Chapter 3: Linear Least Squares

Outline:

0. Introduction to Projection

1. Least Squares Data Fitting

2. Existence, Uniqueness, and Conditioning

3. Solving Linear Least Squares Problems

Projection

eb =1+ Ax € R(A)

oy = Ax | — projection of b onto R(A)
er = b — Ax — residual vector, 1. R(A)

Projection, r L R(A), happens only for a very special choice of x.

Projection

y is a linear combination of the columns of A:

y = Ax = ajz;+ayro+---+a,x,~b

r . = b—Ax=b-y

Projection

e With m > n, we have:

— A = m X n matrix

— b,y € R"

—xecR" — coefficient set (“model coefficients”)
m

—y = Z a;xr; — best approximation (in least-squares sense)
j=1

— a, — model or model basis (user-prescribed)

e Remarkably, this chapter focuses on finding x,

x = argmin ||b — Ax'[|s,
x'eR"

not on choice of columns of A.

e Both are important.

Method of Least Squares

e Measurement errors are inevitable in observational and experimental sciences

e Lrrors can be smoothed out by averaging over many cases, i.e., taking more
measurements than are strictly necessary to determine parameters of system

e Resulting system is overdetermined, so usually there is no exact solution

e Liffectively, high-dimensional data are projected onto a low-dimensional space
to suppress irrelevant detail

e Such projection is conveniently accomplished by the method of least squares

Nonlinear vs. Linear Least Squares

e Starting with some data, f;, taken at timepoints (say), t;, i« = 1,...,m, we might have
some physical insight that says we expect f behaves as an exponential in time, such as

f(t) =a+ Be.

e Such a model is nonlinear in at least one of the unknown model parameters («, 3, 7),
which makes this a nonlinear least squares problem, to be studied in Chapter 6.

Nonlinear Least Squares

12 - - r
i Ji Nonlinear model: f(t) = a + e
0.036650 0.960495 10 | Unknowns: a, 3, 7.
0.218031 0.939770
0.405460 1.213982
0.593674 1.156828
0.832617 1.636737
0.956528 2.425123
1.163127 2.791084
1.410997 4.451842
1.553994 5.522619
1.826442 8.519962

Data, f;

Linear Least Squares

e Alternatively, we can consider a model in which the dependency of f(t) is linear in the
unknown basis coefficients (i.e., model parameters).

e An example is the polynomial in ¢ given by
f(t) = zo + @1t + Tot® + 23t + 24t?
e In this example, we have ten data points (¢;, fi), ¢ = 1,...,m (m = 10) and only five

unknown model parameters, z;, 7 =0,...,n — 1, with n = 5.

Linear Least Squares
12 . - -,

l; f; Linear model: f(t) = Z;l?j tJ

=0

0.036650 0.960495 107 Unknowns: z;
0.218031 0.939770
0.405460 1.213982
0.593674 1.156828
0.832617 1.636737
0.956528 2.425123
1.163127 2.791084
1.410997 4.451842
1.553994 5.522619
1.826442 8.519962

Linear Least Squares Example

e To set up the LLSQ (linear least-squares) system, evaluate the basis functions (here, ¢/)
at timepoints ¢t;, 7 = 1,...,m and write down the system we’d like to solve (approximately)

e So, for our polynomial model we’d have
x0-1+a:1-ti+x2-t?+x3-t?+x4-t?%fi, z':l,...,m

e For j =0,....,4, define the jth column of the system matrix A as t‘g :

e The resultant system with unknown model coefficients x = [z, 21, ..., 24]" is,

1ty t§ - 11| - - by
2 4 Lo
L1

y = Ax = ~

L4

1oty t3 -t | & - bin

~— ~ ~ Y ~ =,
model: y = Ax € Py(t;) data

e Then the LLSQ system is Ax ~ b, with data vector b = [by, bo, ..., b,]"

Linear Least Squares Example, continued

e When the basis functions are monomials (i.e., t/), A is known as a Vandermonde matriz.

e We could also consider a system based on Chebyshev polynomials, defined recursively as
Ty =1, Ti&) =& Tp(§) =28T-1(&) — Thia(§), k > 2

e Chebyshev polynomials are orthogonal with respect to a weighted inner product on [-1,1].

e For our example, shift ¢ € [0,2] to [—1, 1] by defining £ =¢ — 1.

o With T4(t) := Ty(t — 1), define the new system as

1 Th(t) Taty) Ta(t) | - - by
~ ~ ~)
1 Ti(ta) Talta) Ty(t2) . b
~ i
y = Ax = : ~
- - - T4
LT, (tm) T2(tm> T T4(tm) - b
L ~- - ., - -
model: y = Ax € Py(¢;) data

e Advantage of this approach is that A generally has a lower condition number than A
because columns of A are “close” to being orthogonal

e In exact arithmetic, both systems should return the same projection, y.

e They could differ, however, because of potential ill-conditioning of the Vandermonde matrix

NRPRPRRPRRPRRPRPRPRPRPRLROONOG NN

k

.0000e+01
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+01
.1000e+01
.2000e+01
.3000e+01
.4000e+01
.5000e+01
.6000e+01
.7000e+01
.8000e+01
.9000e+01
.0000e+01

POOOFRPPFPEPNMNNPPOONPEPEPNMNPAPOORPREP®

cond(A)

.7697e+00
.8825e+01
.0886e+02
.7294e+02
.2028e+03
.7121e+04
.7079e+05
.2077e+06
.7462e+06
.5237e+07
.0663e+08
.9783e+09
L464e+10
.7558e+11
.3627e+12
.1033e+13
.6966e+13
.7061e+14
.93%4e+15

NOOWNPEPPRPOVONOCOOGOMRPPOWONNDDNE

demo4/Isq2 test.m

cond(C)

.7388e+00
.0122e+00
.6451e+00
.9171e+00
.5822e+00
.0197e+00
.6311e+00
.2146e+00
.7839e+00
.4176e+00
.1570e+00
.1382e+00
.9329e+00
.2590e+01
.6773e+01
.3955e+01
4729%9e+01
.1024e+01
.1866e+01

1 O1 0101010101 O1OOND

k(A), K(A)

norm(ra) norm(rc)

.9048e+00 2.9048e+00 3.7052e-16

.7323e-01 8.7323e-01 1.3052e-15

.4034e-01 5.4034e-01 1.1065e-15

.2602e-01 5.2602e-01 1.5903e-14

.2579e-01 5.2579e-01 4.4941e-14

.2579%e-01 5.257%9e-01 4.,2277e-15

.1571e-01 5.1571e-01 8.8356e-14

.1360e-01 5.1360e-01 3.5073e-13

.1290e-01 5.1290e-01 7.6569e-13

"~ Conditioning of Vandermonde vs. Chebyshev Matrix
102
1024 F .
102 £ 1
102 k 1
102" £ . 1
102 E o E
1019 - e * 1
1018 .’ 3
107k 0 |
1016 F . 1
101° k . 1
101% ¥ . :
1 013 3 . E
102 * 3
10 F * 1
1010 * ;
10% E o 1
10% F .]
10%7 ¥ . E
1 006 e - . 1
10% F . eett 1
10% f eet’ 3
1008 £ ot” 1
102F o gosct®’ 1
1001_. ¢ ...l........ 3
1000 E aw e) . 3

0 10 20 30

Polynomial Order, m

ESN
o

hdr; format shorte;

m=90;

r=rand(m,1);

t=2%[0:m-1]1"'/m;

t=t+.2%(r-.5);

t=max(t,0); t=min(t,2); t=unique(t);
m=length(t);

xi=(t-1);

b=.5+.3%exp(1.8%t);
r=rand(m,1);
b=b + 0.2%(r-.5);

