b

r

y = Ax 2 R(A)

• b = r + Ax

• r = b � Ax – residual vector

• y 2 R(A) – projection

Minimize ||r||2 =
⇥Pm

i=1(bi � yi)2
⇤ 1

2

A by := ⇡x

• To proceed, we assume bi represents a function at time points ti, which

we are trying to model.

• We select basis functions, e.g., �j(t) = t
j�1

would span the space of

polynomials of up to degree m� 1.

(This might not be the best basis for the polynomials...)

• We then set {aj}i = �j(ti) for each column j = 1, . . . , n.

• We then solve the linear least squares problem: min ||b� Ax||2

• Once we have the xjs, we can reconstruction the smooth function:

y(t) =

nX

j=1

�j(t)xj

.

• matlab example

Given b 2 lR
m
, with m > n, find:

y := Ax = a1x1 + a2x2 + · · ·+ anxn ⇡ b

r := b� Ax = b� y

Least squares:

Minimize ||r||2 =
⇥Pm

i=1(bi � yi)
2
⇤ 1

2

y is a linear combination of the columns of A:

y := Ax = a1x1 + a2x2 + · · ·+ anxn ⇡ b

r := b� Ax = b� y



Projection

XXXXXXXXXXXXXXXXXXXX

��������������XXXXXXXXXXXXXXXXXXXX

��������������
⌘

⌘
⌘

⌘
⌘
⌘

⌘
⌘
⌘

⌘
⌘
⌘

⌘⌘3

O -

6

R(A)

b

r

y = Ax 2 R(A)

• b = r + Ax

• r = b � Ax – residual vector

• y 2 R(A) – projection
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R(A)

b

r

y = Ax 2 R(A)

• b = r + Ax

• r = b � Ax – residual vector

• y 2 R(A) – projection

• With m > n, we have:

– A = m⇥ n matrix

– b, y 2 lR
m

– x 2 lR
n

– coe�cient set (“model coe�cients”)

– y =

mX

j=1

ajxj – best approximation (in least-squares sense)

– aj – model or model basis (user-prescribed)

• Remarkably, this chapter focuses on finding x,

x = argmin

x02lRn
kb� Ax0k2,

not on choice of columns of A.

• Both are important.



Method of Least Squares

• Measurement errors are inevitable in observational and experimental sciences

• Errors can be smoothed out by averaging over many cases, i.e., taking more

measurements than are strictly necessary to determine parameters of system

• Resulting system is overdetermined, so usually there is no exact solution

• E↵ectively, high-dimensional data are projected onto a low-dimensional space

to suppress irrelevant detail

• Such projection is conveniently accomplished by the method of least squares
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ti fi
 0.036650  0.960495
 0.218031  0.939770
 0.405460  1.213982
 0.593674  1.156828
 0.832617  1.636737
 0.956528  2.425123
 1.163127  2.791084
 1.410997  4.451842
 1.553994  5.522619
 1.826442  8.519962

Nonlinear vs. Linear Least Squares

• Starting with some data, fi, taken at timepoints (say), ti, i = 1, . . . ,m, we might have
some physical insight that says we expect f behaves as an exponential in time, such as

f (t) = ↵ + �e�t.

• Such a model is nonlinear in at least one of the unknown model parameters (↵, �, �),
which makes this a nonlinear least squares problem, to be studied in Chapter 6.
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ti fi
 0.036650  0.960495
 0.218031  0.939770
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Linear Least Squares

• Alternatively, we can consider a model in which the dependency of f (t) is linear in the

unknown basis coe�cients (i.e., model parameters).

• An example is the polynomial in t given by

f (t) = x0 + x1t + x2t
2
+ x3t

3
+ x4t

4

• In this example, we have ten data points (ti, fi), i = 1, . . . ,m (m = 10) and only five

unknown model parameters, xj, j = 0, . . . , n� 1, with n = 5.
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Linear Least Squares Example

• To set up the LLSQ (linear least-squares) system, evaluate the basis functions (here, tj)
at timepoints ti, i = 1, . . . ,m and write down the system we’d like to solve (approximately)

• So, for our polynomial model we’d have

x0 · 1 + x1 · ti + x2 · t2i + x3 · t3i + x4 · t4i ⇡ fi, i = 1, . . . ,m

• For j = 0, . . . , 4, define the jth column of the system matrix A as tji .

• The resultant system with unknown model coe�cients x = [x0, x1, . . . , x4]T is,

y = Ax =

2

666666664

1 t1 t21 · · · t41

1 t2 t22 · · · t42
... ... ... ...
... ... ... ...

1 tm t2m · · · t4m

3

777777775

2

666664

x0

x1
...

x4

3

777775

| {z }
model: y = Ax 2 lP4(ti)

⇡

2

666666664

b1

b1
...
...

bm

3

777777775

| {z }
data

• Then the LLSQ system is Ax ⇡ b, with data vector b = [b1, b2, . . . , bm]T

1



Linear Least Squares Example, continued

• When the basis functions are monomials (i.e., tj), A is known as a Vandermonde matrix.

• We could also consider a system based on Chebyshev polynomials, defined recursively as

T0(⇠) = 1, T1(⇠) = ⇠, Tk(⇠) = 2⇠Tk�1(⇠)� Tk�2(⇠), k � 2

• Chebyshev polynomials are orthogonal with respect to a weighted inner product on [-1,1].
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• For our example, shift t 2 [0, 2] to [�1, 1] by defining ⇠ = t� 1.

• With T̃ k(t) := Tk(t� 1), define the new system as

y = Ãx̃ =

2

666666664

1 T̃ 1(t1) T̃ 2(t1) · · · T̃ 4(t1)

1 T̃ 1(t2) T̃ 2(t2) · · · T̃ 4(t2)
... ... ... ...
... ... ... ...

1 T̃ 1(tm) T̃ 2(tm) · · · T̃ 4(tm)

3

777777775

2

666664

x̃0

x̃1
...

x̃4

3

777775

| {z }
model: y = Ãx̃ 2 lP4(ti)

⇡

2

666666664

b1

b1
...
...

bm

3

777777775

| {z }
data

• Advantage of this approach is that Ã generally has a lower condition number than A
because columns of Ã are “close” to being orthogonal

• In exact arithmetic, both systems should return the same projection, y.

• They could di↵er, however, because of potential ill-conditioning of the Vandermonde matrix
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demo4/lsq2_test.m





Solving the Linear Least Squares System

• Here, we have an overdetermined linear system,

Ax ⇡ b

with an m⇥ n matrix, A, m > n.

• We have more equations than we do unknowns and in general cannot hope to

solve all of them.

• The least squares idea is to find x such that we minimizes the Euclidean

norm of the residual vector, r = b�Ax,

min
x

krk22 = min
x

kb�Axk22

• As mentioned earlier, minimizing the 2-norm is equivalent to finding an orthogonal

projection, which is in fact the way we typically formulate and solve the LLSQ systems.

• Let’s proceed with formulating the question as a minimization problem.
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Residual Minimization

• Consider LLSQ Ax ⇡ b and associated objective function, �(x) := kb�Axk22.
Assume that A has full rank. Does this always have a solution?

• Yes. � � 0, � �! 1 as kxk �! 1, � is continuous, =) � has a mininum.

