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Nonlinear Equation Example

• Is there an x where x = cos(x)?
(Graphing is usually a good idea, if possible.)

• Rewrite as f(x) = x � cos x and find x⇤ such that f(x⇤) = 0.

f(x) = x - cos x



Nonlinear Equations

• Given function f , we seek value x (sometimes x⇤) for which

f (x) = 0

• Solution is root of equation, or zero of f

• So problem is known as root finding or zero finding
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Nonlinear Equations

• Single nonlinear equation in one unknown, where

f : lR �! lR

Solution is scalar x for which f (x) = 0

• System of n coupled nonlinear equations in n unknowns, where in one un-

known, where

f : lR
n �! lR

n

Solution is vector x for which all components are zero simultaneously,
f(x) = 0
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Existence and Uniqueness

• Existence and uniqueness of solutions are more complicated for nonlinear

equations than for linear equations

• For function f : lR �! lR, bracket is interval [a, b] for which sign of f
di↵ers at endpoints

• If f is continuous and sign(f (a)) 6=sign(f (b)), then Intermediate Value The-

orem implies there is x2[a, b] such that f (x⇤) = 0

• There is no simple analog for n dimensions
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Examples: One Dimension

Nonlinear equations can have any number of solutions

• ex + 1 = 0 has no solution

• e�x � x = 0 has one solution

• x2 � 4 sin(x) = 0 has two solutions

• x3 + 8x2 + 11x� 6 = 0 has three solutions

• sin(x) = 0 has infinitely many solutions
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No solution
1 solution

4 solutions
2 solutions

Examples: Systems in Two Dimensions

x21 � x2 + � = 0 (1)

�x1 + x22 + � = 0 (2)

(3)
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Multiplicity

• If f (x⇤) = f 0
(x⇤) = f 00

(x⇤) = · · · = f (m�1)
(x⇤) = 0, but f (m)

(x⇤) 6= 0

(i.e., mth derivative is lowest nonvanishing derivate at x⇤), then root x⇤ has
multiplicity m

• If m = 1 (f (x⇤) = 0 and f 0
(x⇤) 6= 0), then x⇤ is simple root
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two roots at x=1,
multiplicity=2

three roots at 1
multiplicity=3



Sensitivity and Conditioning

• Conditioning of root finding problem is opposite to that for evaluating

function (steeper is better!)

• Absolute condition number of root finding problem is root x⇤ of f is 1/|f 0
(x⇤)|

• Root is ill-conditioned if tangent line is nearly horizontal

• In particular, multiple root (m > 1) is ill-conditioned

• Absolute condition number of root finding problem for system of equations

at root x
⇤
is kJf(x

⇤
)k, where Jf is Jacobian matrix of f :

{Jf(x)}ij =
@fi(x)

@xj

• Root is ill-conditioned if Jf(x
⇤
) is nearly singular
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Sensitivity and Conditioning

• What do we mean by approximate solution x̂ to nonlinear system,

kf(x̂)k ⇡ 0 or kx̂� x
⇤k ⇡ 0 ?

• First corresponds to “small residual,” second measures closeness to (usually

unknown) true solution x
⇤

• These solution criteria are not necessarily “small” simultaneously

• Small residual implies accurate solution only if problem is well-conditioned

10

f is near zero for large range of 
x in neighborhood of x*.

Difficult to find x* to significant 
precision.

Sensitivity and Conditioning

• well-conditioned

• ill-conditioned
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High multiplicity at x* implies that values of x near x* 
will yield “small” values of f(x) ~ C|x-x*|m



Convergence Rate

• For general iterative methods, define error at iteration k by

ek = xk � x
⇤

where xk is approximate solution and x
⇤
is true solution

• For methods that maintain interval known to contain solution, rather than

specific approximate value for solution, take error to be length of interval

containing solution

• Sequence converges with rate r if

lim
k�!1

kek+1k
kekkr

= C

for some finite nonzero constant C
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Important definition 
for this chapter…

A central theme throughout the chapter (and the course) is 
to build methods that have a high rate of convergence.



Convergence Rate, continued

Some particular cases of interest

• r = 1 : linear (C < 1)

• r > 1 : superlinear

• r = 2 : quadratic

Convergence Digits gained

Rate per iteration

linear constant

superlinear increasing

quadratic double
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Methods for One-Dimensional Problems
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Interval Bisection Method

Bisection method begins with initial bracket and repeatedly halves

the bracket length until solution is isolated as accurately as desired

while ((b� a) > tol) do

m = a + (b� a)/2

if sign(f (a)) = sign(f (m)) then

a = m

else

b = m

end

end
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Bisection Method, continued

• Bisection method makes no use of magnitudes of function values, only their

signs

• Bisection is certain to converge, but does so slowly

• At each iteration, length of interval containing solution is reduced by half,

so convergence rate is linear, with (r = 1) and C = 0.5

• One bit of accuracy is gained in approximate solution fo reach iteration of

bisection

• Given starting interval [a, b], length of interval after k iterations is (b�a)/2k,
so achieving error tolerance tol reqires

⇠
log2

✓
b� a

tol

◆⇡

iterations, regardless of function f involved
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bisect.m

Example: Bisection Method

Bisection method begins with initial bracket and repeatedly halves the bracket

length until solution is isolated as accurately as desired

while ((b� a) > tol) do

m = a + (b� a)/2

if sign(f (a)) = sign(f (m)) then

a = m

else

b = m

end

end
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bisect.m

Q:  What happens if we go beyond 50 iterations?



Fixed-Point Problems

• Fixed point of given function g : lR �! lR is value x such that

x = g(x)

• Many iterative methods for solving nonlinear equations use fixed-point
iteration of the form

xk+1 = g(xk),

where fixed points for g are solutions for f (x) = 0

• Also called functional iteration, since g is applied repeatedly to initial

starting value x0

• For given equation f (x) = 0, there may be many equivalent fixed-point

problems with di↵erent choices for g and di↵erent rates of convergence
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Example: Fixed-Point Problems

If f (x) = x2 � x� 2, then fixed points of each of the functions

• g(x) = x2 � 2

• g(x) =
p
x + 2

• g(x) = 1 + 2/x

• g(x) = x2+2
2x�1

are solutions to equation

f (x) = 0 at x⇤ = 2
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Essential Questions for Fixed-Point Iteration

x⇤ = g(x⇤) fixed-point

xk = g(xk�1) fixed-point iteration

xk �! x⇤ convergent?

• Is the convergence linear? Superlinear?

• Fixed-point iteration is often superlinear.

• Fixed-point iteration extends to multiple dimensions.

• Newton’s method is a fixed-point iteration.



fixpt_demo.m

Q: Why does the iteration diverge near x=0, 
but converge to x* near 1.9 ?