A=ones(m,2); A(:,2)=t;
C=ones(m,2); C(:,2)=xi;
n=40;

disp(' ')
disp(" k cond(A) cond(C) norm(ra) norm(rc)"')
ca = cond(A); cc = cond(C); disp([k ca ccl)

hold off
for k=3:n;
A = [A t.~"(k-1)1;
C = [C 2%xi.*C(:,k-1)-C(:,k-2)1;
xa = A\b; ya = Axxa; ra=b-ya; na=norm(ra);
xc = C\b; yc = Cxxc; rc=b-yc; nc=norm(rc);
dc = yc-vya; nd=norm(dc)/norm(b);

ca = cond(A); cc = cond(C); disp([k ca cc na nc ndl])
semilogy(k,ca,'b.',ms,12,k,cc,'r.',ms,12); hold on
end;
xlabel('Polynomial Order, m',intp,1ltx,fs,14);
ylabel('$\kappa({\bf A}),$ $\kappa({\tilde \bf A})$',intp,1ltx,fs,14);
title('Conditioning of Vandermonde vs. Chebyshev Matrix',6 intp,ltx,fs,14);

Solving the Linear Least Squares System

e Here, we have an overdetermined linear system,
Ax ~b

with an m X n matrix, A, m > n.

e We have more equations than we do unknowns and in general cannot hope to
solve all of them.

e The least squares idea is to find x such that we minimizes the Euclidean
norm of the residual vector, r = b — Ax,

min rf} = min b — Ax]?

e As mentioned earlier, minimizing the 2-norm is equivalent to finding an orthogonal
projection, which is in fact the way we typically formulate and solve the LLSQ) systems.

e Let’s proceed with formulating the question as a minimization problem.

Residual Minimization

e Consider LLSQ Ax ~ b and associated objective function, ¢(x) = ||b — Ax||3.
Assume that A has full rank. Does this always have a solution?

e Yes. ¢ >0, ¢ — 00 as ||x|| — oo, ¢ is continuous, => ¢ has a mininum.
e Is it always unique? Yes (again, assuming full rank)

e What happens if A does not have full rank? Then there is a nullspace such that An = 0
for any vector n in the nullspace. Thus, if x is a solution, then |[b—A (x+n)||2 = [|[b—Ax||

e Note that the projection, y = A(x + n) = Ax, is unchanged (i.e., it is unique)

Residual Minimization, continued
e To find the minimize, x, evaluate the objective function and its gradient:
o(x) = [rll; = [b-yl2 = [b— Ax]|;
= (b - Ax)"(b — Ax)
= b'b — x'Ab — b’ Ax +x A’ Ax

xI'Ab

e Minimum where gradient ¢ = 0:

Vo], = % =

- 0, k=1,...,
c%:k ’ "

e Differentiate term-by-term

0
—b'b =
8xk

0 T AT
aSCkX

iXTATAX =
6?xk

c=A"b
H = ATA
H;; = Hj

Normal Equations

e Combining the results,

0 = 2[A"Ax — A'b],, k=1,...,n

0 = A"Ax — A'b
e Thus, Vo(x) = 0 yields the Normal Equation
A"Ax = A'b

e Solution is
x = (ATA) 'A™b
What is the shape of ATA?

e Does it always have an inverse?

e Yes., if A is full rank. In this case, AT A is SPD but not necessarily well-conditioned.

Pseudoinverse and Condition Number

e Nonsquare m X n matrix A has no inverse in usual sense
o If rank(A)=n, pseudoinverse is defined by
A" = (ATA) AT
and condition number by
cond(A) = [[AT]]2- AT
e By convention, cond(A) = oo if rank(A) < n

e Just as condition number of a square matrix measures closeness to singularity, condition
number of a rectangular matrix measures closeness to rank deficiency

e Least squares solution of Ax ~ b is given by x = A™b

Sensitivity and Conditioning

e Sensitivity of LLSQ Ax =~ b depends on b as well as A.

e Define 6 as angle between b and y = Ax by

Ivle I1Ax]:
cos(@) = —
O =blb] = ol

e Bound on perturbation Ax due to perturbation Ab is given by

1Ax]l2 I [|Abl];
< cond(A)
cos(f) bl

Mathematics & Geometry of LSQ Conditioning

Ab

Ay = AAx =~ Ab, if Ab € R(A) |
1

|Ax|| < [AT||[|AD| b “

|
lyll = [[Ax]| = cos@]b] :
l/"

L lAx v

cosd ||b||

| Ax|
|Ax]| < [JAT] || AD | |
cos 6 ||b|| e Ab is small with respect to b,

but not relative to y.

HAXH < ||AT|| HAH HAb” e The ill-conditioning arises when a
||XH - cos 0/ ||bH large part of b has no influence on y.
That is, when b is nearly orthogonal
= cond(A) |AD] to R(A).

cosf ||b|

Similarly, for perturbation E in matrix A,

IE]2

S ([cond(A)]ztan(H) + cond(A)) | Al

Condition number of least squares solution is about
cond(A) if residual is small, but can be squared or
arbitrarily worse for large residual

Least Squares Viewed as Orthogonal Projection

e Recall our earlier picture.

e Geometrically, we have (b —y) L A <= (b—y) La; j=1,...,n

e In matrix form,

Af(b—y) =0
Aly = A'p
ATAx = A'b

e Normal equations!

Least Squares Viewed as Orthogonal Projection

e Note that
x = (ATA)"'A"b
u=AA"A)'A'b = Pb

e Here, we define P = A(ATA)"LAT as the orthogonal projector onto the
column space of A (i.e., R(A))

e Note that P = P?, which is an intrinsic property of square projection matrices.

e 'To illustrate,
P? = (A(ATA)'AT) - (A(ATA)TTAT)
= AATA) Y ATA)ATA) AT

— AATA)'AT = P

e Geometrically, P? = P simply says that once b has been projected onto R(A),
the projection of the result (y) is unchanged.

o If P = P’ we refer to P as an orthogonal projector

1D Projection

e Consider the 1D subspace of R? spanned by a:

aa; € span{aj}.

e The projection of a point b € R? onto span{a;} is the point on
the line y = aa; that is closest to b.

e To find the projection, we look for the value o that minimizes
|r|| = ||ea; — b]| in the 2-norm. (Other norms are also possible.)

y—aal ,o

ai

y € span{a;} y = projection of b onto span{a; }

1D Projection

e Minimizing the square of the residual with respect to a, we have

d d
el = = b — aay?
d 1 T
= — |(b - aa)’ (b - aal)}
d rop 2 T T
— 2aata; — 2aib = 0

e For this to be a minimum, we require the last expression to be
zero, which implies

alb alb
(0} T) — y = aap = —F—ai.

e We see that y points in the direction of a; and has magnitude that
scales as b (but not with ay).

e Note also that the denominator afa; > 0 unless a; = 0.

Examples

e Find the projection of b onto R(A) for the following cases.

L)

Projection via ()R factorization

e Find matrix) whose columns span R(A) such that q; L q;
(columns are orthogonal).

e Normalize each q; to have unit length such that q;qu = 0ij.
e () is referred to as an orthogonal matrix: Q1 Q = I.

e 1R will be square upper triangular and invertible if columns of A
are linearly independent.

Example

[Suppose we have observational data, { b;} at some independent
times {t;} (red circles).

J The t; s do not need to be sorted and can in fact be repeated.

1 We wish to fit a smooth model (blue curve) to the data so we can

compactly describe (and perhaps integrate or differentiate) the
functional relationship between b(t) and t.