• Is it always unique? Yes (again, assuming full rank)

• What happens if A does not have full rank? Then there is a nullspace such that An = 0

for any vector n in the nullspace. Thus, if x is a solution, then kb�A(x+n)k2 = kb�Axk2

• Note that the projection, y = A(x + n) = Ax, is unchanged (i.e., it is unique)
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Residual Minimization, continued

• To find the minimize, x, evaluate the objective function and its gradient:

�(x) = krk22 = kb� yk22 = kb�Axk22

= (b�Ax)
T
(b�Ax)

= b
T
b � x

T
Ab � b

T
Ax| {z }

xTAb

+x
T
A

T
Ax

• Minimum where gradient � = 0:

[r�]
k
:=

@�

@xk
= 0, k = 1, . . . , n

6



• Di↵erentiate term-by-term

@

@xk
b
T
b = 0

@

@xk
x
T
A

T
b =

@

@xk
x
T
c =

@

@xk

nX

j=1

xjcj = ck, c := A
T
b

@

@xk
x
T
A

T
Ax =

@

@xk
x
T
Hx =

@

@xk

nX

i=1

nX

j=1

xiHijxj H := A
T
A

=

nX

j=1

Hkjxj +

nX

i=1

xiHik

| {z }Pn
j=1Hkjxj

Hij = Hji

= 2

nX

j=1

Hkjxj
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Normal Equations

• Combining the results,

0 = 2
⇥
A

T
Ax � A

T
b
⇤
k
, k = 1, . . . , n

0 = A
T
Ax � A

T
b

• Thus, r�(x) = 0 yields the Normal Equation

A
T
Ax = A

T
b

• Solution is

x =
�
A

T
A
��1

A
T
b

What is the shape of A
T
A?

• Does it always have an inverse?

• Yes., if A is full rank. In this case, A
T
A is SPD but not necessarily well-conditioned.
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Pseudoinverse and Condition Number

• Nonsquare m⇥ n matrix A has no inverse in usual sense

• If rank(A)=n, pseudoinverse is defined by

A
+

=
�
A

T
A
��1

A
T

and condition number by

cond(A) = kATk2 · kA+k2

• By convention, cond(A) = 1 if rank(A) < n

• Just as condition number of a square matrix measures closeness to singularity, condition

number of a rectangular matrix measures closeness to rank deficiency

• Least squares solution of Ax ⇡ b is given by x = A
+
b

9



Sensitivity and Conditioning

• Sensitivity of LLSQ Ax ⇡ b depends on b as well as A.

• Define ✓ as angle between b and y = Ax by

cos(✓) =
kyk2
kbk2|

=
kAxk2
kbk2|

• Bound on perturbation �x due to perturbation �b is given by

k�xk2
kxk2|

 cond(A)
1

cos(✓)

k�bk2
kbk2|

3



Chapter 3: Linear Least Squares

�y = A�x ⇡ �b, if �b 2 R(A)

k�xk  kA†k k�bk

kyk = kAxk = cos ✓ kbk

=) 1 =
kAxk

cos ✓ kbk

k�xk  kA†k k�bk kAxk
cos ✓ kbk

k�xk
kxk  kA†kkAk k�bk

cos ✓ kbk

= cond(A)
1

cos ✓

k�bk
kbk
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Mathematics & Geometry
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Least Squares Viewed as Orthogonal Projection

• Recall our earlier picture.

• Geometrically, we have (b� y) ? A () (b� y) ? aj j = 1, . . . , n.

• In matrix form,

A
T (b� y) = 0

A
T
y = A

T
b

A
T
Ax = A

T
b

• Normal equations!

1
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Least Squares Viewed as Orthogonal Projection

• Note that

x = (A
T
A)

�1
A

T
b

u = A(A
T
A)

�1
A

T
b = Pb

• Here, we define P = A(A
T
A)

�1
A

T
as the orthogonal projector onto the

column space of A (i.e., R(A))

• Note that P = P
2
, which is an intrinsic property of square projection matrices.

• To illustrate,

P
2
=

�
A(A

T
A)

�1
A

T
�
·
�
A(A

T
A)

�1
A

T
�

= A(A
T
A)

�1
(A

T
A)(A

T
A)

�1
A

T

= A(A
T
A)

�1
A

T
= P

• Geometrically, P
2
= P simply says that once b has been projected onto R(A),

the projection of the result (y) is unchanged.

• If P = P
T
we refer to P as an orthogonal projector
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1D Projection

• Consider the 1D subspace of lR
2
spanned by a1:

↵a1 2 span{a1}.

• The projection of a point b 2 lR
2
onto span{a1} is the point on

the line y = ↵a1 that is closest to b.

• To find the projection, we look for the value ↵ that minimizes

||r|| = ||↵a1 � b|| in the 2-norm. (Other norms are also possible.)

a1

↵a1
b

b� ↵a1

a1

y = ↵a1

b

r = b� ↵a1

With m > n, we have:

• Lots of data (b 2 lR
m
)

• A few model parameters (x1, x2, . . . , xn)

• A few candidate basis vectors (a1, a2, . . . , an)

• Our estimate is y = Ax

The matrix A is tall and thin.

y = A x ⇡ b

y 2 span{a1}

y = projection of b onto span{a1}

With m > n, we have:

• Lots of data (b 2 lR
m
)

• A few model parameters (x1, x2, . . . , xn)

• A few candidate basis vectors (a1, a2, . . . , an)

• Our estimate is y = Ax

The matrix A is tall and thin.

y = A x ⇡ b

y 2 span{a1}

y = projection of b onto span{a1}



1D Projection

• Minimizing the square of the residual with respect to ↵, we have

d

d↵
krk2 =

d

d↵
kb� ↵a1k2

=
d

d↵

h
(b � ↵a1)

T (b � ↵a1)
i

=
d

d↵

⇥
b
T
b + ↵

2
a
T
1 a1 � 2↵ a

T
1 b

⇤

= 2↵ a
T
1 a1 � 2 aT1 b = 0

• For this to be a minimum, we require the last expression to be
zero, which implies

↵ =
a
T
1 b

a
T
1 a1

, =) y = ↵a1 =
a
T
1 b

a
T
1 a1

a1.

• We see that y points in the direction of a1 and has magnitude that
scales as b (but not with a1).

• Note also that the denominator aT1 a1 > 0 unless a1 = 0.



Examples

• Find the projection of b onto R(A) for the following cases.

A =


1
0

�
, b =

✓
3
4

◆

A =


2
0

�
, b =

✓
3
4

◆

A =


0
2

�
, b =

✓
30
40

◆

A =


3
4

�
, b =

✓
30
40

◆

A =


3
4

�
, b =

✓
10
0

◆



Projection via QR factorization
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R(A) = R(Q)

b

r

y = Ax = QRx

• Find matrix Q whose columns span R(A) such that qi ? qj

(columns are orthogonal).

• Normalize each qj to have unit length such that qT
i qj = �ij.

• Q is referred to as an orthogonal matrix: Q
T
Q = I.

• R will be square upper triangular and invertible if columns of A

are linearly independent.

Projection, r ? R(A), happens only for a very special choice of x.



Example

q Suppose we have observational data, { bi }  at some independent 
times { ti }  (red circles).

q The ti s do not need to be sorted and can in fact be repeated.

q We wish to fit a smooth model (blue curve) to the data so we can 
compactly describe (and perhaps integrate or differentiate) the 
functional relationship between b(t) and t.



Example



Matlab Example – Normal Eqn (bad) Approach
% Linear Least Squares Demo

degree=3; m=20; n=degree+1;

t=3*(rand(m,1)-0.5);
b = t.^3 - t; b=b+0.2*rand(m,1); %% Expect:  x =~ [ 0 -1  0 1 ]

plot(t,b,'ro'), pause

%%% DEFINE a_ij = phi_j(t_i)

A=zeros(m,n); for j=1:n; A(:,j) = t.^(j-1); end;

A0=A; b0=b;  % Save A & b.