Convergence of Fixed-Point Iteration

• Define error at kth iterate: ek = xk � x⇤ () xk = x⇤ + ek
• Apply fixed-point iteration and subtract fixed-point solution,

xk+1 = g(xk)

� x⇤ = g(x⇤)

ek+1 = g(xk) � g(x⇤)

• Use Taylor series expansion about x⇤

ek+1 = g(x⇤ + ek) � g(x⇤)

= [g(x⇤) + ek g
0
(x⇤) +

e2k
2
g00(x⇤) + · · · ] � g(x⇤)

= ek g
0
(x⇤) +

e2k
2
g00(x⇤) + higher-order terms

• Therefore, as k �! 1,

|ek+1|
|ek|

⇠ |g0(x⇤)| if g0(x⇤) 6= 0 (linear)

|ek+1|
|ek|2

⇠ 1

2
|g00(x⇤)| if g0(x⇤) = 0 and g00(x⇤) 6= 0 (quadratic)
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Convergence of Fixed-Point Iteration

• If x⇤ = g(x⇤) and |g0(x⇤)| < 1, then there is an interval containing x⇤ such
that the iteration

xk+1 = g(xk),

converges to x⇤ if started within that interval

• If |g0(x⇤)| > 1, then the iterative scheme diverges

• Asymptotic convergence rate of fixed-point iteration is usually linear, with

constant C = |g0(x⇤)|

• But if g0(x⇤) = 0, then convergence rate is at least quadratic
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Q: Which of these will converge the fastest?

fixpt(k).m



Example: Fixed-Point Problems

If f (x) = x2 � x� 2, then fixed points of each of the functions

• g(x) = x2 � 2

• g(x) =
p
x + 2

• g(x) = 1 + 2/x

• g(x) = x2+2
2x�1

are solutions to equation

f (x) = 0 at x⇤ = 2

4



Example: Fixed-Point Problems

If f (x) = x2 � x� 2, then fixed points of each of the functions

• g(x) = x2 � 2

• g(x) =
p
x + 2

• g(x) = 1 + 2/x

• g(x) = x2+2
2x�1

are solutions to equation

f (x) = 0 at x⇤ = 2

4



Accelerating Linearly Convergent Sequences

• Often, we don’t have an equation of the form f(x) = 0.

• Instead, we have a sequence xk that is approaching a value x⇤ .

• Linear convergence can be accelerated via many methods.

• One historically important one is Aitken’s �2 Method:

yk+2 := xk+2 � �2�2

�2 � �1
,

with

�1 := xk+1 � xk
�2 := xk+2 � xk+1.

• For a linearly-convergent sequence xk, the corresponding yks will
generally be closer to x⇤. (One must be careful about round-o↵.)



• This improved convergence suggests the following modified fixed point

iteration for the solution x⇤ = g(x⇤):

Fixed Point Iteration

• Start with x0.

for k = 0, 1, . . . ,

xk+1 = g(xk)

end

Accelerated Iteration

• Start with x0.

for k = 0, 2, 4, . . . ,

xk+1 = g(xk)

xk+2 = g(xk+1)

�2 = xk+2 � xk+1, �1 = xk+1 � xk
xk+2 = xk+2 ��

2
2/(�2 ��1)

end

• matlab code:

x0=0;

for k=1:5;

x1=g(x0);

x2=g(x1);

d1=x1-x0; d2=x2-x1;

x0=x2 - (d2*d2)/(d2-d1);

end;

Returning to Our Fixed Point Examples

• Aitken’s �
2
method is essentially linear

extrapolation of successive outputs from

a linearly-convergence sequence.

1



Matlab demo: aitken.m



Matlab demo: aitken.m



Aitken’s D2 Method Converges for a Divergent Sequence!
aitken2.m
aitken3.m



Aitken’s D2 Method Converges for a Divergent Sequence!

aitken2.m



Alternatives to Aitken’s �2-Method

• If you start with a sequence

xk+1 = g(xk),

with fixed point x⇤ = g(x⇤), you can rewrite this as a root-finding

problem:

f(x) := x� g(x),

for which f(x⇤) = 0.

• Thus, any fixed-point iteration can also be transformed into a

root-finding problem, to which we can apply standard acceleration

techniques.

• The most common technique is Newton’s Method, also known

as the Newton-Raphson Method.

• Other related techniques (e.g., Secant Method) try to mimic the

main idea of Newton’s Method with lower cost.



Newton’s Method

Newton’s method approximates nonlinear function f near xk by tangent line
at f (xk)

7



Newton’s Method

• Truncated Taylor series

f (x + h) ⇡ f (x) + f 0
(x)h

is linear function approximating f near x

• Replace f by this linear function, solve for f (x + h) = 0,

0 = f (x + h) = f (x) + f 0
(x)h �! h = �f (x)/f 0

(x)

• Zero of this linear function does not exactly match that of f (x), so repeat

process starting at x = x + h, yields iteration scheme, Newton’s Method

xk+1 = xk � f (xk)

f 0(xk)

9



Example: Newton’s Method

• Use Newton’s method to find root of f (x) = x2 � 4 sin(x) = 0

• Derivative is f 0
(x) = 2x� 4 cos(x), so iteration is

xk+1 = xk � x2k � 4 sin(xk)

2xk � 4 cos(xk)

• Taking x0 = 3 as starting point, we obtain

10

newton_4sin.m
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Convergence of Newton’s Method

• Newton’s method is a fixed-point iteration with

g(x) = x � f (x)

f 0(x)

and

g0(x) = 1 � (f 0
(x))2 � f (x)f 00

(x)

(f 0(x))2

• If x⇤ is a simple root then f (x⇤) = 0 and

g0(x⇤) = 1 � (f 0
(x))2

(f 0(x))2
= 0

so we expect at quadratic convergence (r = 2)

• Iterations must start close enough to root to converge

(i.e., need x0 in “ball of convergence”)

12



Examples of Newton’s Method

• Newton’s method is often used for intrinsic functions such as x = 1/A
and x =

p
A.

• In addition to the rate of convergence, it is important to know how to gen-

erate an initial guess that will be in the interval of convergence, so that

for any x0, xk �! x⇤

• Let’s look at three examples for these cases.

13



Examples of Newton’s Method: Compute 1/A.

• Start with f (x) = A� 1

x
f (

1

A
) = A� A = 0

g(x) = x � f

f 0 f 0 = x�2

= x �
A� 1

x

x�2

= x �
�
Ax2 � x

�

= 2x � Ax2

• Verify: g(1/A) = 2/A� 1/A = 1/A

g0(1/A) = 2� 2A/A = 0
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Examples of Newton’s Method: Compute 1/A.

• Start with “Find x = 1/A” for a scalar input A by letting f (x) = A�1/x:

�! f 0
(x) = 1/x2 �! x = x� f/f 0

= x� (Ax2 � x) = 2x�Ax2

• The fixed-point iteration is therefore

xk+1 = (2� Axk)xk

• Note that this expression involves two multiplies and one addition and of

course no divisions since that is the operator we are trying to implement

15



Compute 1/A: Interval of Convergence

• It is important to understand the interval of convergence for this method.