A common mOdel iS Of the form , ___ LesstSquaresModel tingtoCubi

y(t) = ¢1(H)z1 + ¢2(H)z2 + ... + dn(t)an

The ¢;(t)s are the basis functions and x;s the
unknown basis coefficients.

Depandent Variabie b ' and y(t)

The system is linear with respect to the un-

knowns, hence, these are linear least squares T vl
problems.

Example

To proceed, we assume b; represents a function at time points
t;, which we are trying to model.

We select basis functions, e.g., ¢;(t) = t/~! would span the
space of polynomials of up to degree n — 1.
(This might not be the best basis for the polynomials...)

We then set {a,}; = ¢;(t;) for each column j =1,...,n.

We then solve the linear least squares problem: min||b— Az||?

Once we have the z;s, we can reconstruct the smooth func-

t I O n . Least Squares Model Fitting to Cubic

2

y(t) = 6;(t)a; |

J=1

: & o
- o (=) o

'
w
al

Dependent Yariable b I and yft)

'

45! =1 -0.5 0 0.5
Independent Yariable,t

Matlab Example — Normal Eqn (bad) Approach

% Linear Least Squares Demo
degree=3; m=20; n=degree+1;

t=3*(rand(m,1)-0.5);
b =123 -t; b=b+0.2*rand(m,1); %% Expect: x=~[0-1 01]

plot(t,b,'r0"), pause

%%% DEFINE a_ij = phi_j(t_i)
A=zeros(m,n); for j=1:n; A(:,j) = t.A(j-1); end;

A0=A; b0=b; % Save A & b.

%%%% SOLVE LEAST SQUARES PROBLEM via Normal Equations &&&&
x = (A"A)\ A”b

plot(t,b0,'ro',t,A0*x,'bo',t,1*(b0-A0*x),'kx'), pause
plot(t,A0*x,'bo"), pause

%% CONSTRUCT SMOOTH APPROXIMATION

tt=(0:100)'/100; tt=min(t) + (max(t)-min(t))*tt;
S=zeros(101,n); for k=1:n; S(:,k) = tt.A(k-1); end;
$=S*x;

plot(t,b0,'ro',tt,s,'b-")

title('Least Squares Model Fitting to Cubic')
xlabel('Independent Variable, t')
ylabel('Dependent Variable b_i and y(t)')

Normal Equations Method

e [f m X n matrix A has rank n, then symmetric n X n matrix
AT A is positive definite, so can use Cholesky factorization,

A'A = LL'

to obtain solution x to system of normal equations,
A"Ax = A'b

which gives the solution to the LLSQ) problem Ax ~ b

e Normal equations approach involves transformations

rectangular — square — triangular

Normal Equations Example

e Consider trying to fit a 4th-order polynomial of the form y(t) = a+bt*+ct*
to a semi-circle on [-1,1].

1 T ——
08 r
06 r
04 r

data

0.2 model

0 1 1 L

-1 -0.5 0 05 1

e Here, we leverage the fact that the semi-circle has even symmetry so we do
not need the linear or cubic terms in our polynomial expansion.

e The columns of A are therefore a; = 1, ay = [t?], and a3 = [t}], evaluated

at t;=[—1 —/3/2 —/2/20+2/2V3/21]

C1.0000 1.0000 1.0000 9.000 5.000 3.750
1.0000 0.7500 0.5625 ATA — {5.000 5750 3.125] _ LT
1.0000 0.5000 0.2500 2750 3195 2766
1.0000 0.2500 0.0625

A = | 1.0000 0 0
1.0000 0.2500 0.0625

1.0000 0.5000 0.2500 I — 3.000 0 0

1.0000 0.7500 0.5625 = | 1.667 0.987 0

| 1.0000 1.0000 1.0000 1.250 1.056 0.295

Normal Equations Example

e Solving lower triangular system Lz = A’b with forward substitution yields
z = [1.7154 -0.9827 -0.2774]"

e Solving upper triangular system L? x = z with backward substitution yields
x = [0.957585 0.010732 -0.940176]*

e We can the plot the model y which has the same number of entries as b.
However, we can also plot a finely sampled model, y(ts), because y(t) is
continuous in .

hdr

s2=sqrt(2)/2; s3=sqrt(3)/2;
t=[-1 -s3 -s2 -.5 @ .5 s2 s3 1]1'; m=length(t);
theta = acos(t); b=sin(theta);

A=ones(m,3); A(:,2) = t.*2; A(:,3) = t."4;
AtA=A"'*A

L=chol(AtA)"

z=L\(A'xb); x=(L')\z

y = AxX;

% Sample model and function on fine mesh for plotting

th = pix[0:200]1'/200; tf=cos(th);
Af = ones(201,1); Af(:,2)=tf.r2; Af(:,3)=tf.’4;
mf = Afxx; bf = sqrt(1-tf.xtf);

plot(tf,bf, 'k-',1w,2,tf,mf, 'r-',1w,2,t,b, 'k."',ms,19,t,y, 'r+',ms,10);
axis equal; axis([-1 1 @ 1]1); legend('data', 'model', 'location', 'southeast"')

Shortcomings of the Normal Equations

e Information can be lost in forming A’A and A'b

e For example, consider, for 0 < € < /€y,
S
A= |[€0

e In floating point arithmetic the SPD matrix ATA evaluates
to a singular system

1+e* 1 11
T _ __
AA_[1 1—1—62]_[11]

e Sensitivity is also worsened since, in general,

cond(ATA) = [cond(A))’

J Avoid normal equations:

QA’Ax =A"b

 Instead, orthogonalize columns of A = QR

0 Columns of Q are orthonormal = Q'Q =1

3 R is upper triangular
dRx =Q'QRx = Qb

Q0QT(Ax—-b)=0

Projection, ()R Factorization, Gram-Schmidt

e Recall our linear least squares problem:
y = Ax = b,
which is equivalent to minimization / orthogonal projection:
r .= b - Ax 1 R(A)
Irlly = Ib —ylls < |[b = vl Vv € R(A).
e This problem has solutions
x = (ATA) " A"b
y = A(ATA) " A"b = Pb,

where P := A (ATA)_l Al is the orthogonal projector onto R(A).

(ATA) X

Observations

(b
alb
ATb =

\ aib /

T

T T

T

(alTal a;az - -

T
\anal a,ay -

a, a,

)

Orthogonal Bases

e If the columns of A were orthogonal, such that a;; = ala; = 0 for i # j,
then AT A is a diagonal matrix,

[afa \

ag a9

(AT4) = | ,

\ aja, /

and the system is easily solved,
1 T
/ ala; \ / aj b \

as az

x = (ATA) ' ATb =

\ aw) \aib

e In this case, we can write the projection in closed form:

y = rja; = E:aTa.aj' (1)
j=1 j=1 7

e For orthogonal bases, (1) is the projection of b onto span{a;, as, ..., a,}.

Orthonormal Bases

e If the columns are orthogonal and normalized such that ||a;|| = 1,
we then have a;fpaj = 1, or more generally
i | 0=

a;a; = 0;;, with 9;; := - the Kronecker delta,
0, 7 # j

e In this case, AT A = I and the orthogonal projection is given by
y = AATD = Zaj (ajrb).
j=1
Example: Suppose our model fit is based on sine functions,
sampled uniformly on [0, 7]:

¢;(t) = sinjt;, t;, = mi/m, i=1,...,m.

In this case,

Stop Here

QR Factorization

e Generally, we don’t a prior: have orthonormal bases.

e We can construct them, however. The process is referred to as QR
factorization.

e We seek factors @ and R such that QR = A with @ orthogonal (or,
unitary, in the complex case).

e There are two cases of interest:

Reduced QR Full QR

Ql = A Q O:A

e Note that

e The columns of @); form an orthonormal basis for R(A).

e The columns of Q3 form an orthonormal basis for R(A)=*.