%%%%  SOLVE LEAST SQUARES PROBLEM via Normal Equations &&&&

x = (A'*A) \ A'*b

plot(t,b0,'ro',t,A0*x,'bo',t,1*(b0-A0*x),'kx'), pause
plot(t,A0*x,'bo'), pause

%% CONSTRUCT SMOOTH APPROXIMATION

tt=(0:100)'/100; tt=min(t) + (max(t)-min(t))*tt;
S=zeros(101,n); for k=1:n; S(:,k) = tt.^(k-1); end;
s=S*x;

plot(t,b0,'ro',tt,s,'b-')
title('Least Squares Model Fitting to Cubic')
xlabel('Independent Variable, t')
ylabel('Dependent Variable b_i and y(t)')



Normal Equations Method

• If m⇥ n matrix A has rank n, then symmetric n⇥ n matrix
ATA is positive definite, so can use Cholesky factorization,

ATA = LLT

to obtain solution x to system of normal equations,

ATAx = ATb

which gives the solution to the LLSQ problem Ax ⇡ b

• Normal equations approach involves transformations

rectangular �! square �! triangular

1



Normal Equations Example

• Consider trying to fit a 4th-order polynomial of the form y(t) = a+bt2+ct4

to a semi-circle on [-1,1].

• Here, we leverage the fact that the semi-circle has even symmetry so we do

not need the linear or cubic terms in our polynomial expansion.

• The columns of A are therefore a1 = 1, a2 = [t2i ], and a3 = [t4i ], evaluated
at ti = [�1 �

p
3/2 �

p
2/2 0

p
2/2

p
3/2 1]

A =

2

66666664

1.0000 1.0000 1.0000
1.0000 0.7500 0.5625
1.0000 0.5000 0.2500
1.0000 0.2500 0.0625
1.0000 0 0
1.0000 0.2500 0.0625
1.0000 0.5000 0.2500
1.0000 0.7500 0.5625
1.0000 1.0000 1.0000

3

77777775

ATA =

2

4
9.000 5.000 3.750

5.000 3.750 3.125

3.750 3.125 2.766

3

5 = LLT

L =

2

4
3.000 0 0

1.667 0.987 0

1.250 1.056 0.295

3

5

2



Normal Equations Example

• Solving lower triangular system Lz = ATb with forward substitution yields

z = [1.7154 -0.9827 -0.2774]
T

• Solving upper triangular system LTx = z with backward substitution yields
x = [ 0.957585 0.010732 -0.940176 ]

T

• We can the plot the model y which has the same number of entries as b.
However, we can also plot a finely sampled model, y(tf), because y(t) is
continuous in t.

3



Shortcomings of the Normal Equations

• Information can be lost in forming ATA and ATb

• For example, consider, for 0 < ✏ <
p
✏M ,

A =

2

4
1 1

✏ 0

0 ✏

3

5

• In floating point arithmetic the SPD matrix ATA evaluates

to a singular system

ATA =


1 + ✏2 1

1 1 + ✏2

�
=


1 1

1 1

�

• Sensitivity is also worsened since, in general,

cond(ATA) = [cond(A)]
2

4



q Avoid normal equations:

qATA x  = ATb

q Instead, orthogonalize columns of A = QR

q Columns of Q are orthonormal à QTQ = I
q R is upper triangular
q Rx  = QTQRx = QTb

q QT ( Ax – b) = 0



Projection, QR Factorization, Gram-Schmidt

• Recall our linear least squares problem:

y = Ax ⇡ b,

which is equivalent to minimization / orthogonal projection:

r := b � Ax ? R(A)

||r||2 = ||b � y||2  ||b � v||2 8v 2 R(A).

• This problem has solutions

x =
�
A

T
A
��1

A
T
b

y = A
�
A

T
A
��1

A
T
b = P b,

where P := A
�
A

T
A
��1

A
T is the orthogonal projector onto R(A).



Observations

�
A

T
A
�
x = A

T
b =

0

BBBBBBB@

a
T
1 b

a
T
2 b

...

a
T
nb

1

CCCCCCCA

�
A

T
A
�

=

0

BBBBBBB@

a
T
1 a1 a

T
1 a2 · · · a

T
1 an

a
T
2 a1 a

T
2 a2 · · · a

T
2 an

...
...

a
T
na1 a

T
na2 · · · a

T
nan

1

CCCCCCCA

.



Orthogonal Bases

• If the columns of A were orthogonal, such that aij = a
T
i aj = 0 for i 6= j,

then A
T
A is a diagonal matrix,

�
A

T
A
�

=

0

BBBBBBB@

a
T
1 a1

a
T
2 a2

. . .

a
T
nan

1

CCCCCCCA

,

and the system is easily solved,

x =
�
A

T
A
��1

A
T
b =

0

BBBBBBB@

1
aT1 a1

1
aT2 a2

. . .

1
aTnan

1

CCCCCCCA

0

BBBBBBB@

a
T
1 b

a
T
2 b

...

a
T
nb

1

CCCCCCCA

.

• In this case, we can write the projection in closed form:

y =
nX

j=1

xj aj =
nX

j=1

a
T
j b

aTj aj
aj . (1)

• For orthogonal bases, (1) is the projection of b onto span{a1, a2, . . . , an}.



Orthonormal Bases

• If the columns are orthogonal and normalized such that ||aj|| = 1,
we then have a

T
j aj = 1, or more generally

a
T
i aj = �ij, with �ij :=

(
1, i = j

0, i 6= j
the Kronecker delta,

• In this case, AT
A = I and the orthogonal projection is given by

y = AA
T
b =

nX

j=1

aj

�
a
T
j b

�
.

Example: Suppose our model fit is based on sine functions,
sampled uniformly on [0, ⇡]:

�j(t) = sin j ti , ti = ⇡ i/m, i = 1, . . . ,m.

In this case,

A = ( �1(ti) �2(ti) · · · �n(ti) ) ,

A
T
A =

n

2
I.



Stop Here



QR Factorization

• Generally, we don’t a priori have orthonormal bases.

• We can construct them, however. The process is referred to as QR

factorization.

• We seek factors Q and R such that QR = A with Q orthogonal (or,
unitary, in the complex case).

• There are two cases of interest:

Reduced QR

Q1

R

= A

Full QR

Q

R

O
= A

• Note that

A = Q


R

O

�
=

⇥
Q1 Q2

⇤  R

O

�
= Q1R.

• The columns of Q1 form an orthonormal basis for R(A).

• The columns of Q2 form an orthonormal basis for R(A)?.



QR Factorization: Gram-Schmidt

• We’ll look at three approaches to QR:

– Gram-Schmidt Orthogonalization,

– Householder Transformations, and

– Givens Rotations

• We start with Gram-Schmidt - which is most intuitive.

• We are interested in generating orthogonal subspaces that match the
nested column spaces of A,

span{ a1 } = span{q1 }

span{ a1, a2 } = span{q1, q2 }

span{ a1, a2, a3 } = span{q1, q2, q3 }

span{ a1, a2, . . . , an } = span{q1, q2, . . . , qn }

…but maybe not 
the most stable



QR Factorization: Gram-Schmidt

• It’s clear that the conditions

span{ a1 } = span{q1 }

span{ a1, a2 } = span{q1, q2 }

span{ a1, a2, a3 } = span{q1, q2, q3 }

span{ a1, a2, . . . , an } = span{q1, q2, . . . , qn }

are equivalent to the equations

a1 = q1 r11

a2 = q1 r12 + q2 r22

a3 = q1 r13 + q2 r23 + q3 r33

... =
... + · · ·

an = q1 r1n + q2 r2n + · · · + qn rnn

i.e., A = QR

(For now, we drop the distinction between Q and Q1, and focus only on
the reduced QR problem.)



Gram-Schmidt Orthogonalization

• The preceding relationship suggests the first algorithm.

Let Qk�1 := [q1 q2 . . .qk�1] , Pk�1 := Qk�1Q
T
k�1, P?,k�1 := I � Pk�1.

for k = 2, . . . , n� 1

vk = ak � Pk�1 ak = (I � Pk�1) ak = P?,k�1 ak

qk =
vk

||vk||
=

P?,k�1ak

||P?,k�1ak||
end

• This is Gram-Schmidt orthogonalization.