• That is, for what range of xk will |g0(x)| < 1?

• Usually easiest to answer the question with respect to x⇤.

• So, one has

g0(x) = 2� 2Ax = 2� 2
x

x⇤
.

• Inserting into the bracketing range, �1 < g0 < 1,

1

2
<

x0
x⇤

<
3

2

will guarantee convergence.

• If A = 1.bbb . . . ⇥ 2k, then

1

2
⇥ 2�k  A�1 =

1

1.bbb . . .
⇥ 2�k  1⇥ 2�k.

• Can take as an initial guess

x0 =
3

4
⇥ 2�k,

from which one easily verifies that x0A is in [12, 1].

2

newton_inv.m



Figure 2: Assembly code for 32-bit floating-point divide on the Intel i860.

We note that g(1/A) = 1/A and g0(1/A) = 2� 2A(1/A)=0, so the scheme has x⇤ = 1/A as a fixed
point and is quadratically convergent.

It is important to understand the radius of convergence for this method. That is, for what range
of xk will |g0(x)| < 1? It’s usually easiest to answer the question with respect to x⇤. So, one has

g0(x) = 2� 2Ax = 2� 2
x

x⇤
.

Inserting this into the bracketing range, �1 < g0 < 1, we find

1

2
<

x0
x⇤

<
3

2

3



Figure 3: Assembly code for 64-bit floating-point divide on the Intel i860.

will guarantee convergence. If

A = 1.bbb . . . ⇥ 2k,

then

1

2
⇥ 2�k  A�1 =

1

1.bbb . . .
⇥ 2�k  1⇥ 2�k.

We can take as an initial guess

x0 =
3

4
⇥ 2�k,

4
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A Note on Newton’s Method for Intrinsics

Paul F. Fischer
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Newton’s method is often used for intrinsic function evaluation. The primary considerations in
developing a scheme are

• The rate of convergence.

• Ensuring the initial guess is in the radius of convergence.

Here, we consider three applications of Newton’s method for some basic function evaluations. To
simplify the exposition, we assume throughout that A > 0.

1 Newton for
p
A.

A common usage for Newton iteration is in computation of square roots. Suppose we want to find
x⇤ =

p
A, which can be expressed as the root-finding problem:

f(x) = x2 �A. (1)

Applying Newton’s method to generate a fixed point scheme xk+1 = g(xk), we have

g(x) = x� f

f 0 = x� x2 �A

2x
=

1

2

✓
x+

A

x

◆
.

This is a very well-known scheme and is globally convergent. Assuming A > 0, we establish the
latter claim as follows. Note that if x0 < x⇤ then x1 > x⇤. Moreover,

g0(x) =
1

2

✓
1� A

x2

◆

is between 0 and 1/2 for all x > x⇤, so each iteration yields a contraction in the error for any
xk > x⇤. Quadratic convergence results because g0(x⇤) = 0.

A good initial guess x0 can be obtained through range reduction, in which one maps the problem
to a suitable range over which the error is known. Range reduction for the square-root problem
begins by exploiting the binary representation of A,

A = 1.bbb . . . ⇥ 2k

= Bb.bbb . . . ⇥ 2l.

In the second expression, the mantissa is normalized (via a shift) onto the interval [1, 4) so that the
exponent l is even. That is, if k is even, take B=0 and l = k. If k is odd, take B = 1 and l = k� 1.
The exponent of x⇤ is thus l/2, which is e↵ected as a bit shift to the right, with no information
loss. The mantissa of x⇤ is the square-root of the normalized mantissa and will be on [1, 2), such
that the result will be normalized.

1

Example: Newton for
p
A

2



Example: Newton for
p
A

• Because g(x) is concave up with slope 0 at x⇤, every value satisfies g(x) > x⇤

• Therefore, for any x0 > 0, we have x1 > x⇤.

• For xk > x⇤, g0(xk) 2 [0 : 1/2], so we gain at least one bit per iteration for
k > 1.

1
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Figure 1: Plot of x =
p
A, y1 = 2/3 +A/3, and y2 = 3/4 +A/3.

There are many ways to generate a good initial guess for the mantissa. Without loss of generality,
assume A 2 [1, 4). Figure 1 shows x⇤ =

p
A along with two lines, y1(A) = (2 + A)/3 and

y2(A) = 3/4 + A/3, which bound x⇤ on the interval [1, 4]. The gap between y1 and y2 is 1/12.
Taking the average of these two lines, let

x0 =
17

24
+

A

3
. (2)

We know that |x0 � x⇤|  1/24 ⇡ .04 and, with quadratic convergence, we can anticipate about 4
iterations to reduce the error to below ✏M .

2 Newton for 1/A.

While most machines are equiped with one or more fused multiply-add (FMA) units capable of
producing (in pipelined fashion) one result per clock cycle, it is not uncommon for division to take
multiple clock cycles because it generally requires some type of iteration. A classic example is the
Intel’s RISC processor, the i860, which required about 50 clock cycles to compute c = a/b. The
respective assembly code for 32-bit and 64-bit division is shown in Figs. 2 and 3.

The scheme is based on Newton’s method applied to

f(x) =
1

Ax
� 1

to arrive at the fixed-point iteration xk+1 = g(xk), with

g(x) = 2x�Ax2 = x(2�Ax).

2

Generating a Good Initial Guess for A1/2
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Example: Newton for
p
A

2

QR Factorization and Least Squares Review

• Can you find a Newton method for
p
A that does not require

division on each iteration??



Example: Faster Newton for
p
A

• The problem with the classic fixed point iteration

g(xk) =
1

2

✓
x +

A

x

◆

is that it requires evaluation of A/x on each iteration

• As we’ve seen, division also requires a Newton iteration

• A method that avoids repeated division can be found by starting with

f =
A

x2
� 1 = Ax�2 � 1

f 0 = �2x�3A

f

f 0 =
x3

2A
� x

2
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• The resulting fixed-point iteration is based on

g(x) = x� f

f 0 =
3

2
x� x3

2A
= (c1 � c2x

2
)x,

which requires one addition and three multiplies after an initial computa-

tion of (2A)�1

• Unlike the classic iteration, this new one, which is polynomial in x, is not
globally convergent

• However, after range reduction to [1 : 4], it is convergent for the initial guess

of the preceding slides or even for something as simple as x0 = .5(1 + A)
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Returning to Newton

• Recall main result

g(x) = x� f

f 0

• At root, f (x⇤) = 0, so

g(x⇤) = x⇤ � f (x⇤)

f 0(x⇤)
= x⇤

provided f 0(x⇤) 6= 0.

• Moreover,

g0(x) = 1� (f 0)2 � f f 00

(f 0)2

g0(x⇤) = 1� (f 0)2

(f 0)2
= 0 if f 0(x⇤) 6= 0

• So convergence is quadratic if f 0(x⇤) 6= 0
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Newton, continued

• What if f 0
(x⇤) = 0?