QR Factorization: Gram-Schmidt

e We'll look at three approaches to () R:

— Gram-Schmidt Orthogonalization,
— Householder Transformations, and

— Givens Rotations

...but maybe not
o We start with Gram-Schmidt - which is most intuitive. the most stable

e We are interested in generating orthogonal subspaces that match the
nested column spaces of A,

span{ a; } = span{q }
span{ ai, ag } = span{dqi, qa }
Spa‘n{ ap, as, 3_3} — Spa‘n{ q1, 92, q3}

Span{ala az, ..., an} — Spa‘n{qla 92, .- -, qn}

QR Factorization: Gram-Schmidt

e [t’s clear that the conditions
span{a; } = span{q }
span{ ai, a2 } = span{qi, g }
span{ aj, as, az} = span{qi, g2, qs }

span{ ai, as, ..., a,} = span{qi, qa, ..., qn }

are equivalent to the equations

ar = qiTiu

A = qi1712 + Q2722

a3 = 173 + qa2723 + Q3733
= 1

a, = Q7T + Q2T + 0+ QpTan
ie, A = QR

(For now, we drop the distinction between) and ()1, and focus only on
the reduced QR problem.)

Gram-Schmidt Orthogonalization

e The preceding relationship suggests the first algorithm.

Let Qr—1 == 192 ... k-1, Pro1 = Qk—1 Q;}F_1; Py g1 :=1— Py_.
' Orthogonal Projector onto

for B = 27 RN 1 R(q...qk.1)= R(a;...a.)

vi = ap — Biap = (I —FPeo) ap = PrLiay

4 = vi Prraag

k J— J—
vill ([P p—a]]

end

e This is Gram-Schmidt orthogonalization.

e Each new vector q; starts with a; and subtracts off the projection onto
R(Qr_1), followed by normalization.

Classical Gram-Schmidt Orthogonalization

r33qs3 = az — [has

Paz = :Q a3

T
q; a3 d5 a3

= q ; + Q2 ?p
q; d1 d5 92

= (l1011Ta3 + qzq§a3

In general, if () is an orthogonal matrix, then
P, = Q1Q} is an orthogonal projector onto R(Qy)

Gram-Schmidt: Classical vs. Modified

e We take a closer look at the projection step, vy = a; — P._; a;.

e The classical (unstable) GS projection is executed as
Vi = 4ag
forg=1,....k—1,

Vi = Vi —Qq; (quak;)
end

e The modified GS projection is executed as
Vi = ag
forg=1,....k—1,

Vi = Vg —Qqj (q]TVk)
end

Mathematical Difference Between CGS and MGS

o [t }BL,k, =] — qkqf

e The CGS projection step amounts to
Vi = (pL,k—l pL,k:—2 PL,l) ag
— ([—Pl—P2—"'—pk—1)ak

= ai — 1513% — p2ak: — Pk—lak:
B-1
— dar — Z Pjak.
j=1
e The MGS projection step is equivalent to
Vi — PL,k—l (PL,k—Q("‘ (pL,lak)))
= (]— Pk_1> ([—Pk_g) ([—151) aj

k—1 ~
(1-7) a

Jj=1

Mathematical Difference Between CGS and MGS

e Lack of associativity in floating point arithmetic drives the difference

between CGS and MGS.
e Conceptually, MGS projects the residual, ry := a; — P,_1a;.

e As we shall see, neither GS nor MGS are as robust as
Householder transformations.

e Both, however, can be cleaned up with a second-pass through the
orthogonalization process. (Just set A =) and repeat, once.)

CGS: Classical Gram-Schmidt Orthogonalization

e The CGS algorithm proceeds as follows

fork=1ton
dr = Ak
for j=1tok—1
Tjk = quak
dr = Ak — 97k (project qi onto Qi)
end
Tkk = H%H2

qr = Qk/ Tk
end

e Resulting q; and rj;, yield reduced QR factorization of A

Pros/Cons of Classical Gram-Schmidt

e The CGS algorithm can suffer loss of orthogonality in finite precision.

e Nominally requires separate storage for A and Q (but this likely can be
avoided)

e These deficiencies can be addressed with modified Gram-Schmaidt, which
also allows column pivoting (Bjork)

e We will see, however, that other factors can come into play in the CGS/MGS
evaluation

MGS: Modified Gram-Schmidt Orthogonalization

e The MGS algorithm proceeds as follows

fork=1ton
qr = ag
forj =1tok —1
rik = d) Qi
A = 9k — 9,7k (project qi onto Qi)
end
Tkl = H%Hz

qr = qk/ T'Lk
end

e Resulting q; and rj;. yield reduced QR factorization of A

CGS/MGS Code Comparison

CGS: MGS:
fork=1ton fork=1ton
qr = Ak qr =
for]—ltok—l forj=1tok —1
qujk‘ dr = 9k — 9,7k
end end
Tkl = H%Hz Tkk = H%Hz
ar = dk/Tkk qr = i/ Tkk
end end

e CGS uses a static projection, with coefficents based only on qJTak

e MGS computes the projection (I — Qx_1Q;_,)ax based on successive
removal of components in directions q;, j = 1,...,k — 1.

CGS/MGS Comparison

e Here we consider an example with
the Vandermonde matrix for
t € [0 :29] up to polynomial order 9

e As a consequence, cond(A) ~ 10%3,
which stresses the orthogonalization
process in QR factorization

demob/

e CgS mgs.m

* €QgSsZ2 - two-pass
* Ccg2

hdr;

m=30; n=10; t=[0:m-11;

A=ones(m,n); % Form Vandermonde matrix
for j=2:n;
A(:,j) = t.~(j-1);
end;
cond(A)

Q=A; R=zeros(n,n);

for k=1:n %% MGS
gk=A(:,k);
for j=1:k-1;
R(3,k) = Q(:,7)'*gk;
ak = gk - Q(:,3)*R(],k);

end;

R(k, k)=norm(qk,2); Q(:,k)=gk/R(k,k);
end;
Qmgs = Q; Rmgs = R;

for k=1:n %% CGS
ak=A(:,k); gk=ak;
for j=1:k-1;
R(3, k) = Q(:,3) '*ak;
ak =gk - Q(:,3)*R(J,k);
end;

R(k, k)=norm(gk,2); Q(:,k)=gk/R(k,k);
end;
Qcgs = Q; Rcgs = R;

%% Test orthogonality

I=eye(n);
QQc = Qcgs'*Qcgs; Tc=QQc-I; tcn = norm(Tc)
QQm = Qmgs'*Qmgs; Tm=QQm-I; tmn = norm(Tm)

%% Test LLSQ solution

b=rand(m,1); x = A \ b;

xc=Rcgs\ (Qcgs'*b); xm=Rmgs\ (Qmgs'*b);
ec=norm(x-xc)/norm(x), em=norm(x—xm)/norm(x)

Two-Pass Classical Gram-Schmidt

o A significant advantage of CGS is that the coefficients rj;, = q]Ta/{,] =
1,...,k — 1, can be computed all at once, which is important in parallel
computing because dot-products (or any wvector reduction, R" — R)
require global communication which typically has a communication cost

tcomm ~ 2« log, P
a = communication latency = 4us

P = number of processes ~ 10°-10"

e With MGS, need k£ — 1 communications for k =2 : n

e With CGS, need one communication of length £k — 1 for k =2 :n
MGS comm cost ~ n’a log, P

CGS comm cost ~ na log, P

Two-Pass Classical Gram-Schmidt
o Two-pass C'GS is accurate and potentially less expensive than MGS

e The idea is to re-orthogonalize the columns of Q with a second pass of the
algorithm.

o If QR; = A is the CGS-based QR factorization of the first pass, we gen-
erate a second factorization QaRy = Qq

e In this case, the starting point is the well-conditioned matrix of column
vectors Q; which span the column space of A, as is also true for Qo.

e The full QR factorization of A is then

A = Q1R1 — Q2 R2R1
R

e Note that cond(Rg) = 1, so computation of R = RyR; does not introduce
additional error

e [t turns out that only one additional pass is needed.