• Each new vector qk starts with ak and subtracts o↵ the projection onto
R(Qk�1), followed by normalization.

Orthogonal Projector onto 
R(q1…qk-1)= R(a1…ak-1)



Classical Gram-Schmidt Orthogonalization

XXXXXXXXXXXXXXXXXXXX
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qT
1 a3

qT
1 q1

+ q2
qT
2 a3

qT
2 q2

= q1q
T
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T
2 a3

In general, if Qk is an orthogonal matrix, then
Pk = QkQT

k is an orthogonal projector onto R(Qk)
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a3

r33q3 = a3 � P2a3

P2a3

P2a3 = Q2Q
T
2 a3

= q1
qT
1 a3

qT
1 q1

+ q2
qT
2 a3

qT
2 q2

= q1q
T
1 a3 + q2q

T
2 a3

In general, if Qk is an orthogonal matrix, then
Pk = QkQT

k is an orthogonal projector onto R(Qk)

Let: Ak := [a1 · · · ak]

Qk := [q1 · · ·qk]



Gram-Schmidt: Classical vs. Modified

• We take a closer look at the projection step, vk = ak � Pk�1 ak.

• The classical (unstable) GS projection is executed as

vk = ak

for j = 1, . . . , k � 1,

vk = vk � qj

�
q
T
j ak

�

end

• The modified GS projection is executed as

vk = ak

for j = 1, . . . , k � 1,

vk = vk � qj

�
q
T
j vk

�

end



Mathematical Di↵erence Between CGS and MGS

• Let P̃?,k, := I � qkq
T
k

• The CGS projection step amounts to

vk =
⇣
P̃?,k�1 P̃?,k�2 · · · P̃?,1

⌘
ak

=
⇣
I � P̃1 � P̃2 � · · · � P̃k�1

⌘
ak

= ak � P̃1ak � P̃2ak � · · · � P̃k�1ak

= ak �
k�1X

j=1

P̃j ak.

• The MGS projection step is equivalent to

vk = P̃?,k�1

⇣
P̃?,k�2

⇣
· · ·

⇣
P̃?,1 ak

⌘
· · ·

⌘⌘

=
⇣
I � P̃k�1

⌘ ⇣
I � P̃k�2

⌘
· · ·

⇣
I � P̃1

⌘
ak

=
k�1Y

j=1

⇣
I � P̃j

⌘
ak



Mathematical Di↵erence Between CGS and MGS

• Lack of associativity in floating point arithmetic drives the di↵erence
between CGS and MGS.

• Conceptually, MGS projects the residual, rk := ak � Pk�1ak.

• As we shall see, neither GS nor MGS are as robust as
Householder transformations.

• Both, however, can be cleaned up with a second-pass through the
orthogonalization process. (Just set A = Q and repeat, once.)



CGS: Classical Gram-Schmidt Orthogonalization

• The CGS algorithm proceeds as follows

for k = 1 to n
qk = ak

for j = 1 to k � 1
rjk = q

T
j ak

qk = qk � qjrjk (project qk onto Q?
k�1)

end
rkk = kqkk2
qk = qk/rkk

end

• Resulting qk and rjk yield reduced QR factorization of A

1



Pros/Cons of Classical Gram-Schmidt

• The CGS algorithm can su↵er loss of orthogonality in finite precision.

• Nominally requires separate storage for A and Q (but this likely can be
avoided)

• These deficiencies can be addressed with modified Gram-Schmidt, which
also allows column pivoting (Bjork)

• We will see, however, that other factors can come into play in the CGS/MGS
evaluation

2



MGS: Modified Gram-Schmidt Orthogonalization

• The MGS algorithm proceeds as follows

for k = 1 to n
qk = ak

for j = 1 to k � 1
rjk = q

T
j qk

qk = qk � qjrjk (project qk onto Q?
k�1)

end
rkk = kqkk2
qk = qk/rkk

end

• Resulting qk and rjk yield reduced QR factorization of A

3



CGS/MGS Algorithm Comparison

CGS:

for k = 1 to n
qk = ak

for j = 1 to k � 1

rjk = q
T
j ak

qk = qk � qjrjk (project qk onto Q
?
k�1)

end

rkk = kqkk2
qk = qk/rkk

end

MGS:

for k = 1 to n
qk = ak

for j = 1 to k � 1

rjk = q
T
j qk

qk = qk � qjrjk (project qk onto Q
?
k�1)

end

rkk = kqkk2
qk = qk/rkk

end

7

CGS/MGS Algorithm Comparison

CGS:

for k = 1 to n
qk = ak

for j = 1 to k � 1

rjk = q
T
j ak

qk = qk � qjrjk (project qk onto Q
?
k�1)

end

rkk = kqkk2
qk = qk/rkk

end

MGS:

for k = 1 to n
qk = ak

for j = 1 to k � 1

rjk = q
T
j qk

qk = qk � qjrjk (project qk onto Q
?
k�1)

end

rkk = kqkk2
qk = qk/rkk

end

7

CGS/MGS Code Comparison

• MGS computes the projection (I � Qk�1Q
T
k�1)ak based on successive re-

moval of components in directions qj, j = 1, . . . , k � 1.

• CGS uses a static projection, with coe�cents based only on q
T
j ak

8

CGS/MGS Code Comparison

• CGS uses a static projection, with coe�cents based only on q
T
j ak

• MGS computes the projection (I�Qk�1Q
T
k�1)ak based on successive

removal of components in directions qj, j = 1, . . . , k � 1.

8



CGS/MGS Comparison

• Here we consider an example with

the Vandermonde matrix for

t 2 [0 : 29] up to polynomial order 9

• As a consequence, cond(A) ⇡ 10
13
,

which stresses the orthogonalization

process in QR factorization

4

demo5/
• cgs_mgs.m
• cgs2 - two-pass
• cg2



Two-Pass Classical Gram-Schmidt

• A significant advantage of CGS is that the coe�cients rjk = q
T
j ak, j =

1, . . . , k � 1, can be computed all at once, which is important in parallel

computing because dot-products (or any vector reduction, lR
n �! lR)

require global communication which typically has a communication cost

tcomm ⇡ 2↵ log2 P

↵ = communication latency ⇡ 4µs

P = number of processes ⇡ 10
3
–10

7

• With MGS, need k � 1 communications for k = 2 : n

• With CGS, need one communication of length k � 1 for k = 2 : n

MGS comm cost ⇡ n2↵ log2 P

CGS comm cost ⇡ n↵ log2 P

5



Two-Pass Classical Gram-Schmidt

• Two-pass CGS is accurate and potentially less expensive than MGS

• The idea is to re-orthogonalize the columns of Q with a second pass of the

algorithm.

• If Q1R1 = A is the CGS-based QR factorization of the first pass, we gen-

erate a second factorization Q2R2 = Q1

• In this case, the starting point is the well-conditioned matrix of column

vectors Q1 which span the column space of A, as is also true for Q2.

• The full QR factorization of A is then

A = Q1R1 = Q2R2R1| {z }
R

• Note that cond(R2) ⇡ 1, so computation of R = R2R1 does not introduce

additional error

• It turns out that only one additional pass is needed.

6



Two-Pass Classical Gram-Schmidt

• Two-pass CGS is accurate and potentially less expensive than MGS

• The idea is to re-orthogonalize the columns of Q with a second pass of the

algorithm.

• If Q1R1 = A is the CGS-based QR factorization of the first pass, we gen-

erate a second factorization Q2R2 = Q1

• In this case, the starting point is the well-conditioned matrix of column

vectors Q1 which span the column space of A, as is also true for Q2.

• The full QR factorization of A is then

A = Q1R1 = Q2R2R1| {z }
R

• Note that cond(R2) ⇡ 1, so computation of R = R2R1 does not introduce
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• It turns out that only one additional pass is needed.