• Assume f 00
(x⇤) 6= 0. Then,

g(x⇤) = x⇤ � f (x⇤)

f 0(x⇤)| {z }
?

• Because f (x⇤) = f 0
(x⇤) = 0, we have to use L’hôpital’s Rule:

lim
x�!x⇤

f

f 0 = lim
x�!x⇤

f 0

f 00 = 0

• So, yes, still a fixed-point because g(x⇤) = x⇤

• What about convergence?

• Does g0(x⇤) = 0 in this case?

2
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Newton, continued

• Here, we need to evaluate g0(x⇤),

g0(x) = 1� (f 0
)
2 � f f 00

(f 0)2
=

f f 00

(f 0)2

lim
x�!x⇤

g0(x) = lim
x�!x⇤

f f 00

(f 0)2
=

0

0

• L’hôpital again,

lim
x�!x⇤

g0(x) = lim
x�!x⇤

d
dx(f f 00

)

d
dx(f

0)2
= lim

x�!x⇤

f 0f 00
+ f f 000

2f 0f 00 =
0

0

= lim
x�!x⇤

1

2

f 002
+ f 0f 000

+ f 0f 000
+ f f 0000

(f 00)2 + f 0f 000

= lim
x�!x⇤

1

2

f 002

f 002 =
1

2
6= 0

• More generally, if multiplicity is m, convergence is linear, with constant

C = 1 � 1

m
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=

0

0

• L’hôpital again,

lim
x�!x⇤

g0(x) = lim
x�!x⇤

d
dx(f f 00

)

d
dx(f

0)2
= lim

x�!x⇤

f 0f 00
+ f f 000

2f 0f 00 =
0

0

= lim
x�!x⇤

1

2

f 002
+ f 0f 000

+ f 0f 000
+ f f 0000

(f 00)2 + f 0f 000

= lim
x�!x⇤

1

2

f 002

f 002 =
1

2
6= 0

• More generally, if multiplicity is m, convergence is linear, with constant

C = 1 � 1

m

3

Convergence is slower 
with increasing m



Alternatives to Newton

• Main issue with Newton iteration is the need for f 0
(x)

• Often, only know f (x), maybe only as a function call (i.e., f (x) is
a “black box”)

• Several methods exist for constructing a model (i.e., interpolant)
that approximates f (x) and passes through [xk, f (xk)] pairs.

• One can then approximate f 0
(xk) or simply use the interpolant to

find approximate root, xk+1

• Common choices:

• Secant method

• Muller’s method

• Inverse interpolation

• Linear fractional iteration

• We’ll look at three of these
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Secant Method

• By far the most popular nonlinear solver for f (x) = 0 is the secant method

• It is similar to Newton in that it uses slope information and converges su-

perlinearly, but it does not require evaluation of f 0
(x)

• Instead, on approximates the derivative as f 0
(xk) ⇡ �f

�x =
f(xk)�f(xk�1)

xk�xk�1

• The resulting secant method is

xk+1 = xk � f (xk)

�f/�x
= xk � f (xk)

f (xk)� f (xk�1)
(xk � xk�1)

2



Secant Method, continued

• The resulting secant method is

xk+1 = xk � f (xk)

�f/�x
= xk � f (xk)

f (xk)� f (xk�1)
(xk � xk�1)

• Here, you need two starting values x0 and x1

• Don’t make these too close or round-o↵ (cancellation) may a↵ect the result
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= xk � f (xk)
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Example: Secant Method

• We apply the secant method to f (x) = x2 � 4 sin(x)

• We see that, as expected, the convergence is superlinear, but not as fast as
Newton

4

demo_sec.m
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Example: Secant Method

• For reference, here compare to the Newton results:

• We see that, as expected, the convergence is superlinear, but not as fast as
Newton
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Secant Method: Rate of Convergence

• Note, the secant method is not a fixed-point iteration as it requires two
function evaluations for the update

• As k �! 1, the asymptotic error behavior for the secant method for a
simple root is

ek+1 ⇠ 1

2

f
00(x⇤)

f 0(x⇤)
ekek�1 = Cekek�1

• We sketch the derivation as follows.

• Near the root, assume

f = ax
2 + b̃x + c = a(x� x

⇤)2 + b(x� x
⇤) = a�

2 + b�

with � := x� x
⇤

• Note that a = 1
2f

00(x⇤) and b = f
0(x⇤)
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Secant Method: Rate of Convergence

• This approximation is simply retaining the first 3 terms in the Taylor series
expansion of f at x⇤

• Define successive iterates as x0, x1, and (to be determined) x2, with corre-
sponding �’s, �0, �1, and �2

• The secant update step is then

�2 = �1 � (a�21 + b�1)
�1 � �0

a(�21 � �20) + b(�1 � �0)

= �1 �
a�

2
1 + b�1

a(�1 + �0) + b

• Now use the result that �1 ⌧ �0, retain only b�1 in the numerator, and use
the expansion, 1

1+✏
⇠ 1� ✏ + ✏

2 · · · , to find

�2 ⇠ �1

h
a

b
(�1 + �0)

i
+ O(�21)

⇠ a

b
�1�0 + O(�21)
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Secant Method: Rate of Convergence

• We’ve now established

ek+1 ⇠ 1

2

f 00(x⇤)

f 0(x⇤)
ekek�1 = Cekek�1

• What about the convergence rate, r, in the expression for the asymptotic
convergence

|ek+1|
|ek|r

⇠ C

• As k �! 1, we have

ek+1 ⇠ c eke�1 ⇠ Cerk

• For simplicity, assume errors are positive

C ⇠ ek+1

erk
⇠ c

ekek�1

erk
, Cerk�1 = ek

⇠ c

C

eke
1
r
k

erk
=

c

C
e
1+1

r�r
k = constant, C
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Secant Method: Rate of Convergence

• Both sides of the preceding expression are constant,

C ⇠ c

C
e
1+1

r�r
k ,

• If this is a constant, independent of k, then the exponent 1 + 1
r � r must

equate to 0, which implies that r is the positive root of the quadratic equa-
tion

r2 � r � 1 = 0

• The solution is the golden ratio,

r =
1 +

p
5

2
⇡ 1.618

• Thus, convergence of the secant method is superlinear, with rate
r = 1.618...

2



Muller’s Method

• Muller’s method is a natural extension of the secant method but (as we will
see) is not as robust as the superior quadratic inverse iteration (or simply
“inverse iteration”)

• Nonetheless, Muller’s method has one attractive feature that warrants at-
tention, and that is that it can find complex roots

• The idea behind Muller’s metho is to use three successive function pairs
[xk, f (xk)] to fit a parabola to approximate f (x) and to then find the nearby
root of this parabola.