Two-Pass Classical Gram-Schmidt

for k=1:n %% MGS
gk=A(:,k);
for j=1:k-1;
R(3,k) = Q(:,3)"'*qk;
gk =gk - Q(:,3)*R(7F,k);

end;

R(k, k)=norm(qgk,2); Q(:,k)=qk/R(k,k);
end;
Qmgs = Q; Rmgs = R;

for ipass=1:2;

for k=1:n %% CGS
ak=A(:,k); gk=ak;
for j=1:k-1;
R(j, k) = Q(:,3) " '*ak;
gk =gk - Q(:,3)*R(3,k);

end;
R(k, k)=norm(qgk,2); Q(:,k)=qk/R(k,k);
end;
if ipass==1; Q1=Q; R1=R; A=Q; end;
if ipass==2; R2=Rx%R1; end;
end;
Qcgs = Q; Rcgs = R;

I=eye(n);

QQc = Qcgs'*Qcgs; Tc=QQc-I; tcn = norm(Tc)
QQm = Qmgs'*Qmgs; Tm=QQm-I; tmn = norm(Tm)
b=rand(m,1);

xc=Rcgs\ (Qcgs'*b);
xm=Rmgs\ (Qmgs '*b) ;

X =A\ b;
ec=norm(x-xc)/norm(x)
em=norm(x-xm)/norm(x)

Cond(A):

Ortho-test CGS
CGS LLSQ vs. A\

Ortho—-test MGS
MGS LLSQ vs. A\

ans

tcn
ec

tmn
em

6.2467e+13

= 1.6324e-03

6.0648e-04

8.0106e-11
3.4813e-05

2—-Pass CGS
4,8899%9e-16
5.3060e-16

Classical & Modified GS: Notes

n=20;

A = rand(n,n); [Q,R]=qr(A);
for i=1l:n; R(i,i)=R(i,1)/(1.2"1); end;
A=Q*R; [Q,R]=gr(A);

v=A; g=Q; a=A; $ Classical GS
for j=1l:n;
for k=1:(j-1);
v(:,3)=v(:,3)-q(:,k)*(g(:,k) " "*a(:,])); end;
g(:,3)=v(:,j)/norm(v(:,3));
end;
gc=q;

v=A; g=Q; a=A; $ Modified GS
for j=1l:n;
for k=1:(j-1);
v(:,3)=v(:,J)-qa(:,k)*(g(:,k) " "*v(:,])); end;
q(:lj)=v(:Ij)/norm(v(:lj));
end;
gm=d;

Classical & Modified GS: Notes

v=A; g=Q; a=A; $ Classical GS, text
for k=1l:n;
g(:,k)=a(:,k);
for j=1:k-1; r(j,k)=q(:,3) *a(:,k);
a(:,k)=q(:,k)-r(j,k)*qg(:,3); end;
r(k,k)=norm(g(:,k));
a(:,k)=q(:,k) / r(k,k);

end;
gct=q;
v=A; g=Q; a=A; $ Modified GS, text

for k=1l:n;
r(k,k)=norm(a(:,k));
ga(:,k)=a(:,k) / r(k,k);
for j=k+1l:n; r(k,Jj)=q(:,k) " *a(:,3]);
a(:,Jj)=a(:,3)-r(k,Jj)*a(:,k); end;
end;
qmt=q;

>> house
ans =

Householder Transformations: Notes

a=A; % Householder, per textbook
I=eye(n); QH=I;
for k=1l:n;

v=a(:,k); v(l:k-1)=0;

alphak=-sign(a(k,k))*norm(v);

v(k)=v(k)-alphak;

betak=v'*v;

for j=k:n; gammaj=v'*a(:,]);
a(:,j)=a(:,j)-(2*gammaj/betak)*v; end;

QH=QH-(2/betak)*v*(v'*QH);

end;

QH=

QH'; ght=QH;

ng =norm(Q'*Q-eye(n));

nc

=norm(qc'*qc-eye(n));

nm =norm(gm'*gm-eye(n));

nct=norm(gct'*gct-eye(n));
nmt=norm(gmt ' *gmt-eye(n));
nht=norm(ght'*qght-eye(n));

[nc nct nm nmt nht nqg]

1.6971e-03

1.6971e-03 4.5031e-07 4.5031e-07 1.4232e-15

1.0825e-15

Using Orthogonal Transformations

e We've seen how we can use CGS/MGS QR factorizations to transform the
LLSQ problem into triangular form.

e Here we take a different approach for Householder reflections and Givens
rotations that offer alternative cost/benefits

e We seek numerically robust transformations that produce an easier prob-
lem without changing the solution.

e As with LU factorization, we’ll look for a sequence of elementary transfor-
mation that yield an upper triangular form (R), but instead of a companion
lower triangular matrix, we have an orthogonal matrix (Q) and the sequence
of transformations will be norm preserving

e We use square orthogonal matrices Q satisfying QQ' = Q' Q =1.

e These preserve the Euclidean norm

1Qv); = (Qv)'Qv = vIQTQv = viv = ||v|

Orthogonal Transformations

e Note that if Q is a square orthogonal matrix, then Q' is
also an orthogonal matrix

Q'Q =1
QQ'Q = Q
(QQ")Q = Q

° QQT — 1
o rll = [Qr]l2 = |Q"x]

Using Orthogonal Transformations

e We've seen how we can use CGS/MGS QR factorizations to transform the
LLSQ problem into triangular form.

e Here we take a different approach for Householder reflections and Givens
rotations that offer alternative cost/benefits

e We seek numerically robust transformations that produce an easier prob-
lem without changing the solution.

e As with LU factorization, we’ll look for a sequence of elementary transfor-
mation that yield an upper triangular form (R)), but instead of a companion

lower triangular matrix, we have an orthogonal matrix (Q) and the sequence
of transformations will be norm preserving

e We use square orthogonal matrices Q satisfying QQ’ = Q' Q = 1.

e These preserve the Euclidean norm

1Qv]3 = (Qv)'Qv = vI'QTQv = vIv = ||v|]3

e Multiplying both sides of LLSQ by Q does not change its solution

Orthogonal Transformations

e Note that if Q is a square orthogonal matrix, then Q? is
also an orthogonal matrix

Q'Q =1
QQ'Q = Q
(QQ")Q = Q

e QQ =1
o vl = [Qr]2 = [1Q"r|2

Orthogonal Transformations

e For our LLSQ problems, we have been working with m X n matrix A and
the corresponding (nonsquare) matrix “Q” which we will (for now) denote

as Q1.

e With m > n, we consider the partition of the orthogonal m x m matrix Q,

Q = [Qi1Q
where Qp is m x n and R(Q;) = R(A) and R(Q) L R(Qy)

e Consider application of Q" to the residual, r:

Q'r = Q' (b-Ax) = [QIQ)]' (b— Ax) = [N]
LQ(b-Ax) |

a vector

[Q?b—RX] 0
- [Qb-0 | | Qlb

Triangular LLSQ

e Consider a LLS(Q problem with R being n X n upper triangular,
R| _|b
O| 7 | by

Ileflz = by — Rx|[3 + [|ball3
e No control over ||bs||3 term, bust first term becomes zero if x satisfies n X n
triangular system

e Residual is

RX:bl

e Resulting x is least squares solution and minimum sum of squares is

Irll3 = lIball3

Orthogonal Bases

e Consider full QR,

a-alg|-l@alld] - ar

e QR is the reduced (or “economy”) QR factorization of A

e Columns of Q; are orthonoromal basis for R(A), and columns
of Qy are orthonoromal basis for R+(A)

e Q:Q! is orthogonal projector onto R(A)

e Solution to LLSQ) Ax =~ b is sollution to square system
Q/Ax = QIQRx = Rx = ¢; = Qi b,

as we've seen before.

e Generally, we will use the reduced QR as it is significantly less
expensive than full QR

QR for Solving Least Squares

o Start withAx ~ b

Q

Q'Q

Cx Ow

e Define the residual, r

[Irll

[r]]*

x = [g]x ~ Qb= (@ Q" b = [

b—-—y =b-—- Ax

b — Ax]||
Q" (b — Ax) ||

(&) - (%)l
(c1 — Rx) '

Co
c1 — Rx|]* + ol

Qib
Q3 b

e Norm of residual is minimized Whed Rx =c; = QlTb,Iand

takes on value ||r|| = ||c2|.

|-

Cq1
Co

|

Computing QR via Householder or Givens

e In Gram-Schmidt, we successively transformed the columns of A to
columns of Q.

e Here, we consider methods that transform A into
R
O

e Similar to LU factorization, but using orthogonal (norm preserving)
transformations instead of elementary elimination matrices

Method 2: Householder Transformations

Successive Householder Transformations

e Gram-Schmidt transforms A into Q).

e Householder QR transforms A into [g] .

e To do so, it applies a sequence of orthogonal transformations (Hj,)
known as Householder transformations (or reflections).

N
N
=N
N
=N

T T T T T X
T T X 0 = x T T T
. H, o Ho _ H; N
T T X 0 =2 =z 0 x T
- e . — - | — | —

T T X 0 =2 x 0 =z 0
T T T | 0 z 7| 0 2 i 0 |
A H{A HH{A HsHyH A

Householder Transformations/Orthogonal Projectors

e Householder transformation is the m X m orthogonal matrix

T

vV
H-1-22"
vy

for nonzero vector v

e Recall that, if q is an m-vector with unit 2-norm, then we have
two projectors

v = Pu = (qq’)u

w = Pyu=[I-(qq")Ju = u—q(q'u)

e The Householder transformation is almost a projection onto R*(v)

e However, because of the “2” it projects past R*(v), or reflects about R+(v)

Householder Transformations

e We construct Householder reflector H through careful selection of v

T

VvV
H-1-2""
viv

e H is orthogonal and symmetric, H = H! = H™!

e (Given a vector a, want to chose v such that

Q 1
- O — - O —

e Substituing in formula for H we can take
V = a — ey

and a = +||al|o, with sign chosen to avoid cancelation

Householder Reflection

a
.
v a
' UVoTw ,UvTa
. vl
Rt
™~
N
~
~
~
~
! ~ 4
| S /
| span(v)— ~ y
|
| Span(v)*//
| /

e Recall, I — v(vlv)~lv!l is a projector onto R(v).
e Therefore, I — 2v(v!v) vl will reflect the transformed vector past R(v).
e Notice Householder transformation subtracts a multiple of v from a.

e With Householder, choose v such that the reflected vector has all
entries below the kth one set to zero.

e Also, choose v to avoid cancellation in kth component.

vV a

Householder Derivation

v a

— a—2——

viv

o)

o)

(@)

Choose «a = —Sign(a1)||a|| — (

a—(a—ae) = ae.

Lo

a’a — aay, viv=al
(a a— aay
— a—2 _
* ala — 2aa; + o? (a—ae)
2
+
o lElE e
2|[al|* £ 2||al|ax

a — ae; <— Choose o to get desired cancellation.

a— 2aaq + o’

a1
m |all.

Example: Householder Reflection

e Consider a=1[2 1 2|,

e Take
2 1 [2
v=a—ae = |1| —a|0] = |1 —
2 | 0] | 2
where a = +|all, = +3
e Since ay is positive, take a = —||al|2 to avoid cancellation
2] [3| [5 |
v=|1]—-1§F0 = |1
| 2 | 0 | 2

e Confirm that transformation works:

T) 5)
15
Ha:a—QVTaV: 1| —2— | 1 =
viv 9 30 9

Householder QR Factorization

e To compute QR factorization from A, use Householder reflectors to annihi-
late subdiagonal entries of each successive column

e Each Householder refector (Hy) is applied to entire matrix, but does not
affect prior columns, so zeros are preserved

e Applying H to arbitrary vector u,
T T
\aY viu
Hu = |l - 2——)Ju=u— (2——]V
viv viv
which is O(m) work; much cheaper than general matrix-vector product.

e Requires only vector v, not full matrix H

Householder QR Factorization, continued

e Process produces factorization

R
H, - -HA =
O
where R is n X n and upper triangular
R R
eIfQ=H, - --H,then A = Q o = o = QA

e To preserve solution of LLSQ), right hand side b is transformed by
same sequence

R
e Then solve triangular LLSQ) problem [o } x~c = Q'b

Householder QR Factorization, continued
e For solving LLSQ), product Q of Hj is not needed
e R can be stored in upper-triangular part of A

e Householder vectors v can be stored in now-zero lower portion

of A (almost)

e Householder transformations most easily applied in that form
anyway

kth Householder Transformation (Reflection)

Note:

\

Hkgj = a; for j < k.

kth column

(.CUZUZU

r X
L

l

82 838 83 8 8 8|8 8 8

2 83 83 88 8 8 88

82 838 83 8 8 8 8 8 8

/

+— kth row

Householder Transformations

HlA: , Hlb%b(l):

8 8 8 8
8 8 8 8
8 8 8 8

S
S

Hy Hi A =

8
8 8 8 8
8 8 8 8

8
8 8
8 8

H3H2H1A: : H3b(2) Hb(?)) —

, Hybt) — @ = (
C1
Co '

Questions: How does Hs Hy H; relate to () or (0177

What is () in this case?

Note: Householder Procedure

mmma - (%), a-q(R)

HyHy H1A = Q' Q (g) = Q' Q (g) = Q' A.
Q" = H;H, H
Q = H1TH2TH?? = H, H, Hj.
e Technically, we usually don’t need () nor the action of ().

e Just need the action of Q1 on a matrix or vector.

e Never form) or Hy (large, m x m matrices), just apply Hy to vectors:

T
Hku:u—2<vjlfu>vk.