6



Classical & Modified GS:  Notes



Classical & Modified GS:  Notes



Householder Transformations:  Notes



Using Orthogonal Transformations

• We’ve seen how we can use CGS/MGS QR factorizations to transform the

LLSQ problem into triangular form.

• Here we take a di↵erent approach for Householder reflections and Givens

rotations that o↵er alternative cost/benefits

• We seek numerically robust transformations that produce an easier prob-

lem without changing the solution.

• As with LU factorization, we’ll look for a sequence of elementary transfor-

mation that yield an upper triangular form (R), but instead of a companion

lower triangular matrix, we have an orthogonal matrix (Q) and the sequence

of transformations will be norm preserving

• We use square orthogonal matrices Q satisfying QQ
T
= Q

T
Q = I.

• These preserve the Euclidean norm

kQvk22 = (Qv)
T
Qv = v

T
Q

T
Qv = v

T
v = kvk22

• Multiplying both sides of LLSQ problem does not change its solution

1



Orthogonal Transformations

• Note that if Q is a square orthogonal matrix, then Q
T
is

also an orthogonal matrix

Q
T
Q = I

QQ
T
Q = Q

�
QQ

T
�
Q = Q

• QQ
T
= I

• krk2 = kQrk2 = kQT
rk2

2



Using Orthogonal Transformations

• We’ve seen how we can use CGS/MGS QR factorizations to transform the

LLSQ problem into triangular form.

• Here we take a di↵erent approach for Householder reflections and Givens

rotations that o↵er alternative cost/benefits

• We seek numerically robust transformations that produce an easier prob-

lem without changing the solution.

• As with LU factorization, we’ll look for a sequence of elementary transfor-

mation that yield an upper triangular form (R), but instead of a companion

lower triangular matrix, we have an orthogonal matrix (Q) and the sequence

of transformations will be norm preserving

• We use square orthogonal matrices Q satisfying QQ
T
= Q

T
Q = I.

• These preserve the Euclidean norm

kQvk22 = (Qv)
T
Qv = v

T
Q

T
Qv = v

T
v = kvk22

• Multiplying both sides of LLSQ by Q does not change its solution

1



Orthogonal Transformations

• Note that if Q is a square orthogonal matrix, then Q
T
is

also an orthogonal matrix

Q
T
Q = I

QQ
T
Q = Q

�
QQ

T
�
Q = Q

• QQ
T
= I

• krk2 = kQrk2 = kQT
rk2

2



Orthogonal Transformations

• For our LLSQ problems, we have been working with m⇥ n matrix A and

the corresponding (nonsquare) matrix “Q” which we will (for now) denote

as Q1.

• With m > n, we consider the partition of the orthogonal m⇥m matrix Q,

Q = [Q1Q2]

where Q1 is m⇥ n and R(Q1) = R(A) and R(Q2) ? R(Q1)

• Consider application of Q
T
to the residual, r:

Q
T
r = Q

T
(b�Ax) = [Q1Q2]

T
(b�Ax) =

"
Q

T
1 (b�Ax)

Q
T
2 (b�Ax)

#

| {z }
a vector

=


Q

T
1b�Rx

Q
T
2b� 0

�
=

"
0

Q
T
2b

#

3



Triangular LLSQ

• Consider a LLSQ problem with R being n⇥ n upper triangular,


R

O

�
⇡


b1

b2

�

• Residual is

krk22 = kb1 � Rxk22 + kb2k22
• No control over kb2k22 term, bust first term becomes zero if x satisfies n⇥n
triangular system

Rx = b1

• Resulting x is least squares solution and minimum sum of squares is

krk22 = kb2k22

4



Orthogonal Bases

• Consider full QR,

A = Q


R

O

�
= [Q1 Q2]


R

O

�
= Q1R

• Q1R is the reduced (or “economy”) QR factorization of A

• Columns of Q1 are orthonoromal basis for R(A), and columns

of Q2 are orthonoromal basis for R?
(A)

• Q1Q
T
1 is orthogonal projector onto R(A)

• Solution to LLSQ Ax ⇡ b is sollution to square system

Q
T
1Ax = Q

T
1Q1Rx = Rx = c1 = Q

T
1b,

as we’ve seen before.

• Generally, we will use the reduced QR as it is significantly less

expensive than full QR

5



QR for Solving Least Squares

• Start withAx ⇡ b

Q


R

O

�
x ⇡ b

Q
T
Q


R

O

�
x =


R

O

�
x ⇡ Q

Tb = [Q1Q2]
T b =


Q

T
1 b

Q
T
2 b

�
=


c1
c2

�
.

• Define the residual, r := b � y = b � Ax

||r|| = ||b � Ax||

= ||QT (b � Ax) ||

=

����

����

✓
c1
c2

◆
�

✓
Rx
O

◆����

����

=

����

����
(c1 �Rx)

c2

����

����

||r||2 = ||c1 � Rx||2 + ||c2||2

• Norm of residual is minimized when Rx = c1 = Q
T
1 b, and

takes on value ||r|| = ||c2||.



Computing QR via Householder or Givens

• In Gram-Schmidt, we successively transformed the columns of A to

columns of Q1.

• Here, we consider methods that transform A into


R
O

�

• Similar to LU factorization, but using orthogonal (norm preserving)

transformations instead of elementary elimination matrices

6



Method 2:  Householder Transformations



Successive Householder Transformations

• Gram-Schmidt transforms A into Q.

• Householder QR transforms A into


R
O

�
.

• To do so, it applies a sequence of orthogonal transformations (Hk)

known as Householder transformations (or reflections).

2

66664

x̃ x̃ x̃
x̃ x̃ x̃
x̃ x̃ x̃
x̃ x̃ x̃
x̃ x̃ x̃

3

77775
H1

�!

2

66664

x̃ x̃ x̃
0 x̃ x̃
0 x̃ x̃
0 x̃ x̃
0 x̃ x̃

3

77775
H2

�!

2

66664

x̃ x̃ x̃
x̃ x̃
0 x̃
0 x̃
0 x̃

3

77775
H3

�!

2

66664

x̃ x̃ x̃
x̃ x̃

x̃
0

0

3

77775

A H1A H2H1A H3H2H1A



Householder Transformations/Orthogonal Projectors

• Householder transformation is the m⇥m orthogonal matrix

H = I � 2
vvT

vTv
for nonzero vector v

• Recall that, if q is an m-vector with unit 2-norm, then we have

two projectors

v = Pqu = (qqT
)u

w = P
?
q u = [I� (qqT

)]u = u� q(qTu)

• The Householder transformation is almost a projection onto R?
(v)

• However, because of the “2” it projects pastR?
(v), or reflects aboutR?

(v)

1



Householder Transformations

• We construct Householder reflector H through careful selection of v

H = I � 2
vvT

vTv

• H is orthogonal and symmetric, H = HT
= H�1

• Given a vector a, want to chose v such that

Ha =

2

664

↵
0
...

0

3

775 = ↵

2

664

1

0
...

0

3

775 = ↵e1

• Substituing in formula for H we can take

v = a � ↵e1

and ↵ = ±kak2, with sign chosen to avoid cancelation

2



Householder Reflection

• Recall, I � v(vTv)�1vT
is a projector onto R?

(v).

• Therefore, I � 2v(vTv)�1vT
will reflect the transformed vector past R?

(v).

• Notice Householder transformation subtracts a multiple of v from a.

• With Householder, choose v such that the reflected vector has all

entries below the kth one set to zero.

• Also, choose v to avoid cancellation in kth component.



Householder Derivation

Ha = a� 2
v
T
a

vTv

0

BBBBB@

v1

v2

...

vm

1

CCCCCA
=

0

BBBBB@

↵

0
...