• When it works, the convergence rate of Muller’s method is r ⇡ 1.839, the
same as inverse iteration

• We will see in the following demos that it is not as robust as secant or inverse
iteration

1
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5.5 Nonlinear Equations in One Dimension 233

so that the next approximate solution is simply p(0). This idea is illustrated in
Fig. 5.8, where a parabola fitting y as a function of x has no real root (i.e., it fails
to cross the x axis), but a parabola fitting x as a function of y is merely evaluated
at y = 0 to obtain the next iterate.
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Figure 5.8: Inverse interpolation for approximating root. Dashed line is regular quadratic
fit, solid line is inverse quadratic fit.

Using inverse quadratic interpolation, at each iteration we have three approxi-
mate solution values, which we denote by a, b, and c, with corresponding function
values fa, fb, and fc, respectively. The next approximate solution is found by fit-
ting a quadratic polynomial to a, b, and c as a function of fa, fb, and fc, and then
evaluating the polynomial at 0. This task is accomplished by the following formu-
las, whose derivation will become clearer after we study Lagrange interpolation in
Section 7.3.2:

u = fb/fc, v = fb/fa, w = fa/fc,

p = v(w(u� w)(c� b)� (1� u)(b� a)), q = (w � 1)(u� 1)(v � 1).

The new approximate solution is given by b + p/q. The process is then repeated
with b replaced by the new approximation, a replaced by the old b, and c replaced
by the old a. Note that only one new function evaluation is needed per iteration.
The convergence rate of inverse quadratic interpolation for root finding is r ⇡ 1.839,
which is the same as for regular quadratic interpolation (Muller’s method). Again
this result is local, and the iterations must be started close enough to the solution
to obtain convergence.

Example 5.13 Inverse Quadratic Interpolation. We illustrate inverse quadratic
interpolation by again finding a root of the equation

f(x) = x
2
� 4 sin(x) = 0.

Taking a = 1, b = 2, and c = 3 as starting values, the sequence of iterations is
shown next, where hk = p/q denotes the change in xk at each iteration.D
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Inverse Quadratic Interpolation

• With inverse quadratic interpolation, the idea is to fit a curve of the form
x = x(y) which is quadratic in y

• One then evaluates that curve at y = 0 to get the next iterate, xk+1.

• We can see how this compares to Muller’s method (dashed-line) in the figure

from the tex, below

2



Inverse Quadratic Interpolation

• If fc, fa, fb, are three successive function evaluations at (c, a, b), then the

update is given by,

c0 = a, a0 = b, b0 = b + p/q,

where p and q are

p = v(w(u�w)(c�b)� (1�u)(b�a), q = (w�1)(v�1)(u�1)

and u = fb/fc, v = fb/fa, and w = fa/fc

• For the test problem of f = x2 � 4 sin(x) we have the results below, which
are superlinear but not as fast as Muller for this particular case.

• Generally, however, inverse iteration is more robust than Muller

3
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• If fc, fa, fb, are three successive function evaluations at (c, a, b), then the

update is given by,

c0 = a, a0 = b, b0 = b + p/q,

where p and q are

p = v(w(u�w)(c�b)� (1�u)(b�a), q = (w�1)(v�1)(u�1)

and u = fb/fc, v = fb/fa, and w = fa/fc

• For the test problem of f = x2 � 4 sin(x) we have the results below, which
are superlinear but not as fast as Muller for this particular case.

• Generally, however, inverse iteration is more robust than Muller
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Other Test Cases

• We can explore secant, Muller, and inverse iteration on other functions and

starting conditions

• One case is f = ex/2 � 2

4

Stopped Here



Finding Multiple Roots

• Often we need to find more than one root of a scalar function f (x)

• We may have a precise definition of the function but the particular zeros of

interest are not known or tabulated .

• Examples include:

• Chebyshev polynomials

• Legendre polynomials

• Bessel functions

J0(x) =
1

⇡

Z ⇡

0
cos(x sin t) dt
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Finding Multiple Roots

• Zeros of these functions are of interest for many reasons

• The Chebyshev zeros are central to many approximation problems because

their monomial product Tn(x) = (x�r1)(x�r2) · · · (x�rn) (the nth-order
Chebyshev polynomial) has the property that all of its extrema on the stan-

dard [�1, 1] interval are ±1.

• Out of all nth-order polynomials, only Tn has this property.

• If one can bound an error by max |pn(x)| for any nth-order polynomial, then

the minimal error bound will be realized by Tn.

• This is the mini-max property that is invariably linked to some form of

Chebyshev polynomial

• Fortunately, the roots of Tn(x) are known in closed form:

rj = cos(n✓ � ✓/2), ✓ := ⇡/n
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Finding Multiple Roots

• For Legendre polynomials and Bessel functions the zeros are not availabe

in closed form.

• The Legendre zeros are important for numerical integration.

• One robust way to find them is to develop a companion matrix that exploits

the 3-term recurrence, starting with P0 = 1 and P1 = x

Pn+1(x) =
2n + 1

n + 1
xPn(x) �

n

n + 1
Pn�1(x)

and to solve for the eigenvalues of the n⇥ n tridiagonal companion matrix

that results from this relationship

• The zeros of Bessel functions correspond to eigenvalues of functions con-

strained to disk shapes, such as drum heads and the liquid surface of a cup

of co↵ee
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Main Ingredients for Multiple Roots

• Safeguards

– bracketing or other known limits (e.g., roots ri 2 [�1, 1] for orthogonal
polynomials)

– Brent’s (also VanWijngaarden-Dekker) method combines bracketing/bisection

with inverse quadratic interpolation

• Good initial guess, if possible

– roots of Legendre polynomials are close to Chebyshev roots

– For Bessel function, J0, successive roots satisfy ri+1 ⇠ ri+⇡ as i increases

– Start with first root near 0, then set initial guess for r2 to be r1 + ⇡

5
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– For Bessel function, J0, successive roots satisfy ri+1 ⇠ ri+⇡ as i increases

– Start with first root near 0, then set initial guess for r2 to be r1 + ⇡

5



Main Ingredients for Multiple Roots

Deflation

• A key point is to ensure that the root finder does not return to known roots

• If f (x) has say, 3 roots of interest, idea is to use one of the methods dis-

cussed so far (e.g., inverse quadratic interpolation) to find a root, denoted

as r1

• Define new function

f̂ (x) =
f (x)

(x� r1)

and apply root finder to get r2

• Next define

f̂ (x) =
f (x)

(x� r1)(x� r2)
and apply root finder to get r3
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Roots of Chebyshev Polynomial, N=6

• Here, we initiate a sketch of how the terms are evaluated

1
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Roots of Chebyshev Polynomial, N=6

• Here, we initiate a sketch of how the terms are evaluated
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Deflating Roots of Chebyshev Polynomial

1



Systems of Nonlinear Equations

Solving systems of nonlinear equations is much more di�cult than the scalar

case because

• Wider variety of behavior is possible, so determining existence and number

of solutions or good starting guess is more complex

• There is no simple way, in general, to guarantee convergence to desired so-

lution or to bracket solution to produce absolutely safe method

• Computational overhead inreases rapidly with problem dimension, n
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No solution
1 solution