Vk Vi

Normal Equations
Orthogonal Methods
Solving Linear Least Squares Problems SVvD

Example: Householder QR Factorization

@ For polynomial data-fitting example given previously, with

1 —1.0 1.0] '1.07
1 —0.5 0.25 0.5
A=1|1 00 00|, b=]00
1 05 025 0.5
1 1.0 1.0 2.0

@ Householder vector vy for annihilating subdiagonal entries
of first column of A is

1 [—2.236 13.236
1 0 1
V1 = 1] — 0 = 1
1 0 1
1l L o | |1] T

Michael T. Heath Scientific Computing

Normal Equations
Orthogonal Methods
Solving Linear Least Squares Problems SVD

Example, continued

@ Applying resulting Householder transformation H; yields
transformed matrix and right-hand side

2236 0 —1.118] "1.789]

0 —0.191 —0.405 —0.362

HA=| 0 0.309 —0.655|, Hyb= |—0.862
0 0.809 —0.405 —0.362

0 1.309 0.345 . 1.138]

@ Householder vector v» for annihilating subdiagonal entries
of second column of H; A _is

0 0 0
—0.191| |1.581 1772
vo=| 0309 —| 0 | =] 0.309
0.809 0 0.809
1300 | o | | 1.309 1

Michael T. Heath Scientific Computing

Normal Equations
Orthogonal Methods
Solving Linear Least Squares Problems VD)

Example, continued

@ Applying resulting Householder transformation Hs yields

2236 0 —1.118] "—1.789]

0 1581 0 0.632

H.H,A=| 0 0 —0.725|, HyH;b= |—-1.035
0 0 —0.589 ~0.816

0 0 0.047 | 0.404

@ Householder vector v3 for annihilating subdiagonal entries
of third column of HoH{ A IS

0 0] [0]
0 0 0
v = |—0.725| — [0.935| = | —1.660
—0.589 0 —0.589
0047] | 0 | | 0.047) i

Michael T. Heath Scientific Computing

Solving Linear Least Squares Problems

Example, continued

Normal Equations

Orthogonal Methods

SVD

@ Applying resulting Householder transformation Hj yields

2236 0 —1.118 T 1.789"

0 1581 0 0.632

HsH,H,A=| 0 0 0.935|, HsH,Hb= | 1.336
0 0 0 0.026

0 0 0 | | 0.337

@ Now solve upper triangular system Rx = ¢; by

back-substitution to obtain = = [0.086 0.400 1.429]"

1

Michael T. Heath

Scientific Computing

Method 3: Givens Rotations

Stopped Here

2 X 2 Rotation Matrices

% Rotation Matrix Demo 3
X=[0 1 ;... % [x0 x1 2t ?
0 271; % y0o yl] Yy
hold off
X0=X; ol

for t=0:.2:3;

c=cos(t); s=sin(t);
R= [¢ s ; =-s ¢]; i
X=R*X0; /
x=X(1,:); y=X(2,:); 2 {
plot(x,y, ' r.-");
axis equal; axis ([-3 3 =3 3]) 35 . . ; ; ;
hold on
pause(.3)

end;

demo7/rotate.m

Givens Rotations

o (Givens rotations introduce zeros one at a time.

ai

e (3lven vector a = [
a9

] . choose scalars ¢ and s so that

Orthogonal C S ap| _ |«
matrix, G —S C as 0

with ¢® + s* = 1 or, equivalently, & = y/a?} + a2

e Rearranging preceding equation, can solve for ¢ and s

FesINEH

e Gaussian elimination leads to triangular system

[%1 —ay ima%/cu] [z] B [—ozc(jz/m]

Givens Rotations

e Back-substitution yields sine and cosine

a9 aaq
s = — 5 and ¢ = > 5

e Because 2 + s = 1 <= a = \/a? + a3, we have

C and s =

a1 a2
- 2 2 2 9
\/al —|_ CL2 \/CLl —|_ a2

Example: Givens Rotations

oeleta=[4 3!

e To annihilate the second entry, compute cosine and sine

a1 1 a9 3
c = = — = 0.8 and s = = — = 0.6
CL%—l—CL% 5 \/a%—t—a% D

e Rotation is produced by orthogonal matrix
c S 0.8 0.6
G— p— p—
o s,
e Check by applying GG to a

e - [nos] 3] - [0

Givens QR Factorization

e To annihilate selected component of a, rotate target component
with another

1 0000 aq aq
0 ¢ 0 s 0 a9 Qo
0 0100 as = as
0 —s 0 ¢ 0O ay 0
O 000 1 _CL5_ _CL5_

e Using a sequence of Givens rotations, systematically annihilate successive
entries to reduce matrix to upper triangular form

e Flach rotation is orthogonal, so their product is orthogonal, producing QR
factorization

Successive (Givens Rotations

As with Householder transformations, we apply successive Givens rotations,

Gl, GQ, etc.

r T X i
GlA: v , Glb—>b(1): .
r Tr X X
r T X
r Tr X X
GoaiA= |70, G —p®@ = |
r X i
r T X
r T X i
GGy Gh A = T Gp? =7
r T X
r T 9

e How many Givens rotations (total) are required for the m x n
case”?

e How does ... G3G5 G relate to () or ()17
e What is () in this case?

Givens QR Factorization

e Straightforward implementation of Givens QR requires about 50% more
work than Householder and also requires more storage because each rota-
tion requires two numbers, ¢ and s, to define it.

e These disadvantages can be overcome with more sophisticated implementa-
tion

e Givens offers an advantage, however, when many of the matrix entries are
already zero because those annihilations can then be skipped

Givens QR Factorization

e A particularly attractive use of Givens QR is when A is upper Hessenberg
<= A is upper triangular with one additional nonzero diagonal below the
main one, i.e., a;; = 0if ¢ > 7+ 1.

.0899

0 .3381
0.0809

U

0

.2940

0 .3965
0

0.

0

.0616

.1279
.5495
.4852
.8905
.7990
.7343
.0513

O O O O O O O

e In this case we require Givens row operations applied only n times instead
of O(n?) times

e Work for Givens is thus O(n?) vs. O(n?) for Householder

e Upper Hessenberg matrices when computing eigenvalues and in Krylov sub-
space methods such as GMRES for solving sparse linear systems

Rank Deficiency

o If rank(A) < n, then QR factorization still exists, but yields singular up-
per triangular factor, R, and multiple vectors x give minimum residual norm

e Common practice selects minimum residual solution x having smallest norm
e Can be computed by QR factorization with column pivoting or by SVD

e Matrix rank is not clear cut in practice so relative tolerance is used to
determine rank

Example: Near Rank Deficiency

e Consider 3 X 2 matrix

300 .100]
A = |.100 .033
200 .066 |

e QR factorization gives

— 3742 —.1243
R = [0 .0006]’

which is close to singular

e [f R is used to solve LLSQ) problem result will be sensitive to perturbations
in right-hand side

e For practical purposes, rank(A)=1 rather than 2 because columns of A are
nearly parallel

QR with Column Pivoting

e At cach stage k, choose to reduce column having maximum 2-norm for (re-

duced) submatrix A(k :m,k : n)

o [f rank(A) = k < n, then after k£ steps norms of remaining unreduced
columns will be negligible below row k

e Rank is determined when maximum norm of remaining unreduced columns
falls below chosen tolerance

e Orthogonal factorization will be of form

R S

where nonsingular R is k& X k upper triangular and P performs column
interchanges

Singular Value Decomposition

e Singular value decomposition (SVD) of m x n matrix A is
A = UxV’

where U is m x m orthogonal matrix, V is n X n orthogonal matrix, X2 is
m X n diagonal matrix with

0@']':{0 for 1 #

o, >0 fori=9

e Diagonal entries o; are singular values of A and usually ordered so that
01 2092+ 20y

e Columns u; of U and v; of V are respective left and right singular vectors

SVD of Rectangular Matrix A

e A=UXV"!ism xn.
e U is m X m, orthogonal.
e > is m X n, diagonal, o; > 0.

e |/ is n X n, orthogonal.

Example:

e SVD of A

SVD

A~ QO DN —
o 3 O Ot
—_ =

DO — O O©

—0.4036 0.7329 0.5110
—0.4647 0.2898 —0.8283

is A =UXV! with

0.1972 |
0.1180

—0.5259 —0.1532 0.1236 —0.8275

—0.5870 —0.5962 0.1937

25437 0 0
0 1.7226 0
0 0 142 —15
0 0 0

—0.2067 —0.5183 —0.8298
—0.8892 —0.2544 0.3804
0.4082 —0.8165 0.4082

0.5123 |

Applications of SVD

o Ninimum norm solultion to AxX =~ b is

X = Z i(u;pb)vj

O- .
070 J

For ill-conditioned or rank-deficient cases, replace 1/0; with 0 to stabilize
solution. (Keeps y = Ax in the “true” space spanned by |a; as ... a,))

o Luclidian matrix norm: ||Alls = omax
o Luclidian condition number: cond(A) = Zmax
min

e Rank of matriz: number of nonzero singular values

SVD for Linear Least Squares Problem: A = UXV?