0

1

CCCCCA

v = a� ↵e1  � Choose ↵ to get desired cancellation.

v
T
a = a

T
a� ↵a1, v

T
v = a

T
a� 2↵a1 + ↵

2

Ha = a� 2

�
a
T
a� ↵a1

�

aTa� 2↵a1 + ↵2
(a� ↵e1)

= a� 2
||a||2 ± ||a||a1
2||a||2 ± 2||a||a1

(a� ↵e1)

= a� (a� ↵e1) = ↵e1.

Choose ↵ = �sign(a1)||a|| = �
✓

a1

|a1|

◆
||a||.



Example: Householder Reflection

• Consider a = [2 1 2]
T
.

• Take

v = a � ↵e1 =

2

4
2

1

2

3

5 � ↵

2

4
1

0

0

3

5 =

2

4
2

1

2

3

5 �

2

4
↵

0

0

3

5

where ↵ = ±kak2 = ±3

• Since a1 is positive, take ↵ = �kak2 to avoid cancellation

v =

2

4
2

1

2

3

5 �

2

4
�3

0

0

3

5 =

2

4
5

1

2

3

5

• Confirm that transformation works:

Ha = a � 2
vTa

vTv
v =

2

4
2

1

2

3

5� 2
15

30

2

4
5

1

2

3

5 =

2

4
�3

0

0

3

5

7



Householder QR Factorization

• To compute QR factorization from A, use Householder reflectors to annihi-

late subdiagonal entries of each successive column

• Each Householder refector (Hk) is applied to entire matrix, but does not

a↵ect prior columns, so zeros are preserved

• Applying H to arbitrary vector u,

Hu =

✓
I � 2

vvT

vTv

◆
u = u �

✓
2
vTu

vTv

◆
v

which is O(m) work; much cheaper than general matrix-vector product.

• Requires only vector v, not full matrix H

4



Householder QR Factorization, continued

• Process produces factorization

Hn · · ·H1A =

"
R

O

#

where R is n⇥ n and upper triangular

• If Q = H1 · · ·Hn then A = Q

"
R

O

#
()

"
R

O

#
= QTA

• To preserve solution of LLSQ, right hand side b is transformed by

same sequence

• Then solve triangular LLSQ problem

"
R

O

#
x ⇡ c := QTb

5



Householder QR Factorization, continued

• For solving LLSQ, product Q of Hk is not needed

• R can be stored in upper-triangular part of A

• Householder vectors v can be stored in now-zero lower portion

of A (almost)

• Householder transformations most easily applied in that form

anyway

6



kth Householder Transformation (Reflection)



Householder Transformations

H1A =

0

BB@

x x x

x x

x x

x x

1

CCA , H1 b �! b
(1) =

0

BB@

x

x

x

x

1

CCA

H2H1A =

0

BB@

x x x

x x

x

x

1

CCA , H2 b
(1) �! b

(2) =

0

BB@

x

x

x

x

1

CCA

H3H2H1A =

0

BB@

x x x

x x

x

1

CCA , H3 b
(2) �! b

(3) =

✓
c1

c2

◆
.

Questions: How does H3H2H1 relate to Q or Q1??

What is Q in this case?



Note:  Householder Procedure

H3H2H1A =

✓
R
O

◆
, A = Q

✓
R
O

◆
.

H3H2H1A = Q�1Q

✓
R
O

◆
= QT Q

✓
R
O

◆
= QT A.

QT
= H3H2H1

Q = HT
1 HT

2 HT
3 = H1H2H3.

• Technically, we usually don’t need Q nor the action of Q.

• Just need the action of QT
on a matrix or vector.

• Never form Q or Hk (large, m⇥m matrices), just apply Hk to vectors:

Hk u = u� 2

✓
vT
k u

vT
k vk

◆
vk.



Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Normal Equations
Orthogonal Methods
SVD

Example: Householder QR Factorization

For polynomial data-fitting example given previously, with

A =

2

66664

1 �1.0 1.0
1 �0.5 0.25
1 0.0 0.0
1 0.5 0.25
1 1.0 1.0

3

77775
, b =

2

66664

1.0
0.5
0.0
0.5
2.0

3

77775

Householder vector v1 for annihilating subdiagonal entries
of first column of A is

v1 =

2

66664

1
1
1
1
1

3

77775
�

2

66664

�2.236
0
0
0
0

3

77775
=

2

66664

3.236
1
1
1
1

3

77775
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Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Normal Equations
Orthogonal Methods
SVD

Example, continued

Applying resulting Householder transformation H1 yields
transformed matrix and right-hand side

H1A =

2

66664

�2.236 0 �1.118
0 �0.191 �0.405
0 0.309 �0.655
0 0.809 �0.405
0 1.309 0.345

3

77775
, H1b =

2

66664

�1.789
�0.362
�0.862
�0.362
1.138

3

77775

Householder vector v2 for annihilating subdiagonal entries
of second column of H1A is

v2 =

2

66664

0
�0.191
0.309
0.809
1.309

3

77775
�

2

66664

0
1.581
0
0
0

3

77775
=

2

66664

0
�1.772
0.309
0.809
1.309

3

77775
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Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Normal Equations
Orthogonal Methods
SVD

Example, continued

Applying resulting Householder transformation H2 yields

H2H1A =

2

66664

�2.236 0 �1.118
0 1.581 0
0 0 �0.725
0 0 �0.589
0 0 0.047

3

77775
, H2H1b =

2

66664

�1.789
0.632

�1.035
�0.816
0.404

3

77775

Householder vector v3 for annihilating subdiagonal entries
of third column of H2H1A is

v3 =

2

66664

0
0

�0.725
�0.589
0.047

3

77775
�

2

66664

0
0

0.935
0
0

3

77775
=

2

66664

0
0

�1.660
�0.589
0.047

3

77775
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Least Squares Data Fitting
Existence, Uniqueness, and Conditioning

Solving Linear Least Squares Problems

Normal Equations
Orthogonal Methods
SVD

Example, continued

Applying resulting Householder transformation H3 yields

H3H2H1A =

2

66664

�2.236 0 �1.118
0 1.581 0
0 0 0.935
0 0 0
0 0 0

3

77775
, H3H2H1b =

2

66664

�1.789
0.632
1.336
0.026
0.337

3

77775

Now solve upper triangular system Rx = c1 by
back-substitution to obtain x =

⇥
0.086 0.400 1.429

⇤T

< interactive example >
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Method 3:  Givens Rotations



Stopped Here



2 x 2 Rotation Matrices

demo7/rotate.m



Orthogonal 
matrix, G

Givens Rotations

G


a1
a2

�
=


↵
0

�

2

Givens Rotations

• Givens rotations introduce zeros one at a time.

• Given vector a =


a1
a2

�
, choose scalars c and s so that


c s

�s c

� 
a1
a2

�
=


↵
0

�

with c2 + s2 = 1 or, equivalently, ↵ =
p

a21 + a22

• Rearranging preceding equation, can solve for c and s

a1 a2
a2 �a1

� 
c
s

�
=


↵
0

�

• Gaussian elimination leads to triangular system

a1 a2
0 �a1 � a22/a1

� 
c

s

�
=


↵

�↵a2/a1

�

1



Givens Rotations

• Back-substitution yields sine and cosine

s =
↵a2

a21 + a22
and c =

↵a1
a21 + a22

• Because c2 + s2 = 1 () ↵ =
p
a21 + a22, we have

c =
a1p

a21 + a22
and s =

a2p
a21 + a22

3



Example: Givens Rotations

• Let a = [4 3]T

• To annihilate the second entry, compute cosine and sine

c =
a1p

a21 + a22
=

4

5
= 0.8 and s =

a2p
a21 + a22

=
3

5
= 0.6

• Rotation is produced by orthogonal matrix

G =


c s

�s c

�
=


0.8 0.6

�0.6 0.8

�

• Check by applying G to a

Ga =


0.8 0.6

�0.6 0.8

� 
4

3

�
=


5

0

�

4

Example: Givens Rotations

• Let a = [4 3]T

• To annihilate the second entry, compute cosine and sine

c =
a1p

a21 + a22
=

4

5
= 0.8 and s =

a2p
a21 + a22

=
3

5
= 0.6

• Rotation is produced by orthogonal matrix

G =


c s

�s c

�
=


0.8 0.6

�0.6 0.8

�

• Check by applying G to a

Ga =


0.8 0.6

�0.6 0.8

� 
4

3

�
=


5

0

�

4



Givens QR Factorization

• To annihilate selected component of a, rotate target component

with another

2

66664

1 0 0 0 0

0 c 0 s 0

0 0 1 0 0

0 �s 0 c 0

0 0 0 0 1

3

77775

2

66664

a1
a2
a3
a4
a5

3

77775
=

2

66664

a1
↵
a3
0

a5

3

77775

• Using a sequence of Givens rotations, systematically annihilate successive

entries to reduce matrix to upper triangular form

• Each rotation is orthogonal, so their product is orthogonal, producing QR

factorization

1



Successive Givens Rotations

As with Householder transformations, we apply successive Givens rotations,

G1, G2, etc.