4 solutions
2 solutions

Examples: Systems in Two Dimensions

x21 � x2 + � = 0 (1)

�x1 + x22 + � = 0 (2)

(3)
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(3)

7

A pair of parabolas



Fixed-Point Iteration

• Fixed-point problem for g: lRn �! lR
n
is to find vector x such that

x = g(x)

• Corresponding fixed-point iteration is

xk+1 = g(xk)

• If spectral radius ⇢(G(x⇤
)) < 1, where G(x) is the Jacobian matrix of g

evaluated at x, then fixed-point iteration converges if started close enough

to solution

• Convergence rate is normally linear with constant C = ⇢(G(x⇤
))

• IfG(x⇤
) = O (the zero matrix, at x⇤

) then convergence is at least quadratic
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Fixed-Point Iteration: Newton’s Method

• In n > 1 dimensions, Newton’s method for f(x) = 0 takes the form

xk+1 = xk � J�1
k
fk,

where fk := f(xk) and Jk := J(xk) is the Jacobian matrix of f evaluated at

xk,

[Jk]ij :=


@fi

@xj

�

3



Comments about the Jacobian

• Suppose f(x) is linear, with form

f(x) = Ax � b

[J]ij =
@fi
@xj

• ith equation:

fi(x) =

nX

j=1

aijxj � bi =

nX

k=1

aikxk � bi

@fi
@xj

=

nX

k=1

aik
@xk
@xj

� @bi
@xj

= aij

Therefore, for linear equations of this form, J = A
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Newton Example: Linear Case

• Suppose f(x) = Ax� b = 0

• Newton step is

xk+1 = g(xk) = xk � J
�1
k fk

• Start with x0 = 0,

f0 = A0 � b = �b

J0 = A

x1 = 0 � A
�1

(�b) = A
�1
b = x

⇤

• Newton is just Ax = b for this case.
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• Suppose f(x) = Ax� b = 0

• Newton step is

xk+1 = g(xk) = xk � J
�1
k fk

• Start with x0 = 0,

f0 = A0 � b = �b

J0 = A

x1 = 0 � A
�1

(�b) = A
�1
b = x

⇤

• Newton is just Ax = b for this case.

• It will always converge in one (full-Newton) step

2



What About G?

• Consider the Jacobian of the Newton-derived fixed-point

operator, g(x),

Gij =
@gi
@xj

=
@

@xj

�
x�A

�1
[Ax� b]

�

=
@

@xj

�
x�A

�1
Ax +A

�1
b
�

=
@

@xj
A

�1
b = O

• The last term is zero because A
�1
b is a constant vector

that does not depend on x
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Simple Example for Nonlinear f

• Consider f(x) = Ax� �ex

• This is known as the Bratu problem whenAu ⇡ �r2u and is a mathemat-

ical model for reaction-di↵usion that governs many combustion processes

• Here,

ex =

0

BB@

ex1

ex2
...

exn

1

CCA

@

@xj
ex =

0

BBBBBBBB@

0
...

0

1

0
...

0

1

CCCCCCCCA

exj = ej e
xj, ej = jth col. of n⇥ n identity

J = A � �

2

664

ex1

ex1
. . .

exn

3

775
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Jacobian Example

• Nonlinear example:
 

f1

f2

!
=

 
ex1 x2

ex1 + ex2

!
�
 

1

2

!

• Jacobian:

J =

 
x2ex1 x2 x1ex1 x2

ex1 ex2

!
.



Linear Example for g

• Here, we have the Jacobian of g(x), [G]ij =
@gi
@xj

• The fixed-point function evaluation, g(x) is,

yi = [Gx]i =

nX

j=1

Gijxj =

nX

j=1

@gi
@xj

xj

• For this linear case, fixed-point evaluation simplifies to g(x) = Gx

• Can analyze error as follows

x
⇤
= g(x

⇤
)

x
⇤
= Gx

⇤ � b

xk+1 = Gxk � b

ek+1 = Gek
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Linear Example for g, continued

• Have a contractor if ⇢(G) < 1

=) kek+1k  ⇢kekk ( for k su�ciently large )

kek+1k
kekk

 ⇢

• In nonlinear case, G(x) ⇡ G(x
⇤
) for x ⇡ x

⇤
.

• If ⇢(G(x)) < 1 at x = x
⇤
, there is a neighborhood near x

⇤
for which we

will have a contractor
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Linear Example for g, continued

• Suppose g(x) is given as

g(x) =


0.1 �.1
0.0 0.5

� 
x1
x2

�
+


1.9
0.5

�
,

which has x
⇤
= [2 1]

T
as a fixed point

• What is the expected convergence rate?

• For upper triangular matrix G, eigenvalues are diagonal entries and max

diagonal entry is 0.5, corresponding to ⇢(G)

• Therefore, expect asympotic error, kx� x
⇤k to contract by a factor of two

with each iteration.
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fixpt_2d.m

Note the asymptotic 2-fold reduction in error



Fixed-Point Iteration: Newton’s Method

• In n > 1 dimensions, Newton’s method for f(x) = 0 takes the form

xk+1 = xk � J�1
k
fk,

where fk := f(xk) and Jk := J(xk) is the Jacobian matrix of f evaluated at

xk,

[Jk]ij :=


@fi

@xj

�

3



Fixed-Point Iteration: Newton’s Method

Why this works:

• Consider Taylor series in n dimensions:

f(x + ✏v| {z }
xk+1

)

������
i

= f(x)|
i
+ ✏

X

i

@fi

@xj
vj + O(✏

2
)

= 0 =) ✏v = �J�1
k
fk

• Thus, the fixed point iteration is

xk+1 = xk + ✏v

= xk � J�1
k
fk

= g(xk)
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Convergence

• Let [G(x)]
ij

:=
@gi

@xj

=
@

@xj

⇥
xi �

�
J�1
k
f
�
i

⇤

= I � J�1
k

@fi

@xj|{z}
Jk

�
nX

p=1

fp(x)Hp(x)

= 0

• Here,

[Hp]ij =
@

@xj

⇥
J�1

⇤
ij
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least quadratic
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Example

• Here, we initiate a sketch of how the terms are evaluated

f =


x1 + 2x2 � 2

x21 + 4x22 � 4

�
=


0

0

�
, x⇤

=


0

1

�

J =
@fi
@xj

=


1 2

2x1 8x2

�

J�1
=

1

8x2 � 4x1


8x2 �2

�2x1 1

�

g = x � J�1f

• Note that if f(x) is linear with form

f(x) = Ax � b

then the Jacobian is simply J = A.
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Example, continued

• We look at the gradient of g(x):

@gi
@xj

=


1 0

0 1

�
� J

�1


@fi
@xj

�

| {z }
J

�
X

p

fp(x)

✓
@

@xp

⇥
J
�1
⇤
ip

◆

=

X

p

fp(x)Hp(x)

• For x = x
⇤
, each term is 0.