Az =~ D
ULV! ~ b
UVt = U'h

SV o~ U

O W
=
N
N\
s
SN——

Rx = ¢
n n
1 1 .
z=> v—(c);=» v;—ub
o o=
J : J

SVD for Linear Least Squares Problem: A = UXV?

e SVD can also handle the rank deficient case.

e If there are only k£ singular values o; > € then
take only the first £ contributions.

Pseudoinverse
e Define pseudoinverse of scalar o to be 1/0 if o # 0,, zero otherwise

e Define pseudoinverse of (possibly rectangular) diagonal matrix by transpos-
ing and taking scalar pseudoinverse of each entry

e Then pseudoinverse of general real m X n matrix A is
AT = viu’

e Pseudoinverse always exists whether or not matrix is square or has full rank
o If A is square and nonsingular then AT = A1

e In all cases, minimum-norm solution to Ax ~bisx=A"b

Orthogonal Bases

e SVD of matrix, A = UX V', provides orthogonal bases for subspaces rele-
vant to A

e Columns of U corresponding to nonzero singular values form orthonormal

basis for R(A)

e Remaining columns of U form orthonormal basis for orthogonal comple-
ment R-(A)

e Columns of V corresponding to zero singular values form orthonormal basis
for nullspace of A,

R(V)=NA)={v#£0: ve NA) < Av =0}

e Remaining columns of V form orthonormal basis for orthogonal complement

N=(A)

Low-Rank Approximations to Matrices or Data
e With E; := u;v!, the SVD of A can be expanded term by term as
A = UXV' = 6E| + 0By + -+ + 0,E,
e Flach m x n matrix E; is rank 1 and can be stored using only m 4 n storage

e Product E;x can be evaluated using only m +n multiplications and m +n
additions

e Condensed approximation to A is obtained by omitting from summation
terms corresponding to small singular values

e [f singular values are ordered
0'120'22...>0'n

then using the first k£ terms will give best rank k approrimation to A
(Eckart-Young-Mirsky Theorem)

e Storage and work costs are O(k(m +n)) < O(mn) if k is relatively small

e Approximation is useful in data compression, image processing, information
retrieval, cryptography, etc.

Low-Rank Approximations of A

e Because of the diagonal form of X, we have
A=UsV"' =) uov]
j=1

e A rank k approximation to A is given by

k
~ . E T

J=1

e A, is the best approximation to A in the Frobenius norm,

|A[[F = a?j
]

e Note that in this context, its more common to think of A as the data which
is to be approximated and Aj as the model.

SVD for Image Compression

 If we view an image as an m x n matrix, we can use the SVD to
generate a low-rank compressed version.

 Full image storage cost scales as O(mn)

J Compress image storage scales as O(km) + O(kn), with k < m or n.

Image Compression

1 If we view an image as an m x n matrix, we can use the SVD to
generate a low-rank compressed version.

 Full image storage cost scales as O(mn)

J Compress image storage scales as O(km) + O(kn), with k < m or n.

Image Compression

1 If we view an image as an m x n matrix, we can use the SVD to
generate a low-rank compressed version.

 Full image storage cost scales as O(mn)

J Compress image storage scales as O(km) + O(kn), with k < m or n.

k=1 k=2 k=3 (m=536,n=432)

Matlab code

[X,A]l]=imread('collins img.gif'); [m,n]=size(X);

Xo=X; imwrite(Xo, 'oldfile.png’)

whos

X=double(X); [U,D,V] = svd(X); % COMPUTE SVD

X = 0*X;

for k=1l:min(m,n); k
X = X + U(:,k)*D(k,k)*V(:,k)";
Xi = uint8(X); imwrite(Xi, 'newfile.png'); spy(Xi>100);
pause

end;

Image Compression

Compressed image storage scales as O(km) + O(kn), with k < m or n.
k=1 k=2 k=3

k=10 k=20 k=50 (m=536, n=462)

Low-Rank Approximations to Solutions of AX =Db

If oy <0y < -+ < 0y,

~ s
L Z] ! J—J—Jé

. Other functions, aside from the inverse of the matrix, can
also be approximated in this way, at relatively low cost,
once the SVD is known.

Example: Total Least Squares

Figure 3.5: Ordinary and total least squares fits of straight line to given data.

Projecting Noisy Data in R® onto 2D Plane

e (Given rank-3 matrix

1T Yy 21
L2 Yz <2
X=|" "7

| Tm Ym “Zm _

e ['ind rank-2 matrix X, ~ X that minimizes difference in Frobenius norm

e Compute UXV! = X and set ¥y = X, with, however, o5 = 0.

o Sct X_2 — UEQVT

demo7/svd5.m

hdr; hold off;
X=[5.0000e-01 -6.
5.5548e-01 3.
-2.1973e-01 4.
-6.4594e-01 1.
-2.5503e-01 -1.
-2.7895e-03 -2.
6.8013e-02 -7.

[U,S,V]=svd(X,0);

S2 = S; S2(3,3)=0;
X2 = UxS2xV';
hold off;

6164e-02 4.2484e-02 ;
2280e-01 6.2050e-01 ;
9042e-01 8.2918e-01 ;
7391e-01 2.5801e-01 ;
3753e-01 -5.7648e-02 ;
5073e-02 1.5746e-03 ;
3863e-02 -5.3926e-021;
Projected data

xp=X(:,1); yp=X(:,2); zp=X(:,3);

xp=[xp; xp(1)1; yp=Lyp; yp(1)]1; zp=[zp; zp(1)1;

plot3(xp,yp,zp, 'bo-"',1w,2)
title('Original Data',fs,24);
xlabel('X',fs,24); ylabel('Y',6fs,24); zlabel('Z',6fs,24);

axis equal;
pause(l); pause;

hold on;

xp=X2(:,1); yp=X2(:,2); zp=X2(:,3);

xp=[xp; xp(1)1; yp=Lyp; yp(1)]1; zp=[zp; zp(1)1;

plot3(xp,yp,zp, 'ro-',1w,2)

title('Original and Projected Data',fs,24);

Original data

xlabel('X',fs,24); ylabel('Y',6 fs,24); zlabel('Z',6fs,24);

axis equal;

Comparison of Methods for LLSQ

2

e Forming normal equations matrix ATA requires ~ n°“m ops and

solving resulting linear system = n’/3 ops.

e Solving LLSQ using Householder QR requires ~ 2n?(m — n/3) ops

e If m = n, both require about the same amount of work

e If m > n, Householder QR requires about 2x the number of ops as
normal equations (but is more robust)

e Cost of SVD is = C'(mn? + n?), with C' = 4 to 10, depending on
algorithm used

Comparison of Methods for LLSQ

e Normal equations method produces solution with relative error proportional

to [cond(A))?

e Required Cholesky factorization expected to break down if cond(A) 2

Wer

e Householder method produces solution with relative error proportional to
cond(A) + ||r]|s[cond(A)]%,
which is best possible because of inherent sensitivity of LLS() problem

e Householder method expected to break down (in back-substitution phase,
Rx = c¢;) only if cond(A) 2 1/ey

Comparison of Methods for LLSQ

e Householder is more accurate and broadly applicable than normal equations

e These advantages may not be worth the additional cost when problem is
sufficiently well conditioned that normal equations are OK

e For rank-deficient problems, Householder with column pivoting can produce
useful solution

e SVD is even more robust, but more expensive.