G1A =

0

BB@

x x x
x x x
x x x

x x

1

CCA , G1 b �! b
(1)

=

0

BB@

x
x
x
x

1

CCA

G2G1A =

0

BB@

x x x
x x x

x x
x x

1

CCA , G2 b
(1) �! b

(2)
=

0

BB@

x
x
x
x

1

CCA

G3G2G1A =

0

BB@

x x x
x x
x x
x x

1

CCA , G3 b
(2) �! b

(3)
=

0

BB@

x
x
x
x

1

CCA

• How many Givens rotations (total) are required for the m ⇥ n
case?

• How does . . . G3G2G1 relate to Q or Q1?

• What is Q in this case?



Givens QR Factorization

• Straightforward implementation of Givens QR requires about 50% more

work than Householder and also requires more storage because each rota-

tion requires two numbers, c and s, to define it.

• These disadvantages can be overcome with more sophisticated implementa-

tion

• Givens o↵ers an advantage, however, when many of the matrix entries are

already zero because those annihilations can then be skipped

2



Givens QR Factorization

• A particularly attractive use of Givens QR is when A is upper Hessenberg

() A is upper triangular with one additional nonzero diagonal below the

main one, i.e., aij = 0 if i > j + 1.

• In this case we require Givens row operations applied only n times instead

of O(n
2
) times

• Work for Givens is thus O(n
2
) vs. O(n

3
) for Householder

• Upper Hessenberg matrices when computing eigenvalues and in Krylov sub-

space methods such as GMRES for solving sparse linear systems

3
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Rank Deficiency

• If rank(A) < n, then QR factorization still exists, but yields singular up-

per triangular factor,R, and multiple vectors x give minimum residual norm

• Common practice selects minimum residual solution x having smallest norm

• Can be computed by QR factorization with column pivoting or by SVD

• Matrix rank is not clear cut in practice so relative tolerance is used to

determine rank

4



Example: Near Rank Deficiency

• Consider 3⇥ 2 matrix

A =

2

4
.300 .100

.100 .033

.200 .066

3

5

• QR factorization gives

R =


�.3742 �.1243

0 .0006

�
,

which is close to singular

• If R is used to solve LLSQ problem result will be sensitive to perturbations

in right-hand side

• For practical purposes, rank(A)=1 rather than 2 because columns of A are

nearly parallel

5



QR with Column Pivoting

• At each stage k, choose to reduce column having maximum 2-norm for (re-
duced) submatrix A(k : m, k : n)

• If rank(A) = k < n, then after k steps norms of remaining unreduced
columns will be negligible below row k

• Rank is determined when maximum norm of remaining unreduced columns
falls below chosen tolerance

• Orthogonal factorization will be of form

Q
T
AP =


R S

O O

�
,

where nonsingular R is k ⇥ k upper triangular and P performs column
interchanges

6



Singular Value Decomposition

• Singular value decomposition (SVD) of m⇥ n matrix A is

A = U⌃VT

where U is m⇥m orthogonal matrix, V is n⇥ n orthogonal matrix, ⌃ is
m⇥ n diagonal matrix with

�ij =

⇢
0 for i 6= j
�i � 0 for i = j

• Diagonal entries �i are singular values of A and usually ordered so that
�1 � �2 � · · · � �n

• Columns uj of U and vj of V are respective left and right singular vectors

1



SVD of Rectangular Matrix A

A                         U             S           V T

• A = U⌃V T is m⇥ n.

• U is m⇥m, orthogonal.

• ⌃ is m⇥ n, diagonal, �i � 0.

• V is n⇥ n, orthogonal.

Skew-Symmetric:


0 �2
2 0

�
= �


0 2
�2 0

�T



Example: SVD

• SVD of A =

2

664

1 5 9
2 6 10
3 7 11
4 8 12

3

775 is A = U⌃VT , with

U =

2

664

�0.4036 0.7329 0.5110 0.1972
�0.4647 0.2898 �0.8283 0.1180
�0.5259 �0.1532 0.1236 �0.8275
�0.5870 �0.5962 0.1937 0.5123

3

775

⌃ =

2

664

25.437 0 0
0 1.7226 0
0 0 1.42e� 15
0 0 0

3

775

VT =

2

4
�0.2067 �0.5183 �0.8298
�0.8892 �0.2544 0.3804
0.4082 �0.8165 0.4082

3

5

2



Applications of SVD

• Minimum norm solultion to Ax ⇡ b is

x =
X

�j 6=0

1

�j
(uT

j b)vj

For ill-conditioned or rank-deficient cases, replace 1/�j with 0 to stabilize
solution. (Keeps y = Ax in the “true” space spanned by [a1 a2 . . . an])

• Euclidian matrix norm: kAk2 = �max

• Euclidian condition number: cond(A) = �max
�min

• Rank of matrix: number of nonzero singular values

3



SVD for Linear Least Squares Problem: A = U⌃V T

Ax ⇡ b

U⌃V T ⇡ b

U
T
U⌃V T ⇡ U

T
b

⌃V T ⇡ U
T
b


R̃

O

�
x =

✓
c1

c2

◆

x =
nX

j=1

vj
1

�j
(c1)j =

nX

j=1

vj
1

�j
u
T
j b

1

A = U⌃V T

Ax ⇡ b

U⌃V T ⇡ b

U
T
U⌃V T ⇡ U

T
b

⌃V T ⇡ U
T
b


R̃

O

�
x =

✓
c1

c2

◆

x =
nX

j=1

vj
1

�j
(c1)j =

nX

j=1

vj
1

�j
u
T
j b

1

uuuu

A = U⌃V T

Ax ⇡ b

U⌃V T ⇡ b

U
T
U⌃V T ⇡ U

T
b

⌃V T ⇡ U
T
b


R̃

O

�
x ⇡

✓
c1

c2

◆

R̃x = c1

x =
nX

j=1

vj
1

�j
(c1)j =

nX

j=1

vj
1

�j
u
T
j b

1



SVD for Linear Least Squares Problem: A = U⌃V T

Ax ⇡ b

U⌃V T ⇡ b

U
T
U⌃V T ⇡ U

T
b

⌃V T ⇡ U
T
b


R̃

O

�
x =

✓
c1

c2

◆

x =
nX

j=1

vj
1

�j
(c1)j =

nX

j=1

vj
1

�j
u
T
j b

1

• SVD can also handle the rank deficient case.