• Q: What is Hp ??

2



Example, continued

• Let J
�1

:= A

J
�1
f =


1

8x2 � 4x1

✓
8x2 �2

�2x1 1

◆�

| {z }
A(x)

✓
x1 + 2x2 � 2

x21 + 4x22 � 4

◆

| {z }
f(x)

• Evaluate the terms involving Hp
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@xj

X

p

Aipfp =

X

p

✓
@

@xj
Aip

◆
+

X

p

Aip
@fp
@xj|{z}

A
�1

• Evaluate Hp:
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@x1
A =

4

(8x2 � 4x1)2)

✓
8x2 �2

�2x1 1

◆
+

1

8x2 � 4x1

✓
0 0

�2 0

◆
=: H1

@

@x2
A =

�8

(8x2 � 4x1)2

✓
8x2 �2

�2x1 1

◆
+

1

8x2 � 4x1

✓
8 0

0 0

◆
=: H2
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Cost of Newton’s Method

Cost per iteration of Newton’s method for dense problem in n dimensions is
substantial

• Computing Jacobian matrix costs n2 scalar function evaluations

• Solving linear systems costs O(n3) operations

• Can, however, re-use the LU factorization for several iterations, rather than
recomputing at each step

• Alternatives are to seek secant-like methods
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Secant Updating Methods

• Secant updating methods reduce cost by

– Using function values at successive iterates to build approximate Jaco-
bian and avoiding explicit evaluation of derivatives

– Updating factorization of approximation using Sherman-Morrison, rather
than refactoring it each iteration

• Most secant updating methods have superlinear but not quadratic conver-
gence rate

• Secant updating methods often cost less overall than Newton’s method be-
cause of lower cost per iteration
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Broyden’s Method

• As in the 1D case, working with the Jacobian is potentially painful

• Idea is to build a secant type method by solving the linear model problem

0 ⇡ fk+1 ⇡ fk + Jk (xk+1 � xk)| {z }
s

=) s = �J�1
k
fk

xk+1 = xk + s

• Here, we let Bk ⇡ Jk be a low-cost approximation to Jk

• Redefine Newton step as

Bks = �fk
xk+1 = xk + s

update Bk

1

Broyden’s Method

• As in the 1D case, working with the Jacobian is potentially painful

• Idea is to build a secant type method by solving the linear model problem

0 ⇡ fk+1 ⇡ fk + Jk (xk+1 � xk)| {z }
s

=) s = �J�1
k
fk

xk+1 = xk + s

• Here, we let Bk ⇡ Jk be a low-cost approximation to Jk

• Redefine Newton step as

Bks = �fk
xk+1 = xk + s

update Bk

1

Broyden’s Method

• As in the 1D case, working with the Jacobian is potentially painful

• Idea is to build a secant type method by solving the linear model problem

0 ⇡ fk+1 ⇡ fk + Jk (xk+1 � xk)| {z }
s

=) s = �J�1
k
fk

xk+1 = xk + s

• Here, we let Bk ⇡ Jk be a low-cost approximation to Jk

• Redefine Newton step as

Bks = �fk
xk+1 = xk + s

update Bk

1

Broyden’s Method

• As in the 1D case, working with the Jacobian is potentially painful

• Idea is to build a secant type method by solving the linear model problem

0 ⇡ fk+1 ⇡ fk + Jk (xk+1 � xk)| {z }
s

=) s = �J�1
k
fk

xk+1 = xk + s

• Here, we let Bk ⇡ Jk be a low-cost approximation to Jk

• Redefine Newton step as

Bks = �fk
xk+1 = xk + s

update Bk

1



Broyden’s Method

• As in the 1D case, we want to update Bk

• Nominally, we need something like

Bk+1 =
fk+1 � fk
xk+1 � xk

• Of course, fractions with vectors are di�cult, so consider

fk+1 � fk = Bk+1(xk+1 � xk) = Bk+1sk

• Not enough to uniquely determine Bk+1
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Broyden’s Method, continued

• To resolve uniqueness issue in a simple (low-cost) way, choose Bk+1 to be a
rank-one perturbation of Bk

• That is Bk+1 � Bk should be a rank-one matrix such that Bk+1 satisfies
the secant condition, Bk+1sk = fk+1 � fk.

• Resulting Jacobian update is

Bk+1 = Bk +
1

sT
k
sk

(fk+1 � fk �Bksk) s
T

k

• Main advantage is that Sherman-Morrison can be used to update the LU
factorization of Bk, which avoids the O(n3) refactor cost
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Robust Newton-Like Methods

• Newton’s method and its variants may fail to converge when started far
from solution.

• Safeguards can enlarge region of convergence for Newton-like methods

• Simlest precaution is damped-Newton method, in which new iterate is

xk+1 = xk + ↵ksk

where sk is Newton (or Newton-like) step and ↵k is scalar parameter chosen
to ensure progess toward solution

• Parameter ↵k reduces Newton step when it is too large, but ↵k = 1 su�ces
near solution and still yields fast asymptotic convergence rate
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Example: Broyden’s Method

• Here we use Broyden’s method to solve the nonlinear system

f(x) =


x1 + 2x2 � 2

x21 + 4x22 � 4

�
=


0

0

�

• Note that if f(x) is linear with form

f(x) = Ax � b

then the Jacobian is simply J = A.
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broyden4.m

• Notice the ekek-1 
convergence behavior.



Broyden’s Method, continued

• Note that we can also initiate Broyden’s method with B0 = I, which avoids

all derivative evaluation.

• In this case, a damped update is generally needed to keep the update in

scale, at least for the early iterations

• We explore this option in the following demo

2

• demo_broyden.m
• demo_broyq.m



broyden_bratu.m





Higher-Dimensional Examples

q Bratu Problem – a nonlinear ODE or PDE

q Jacobi-Free Newton-Krylov methods  



The Bratu Problem: Newton in n Dimensions
Paul F. Fischer

Computer Science
Mechanical Science & Engineering

University of Illinois, Champaign-Urbana

1 Newton’s Method in Higher Space Dimensions

We are interested in solving a system of nonlinear equations in n dimensions, f(x) = 0. As with
the scalar (n=1) case, we recast the problem as a fixed point iteration using Newton’s method

xk+1 = xk � J
�1f(xk) (1)

= xk + sk

where the update step sk satisfies Jsk = �fk and

Jij := =
@fi

@xj

����
x=xk

(2)

is the Jacobian matrix associated with the f(x) at x = xk. In some cases we use a damped Newton
update of the form

xk+1 = xk + ↵sk

with ↵ < 1 chosen to guarantee that ||fk+1|| < ||fk||.

A major di↵erence between the scalar and vector case is that (1) requires the solution of an n⇥ n

system for each iteration. Given that the factor (LU decomposition of J) cost nominally scales as
O(n3), a great deal of e↵ort is expended to develop algorithms that can reduce this overhead. We
explore one of these, Jacobi-Free Newton-Krylov (JFNK) methods at the end of this discussion.
Presently, we carry on with the notion that we can solve systems in J , ever mindful that it typically
represents the leading-order overhead in our method.



2 The Bratu Example

The text has a couple of nonlinear system examples for the case n=2. Here, we consider a larger
problem that is motivated by (but not exactly like) the reaction-di↵usion problem. In the following,
we seek an unknown function u(x) (where x 2 [0, 1] is a spatial coordinate) that satisfies the steady-
state heat (di↵usion) equation

�d
2
u

dx2
= q, u(0) = u(1) = 0, (3)

where q(x) represents the heat source. For the Bratu problem, we define

q = �e
u(x)

,

where � is a parameter.

Equation (3) is a ordinary di↵erential equation (ODE) and in particular it is a nonlinear two-point
boundary value problem with boundary conditions prescribed as above. To turn this continous
problem into a system of nonlinear equations we first discretize the second derivate term in (3)
using a finite di↵erence appoximation. Through application of Taylor series at points xj := jh,
j = 1, . . . , n, with grid spacing h = 1/(n+ 1). we derive

�uj�1 � 2uj � uj+1

h2
= �d

2
u

dx2

����
j

+O(h2) = �e
uj +O(h2). (4)

If we neglect the O(h2) error term then the system is solvable we can anticipate that our solution
uj will approximate u(xj) to order h2.



Subtracting the right-hand side from both sides of (4) and changing the sign, we arrive at the
n-dimensional root-finding problem f(u) = 0,

fj =
uj�1 � 2uj � uj+1

h2
+ �e

uj = 0, j = 1, . . . , n (5)

To apply (1), we need the Jacobian (2), which is given by the tridiagonal matrix

J =
1

h2

0

BBBBBBBBB@

a1 b

b a2 b

b
. . .

. . .

. . .
. . . b

b an

1

CCCCCCCCCA

, (6)

with b = 1 and aj = �2 + h
2
�e

uj . Note that, as is often the case with systems arising from
di↵erential equations, J is sparse. That is, it has a fixed number of nonzeros per row, independent
of n and thus has O(n) nonzeros. Moreover, because this system is tridiagonal, the factor cost is
only O(n), which is of the same order as the other update steps in the algorithm. (In higher space
dimensions, the factor costs is O(n�) with � > 1 and direct factorization loses favor in comparison
to iterative JFNK methods.)



We illustrate the result for n = 80 and � = 1. Using (1), and u0 = 0, we have the following results
for the norms of the step size and residual,

k || s_k || || f_k ||

1 9.141106002022624e-01 8.944271909999159e+00

2 6.555298143445134e-03 5.803485294158030e-02

3 3.746387054601207e-07 3.363605689013008e-06

4 1.553772829606369e-15 1.007219709041583e-12

5 1.184226711286128e-15 1.430323637721320e-12

6 1.746857971735465e-16 1.074544804307374e-12

from which see that we are converging to a fixed point (||sk|| �! 0) quadratically, as is typical
when Newton’s method is working. In addition, we see that ||fk|| is not going to ✏M , which might
be expected given that the condition number of J is about 4⇥ 103.

Solution

Residual



The corresponding source code is

n=80; sigma = 1;

h=1./(n+1); b = ones(n,1); x=1:n; x=h*x’; h2i = 1./(h*h);

a=-2*b; A = h2i*spdiags([b a b],-1:1, n,n);

c=-2*b + sigma*h*h*exp(x); J = h2i*spdiags([b c b],-1:1, n,n);

u=b*0;

for iter=1:31;

f=A*u + sigma*exp(u);

c=-2*b + sigma*h*h*exp(u);

J = h2i*spdiags([b c b],-1:1, n,n); % J is sparse

s = -J\f;

u = u+s;

ns = norm(s); nf = norm(f); [ns nf]

end;

plot(x,u,’r-’,x,0*x,’k-’); hold on

The solution u(x) is not terribly interesting, but we plot it for completeness in Fig. 1.

Nonlinear term



Figure 2: Lower branch of Bratu solutions vs �.

4 JFNK: Reducing Factorization Costs

For large sparse Jacobians, the solution of

Jsk = �fk

is best e↵ected with iterative methods such as conjugate Gradients (if J is SPD, which is rare) or
GMRES.

Iterative methods for Ax = b simply require repeated matrix-vector product evaluation of the form

p = Aw. (7)

For Newton iteration in higher space dimensions where A = J this apparently requires forming the
Jacobian,

Jij := =
@fi

@xj

����
x=xk

,

which may be very complex for a large nonlinear system arising from a partial di↵erential equation.

Figure 1: Solution of the Bratu Problem for � = 1.

3 Refinements of the Algorithm

It turns out that for some values of � the Bratu problem has two solutions, whereas above a critical
value there are no solutions. We discuss a bit of the behavior for � on the interval [0,�c], where
�c ⇡ 3.51355. In Fig. 2, we plot maxx |u(x)| as a function of � on the lower branch of solutions.
There is another branch (not shown) which sits above this one. The existance of this branch is
indicated by the fact that the solution is turning as � �! �c. The path that is shown here was
found by monitoring convergence of Newton’s method for a sequence �l+1 = �l + ��, and reducing
�� whenever Newton’s method required more than 20 iterations. The work was reduced by using
the solution at �l as the starting point for � = �l+1. Finding the upper branch is beyond the scope
of this discussion. We mention, however, that a commonly used approach that has proven quite
successful is pseudo-arclength continuation, developed by H.B. Keller and coworkers. With this
approach, � is taken as an additional unknown and a new parameter, s, the arclength of the path,
is introduced as an auxiliary parameter (which will not be multivalued).1

1See, for example, Sec. 4.5 in http://www.math.tifr.res.in/⇠publ/ln/tifr79.pdf
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Fortunately, careful inspection of (7) reveals that we do not need to produce A (=: J). We only
need to produce w. This observation leads to the idea of developing a Jacobi-free method that does
precisely that.

Consider a Taylor series about xk in terms of xk + ✏s. We can write

f(xk + ✏s) = f(xk) + ✏J(xk)s + O(✏2).

Neglecting the O(✏2) term, we solve for J(xk)s =: Js,

Js ⇡ f(xk + ✏s)� f(xk)

✏
, (8)

which is a finite di↵erence approximation to Js. As we know from Chapter 1, we can expect this
approximation to be accurate to only ⇡ p

✏M and we should take ✏ no smaller than ⇡ p
✏M . In

general, one needs to consider norms of the terms involved in order to better understand how ✏

should be selected. There is a vast literature on the topic.2

The key advance here is that one can use (8) inside an iterative method for solving Js = �f without
ever forming (or factoring!) J . One simply needs repeated evaluation of the nonlinear functional,
f(xk + ✏s) for varying values of s.

2An excellent starting point is Knoll and Keyes, Jacobian-free NewtonKrylov methods: a survey of approaches and
applications, J. Comp. Phys, 2004.
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