• If there are only k singular values �j > ✏ then
take only the first k contributions.

x =
kX

j=1

vj
1

�j
uTj b

1



Pseudoinverse

• Define pseudoinverse of scalar � to be 1/� if � 6= 0,, zero otherwise

• Define pseudoinverse of (possibly rectangular) diagonal matrix by transpos-
ing and taking scalar pseudoinverse of each entry

• Then pseudoinverse of general real m⇥ n matrix A is

A+ = V⌃+UT

• Pseudoinverse always exists whether or not matrix is square or has full rank

• If A is square and nonsingular then A+ = A�1

• In all cases, minimum-norm solution to Ax ⇡ b is x = A+b

4



Orthogonal Bases

• SVD of matrix, A = U⌃V
T , provides orthogonal bases for subspaces rele-

vant to A

• Columns of U corresponding to nonzero singular values form orthonormal
basis for R(A)

• Remaining columns of U form orthonormal basis for orthogonal comple-
ment R?(A)

• Columns of V corresponding to zero singular values form orthonormal basis
for nullspace of A,

R(V) = N (A) = {v 6= 0 : v 2 N (A) () Av = 0}

• Remaining columns ofV form orthonormal basis for orthogonal complement
N?(A)

5



Low-Rank Approximations to Matrices or Data

• With Ei := uiv
T

i
, the SVD of A can be expanded term by term as

A = U⌃V
T = �1E1 + �2E2 + · · · + �nEn

• Each m⇥n matrix Ei is rank 1 and can be stored using only m+n storage

• Product Eix can be evaluated using only m+n multiplications and m+n

additions

• Condensed approximation to A is obtained by omitting from summation
terms corresponding to small singular values

• If singular values are ordered

�1 � �2 � · · · � �n

then using the first k terms will give best rank k approximation to A

(Eckart-Young-Mirsky Theorem)

• Storage and work costs are O(k(m + n)) ⌧ O(mn) if k is relatively small

• Approximation is useful in data compression, image processing, information
retrieval, cryptography, etc.
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Low-Rank Approximations of A

• Because of the diagonal form of ⌃, we have

A = U⌃V
T =

nX

j=1

uj�jv
T

j

• A rank k approximation to A is given by

A ⇡ Ak :=
kX

j=1

uj�jv
T

j

• Ak is the best approximation to A in the Frobenius norm,

||A||F :=

sX

ij

a2
ij

• Note that in this context, its more common to think of A as the data which
is to be approximated and Ak as the model.

7



SVD for Image Compression

q If we view an image as an m x n matrix, we can use the SVD to 
generate a low-rank compressed version.

q Full image storage cost scales as  O(mn)

q Compress image storage scales as O(km) + O(kn), with k < m or n.

• Because of the diagonal form of ⌃, we have

A = U⌃V T =
nX

j=1

uj�jv
T
j

• A rank k approximation to A is given by

A ⇡ Ak :=
kX

j=1

uj�jv
T
j

• Ak is the best approximation to A in the Frobenius norm,

||M ||F :=
q

m2
11 +m2

21 + · · ·+m2
mn

1



Image Compression

q If we view an image as an m x n matrix, we can use the SVD to 
generate a low-rank compressed version.

q Full image storage cost scales as  O(mn)

q Compress image storage scales as O(km) + O(kn), with k < m or n.

k=1 

• Because of the diagonal form of ⌃, we have

A = U⌃V T =
nX

j=1

uj�jv
T
j

• A rank k approximation to A is given by

A ⇡ Ak :=
kX
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uj�jv
T
j

• Ak is the best approximation to A in the Frobenius norm,
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q

m2
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Image Compression

q If we view an image as an m x n matrix, we can use the SVD to 
generate a low-rank compressed version.

q Full image storage cost scales as  O(mn)

q Compress image storage scales as O(km) + O(kn), with k < m or n.

k=1                          k=2                      k=3    (m=536,n=432)



Matlab code



Image Compression

Compressed image storage scales as O(km) + O(kn), with k < m or n.
k=1                          k=2                      k=3

k=10                               k=20                           k=50         (m=536, n=462)



Low-Rank Approximations to Solutions of Ax = b

q Other functions, aside from the inverse of the matrix, can 
also be approximated in this way, at relatively low cost, 
once the SVD is known. 

If �1  �2  · · ·  �n,

x ⇡
Pk

j=1 �
+
j vju

T
j b

1



Example: Total Least Squares

• Suppose we have a set of points xi 2 lR3, i = 1, . . . ,m and we wish to
find a plane that is close to these points.

• Let x̄ = 1
m

P
xi be the average point position and set

x̃i = xi � x̄.

• The following SVD procedure finds a plane passing through the origin
that is close to the x̃is.

• Let X̃ = [x̃1 x̃2 · · · x̃m]
T be an m⇥ 3 matrix.

• Find the SVD, X̃ = U⌃V T and set

X̂ = U⌃2V
T + x̄

where

⌃2 =

2

664

�1

�2

0

3

775 .

• Get plane-projected points by adding back the centroid:

x̂i = x̂i + x̄.
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x = �1. To see how the latter fit was obtained, we observe that the matrix A for
this problem has only one column, hence we compute the SVD

[A b ] = [ t y ] =

2

4
�2 �1
�1 3
3 �2

3

5 =

2

4
�0.154 0.802 0.577
�0.617 �0.535 0.577
0.772 �0.267 0.577

3

5

2

4
4.583 0
0 2.646
0 0

3

5


0.707 �0.707
�0.707 �0.707

�
= U⌃V T

,

so that
x = �(1/v2,2) v1,2 = �(1/(�0.707)) (�0.707) = �1.
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Figure 3.5: Ordinary and total least squares fits of straight line to given data.

3.7 Comparison of Methods

We have now seen a number of methods for solving least squares problems. The
choice among them depends on the particular problem being solved and involves
tradeo↵s among e�ciency, accuracy, and reliability.

The normal equations method is easy to implement: it simply requires matrix
multiplication and Cholesky factorization. Moreover, reducing the problem to an
n⇥n system is very attractive when m � n. By taking advantage of its symmetry,
forming the cross-product matrix ATA requires about mn

2
/2 multiplications and

a similar number of additions. Solving the resulting linear system by Cholesky
factorization requires about n3

/6 multiplications and a similar number of additions.
Unfortunately, the normal equations method produces a solution whose relative
error is proportional to [cond(A)]2, and the required Cholesky factorization can be
expected to break down if cond(A) ⇡ 1/

p
✏mach or worse.D
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Projecting Noisy Data in lR
3 onto 2D Plane

• Given rank-3 matrix

X =

2

664

x1 y1 z1
x2 y2 z2
...

...
...

xm ym zm

3

775

• Find rank-2 matrix X2 ⇡ X that minimizes di↵erence in Frobenius norm

• Compute U⌃VT
= X and set ⌃2 = ⌃, with, however, �3 = 0.

• Set X2 = U⌃2VT
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Original data

Projected data

demo7/svd5.m



Comparison of Methods for LLSQ

• Forming normal equations matrix ATA requires ⇡ n2m ops and

solving resulting linear system ⇡ n3/3 ops.

• Solving LLSQ using Householder QR requires ⇡ 2n2
(m� n/3) ops

• If m ⇡ n, both require about the same amount of work

• If m � n, Householder QR requires about 2⇥ the number of ops as

normal equations (but is more robust)

• Cost of SVD is ⇡ C(mn2
+ n3

), with C = 4 to 10, depending on

algorithm used
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Comparison of Methods for LLSQ

• Normal equations method produces solution with relative error proportional

to [cond(A)]
2

• Required Cholesky factorization expected to break down if cond(A) &
1/
p
✏M

• Householder method produces solution with relative error proportional to

cond(A) + krk2[cond(A)]
2,

which is best possible because of inherent sensitivity of LLSQ problem

• Householder method expected to break down (in back-substitution phase,

Rx = c1) only if cond(A) & 1/✏M
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Comparison of Methods for LLSQ

• Householder is more accurate and broadly applicable than normal equations

• These advantages may not be worth the additional cost when problem is
su�ciently well conditioned that normal equations are OK

• For rank-deficient problems, Householder with column pivoting can produce
useful solution

• SVD is even more robust, but more expensive.
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