Nonlinear Equations

Outline:

e Nonlinear Equations
e Numerical Methods in One Dimension

e Methods for Systems of Nonlinear Equations



Nonlinear Equation Example

e Is there an x where x = cos(z)?
(Graphing is usually a good idea, if possible.)

f(x) = x - cog’x

05

-0.5 L 1 1 A

e Rewrite as f(x) = x — cosx and find x* such that f(z*) = 0.



Nonlinear Equations

e Given function f, we seek value x (sometimes x*) for which

flz)=0

e Solution is root of equation, or zero of f

e S0 problem is known as root finding or zero finding



Nonlinear Equations

e Single nonlinear equation in one unknown, where

f: R —R
Solution is scalar x for which f(z) =0

e System of n coupled nonlinear equations in n unknowns, where in one un-
known, where

f: R'" —R"

Solution is vector x for which all components are zero simultaneously,

f(x)=0



Existence and Uniqueness

e Existence and uniqueness of solutions are more complicated for nonlinear
equations than for linear equations

e For function f : R — IR, bracket is interval |a, b] for which sign of f
differs at endpoints

o [f f is continuous and sign(f(a)) #sign(f (b)), then Intermediate Value The-
orem implies there is £<|a, b such that f(x*) =0

e There is no simple analog for n dimensions



Examples: One Dimension

Nonlinear equations can have any number of solutions

e ¢ + 1 = 0 has no solution 81




Examples: One Dimension

Nonlinear equations can have any number of solutions

e ¢’ + 1 = 0 has no solution

—X

e ¢ ¥ — 1 = 0 has one solution




Examples: One Dimension

Nonlinear equations can have any number of solutions

e ¢’ + 1 = 0 has no solution \

—X

e ¢ ¥ — 1 = 0 has one solution

e 27 — 4sin(z) = 0 has two solutions 0

4sin(x)




Examples: One Dimension

Nonlinear equations can have any number of solutions

e ¢’ + 1 = 0 has no solution

T — 2 = 0 has one solution

®c

e 27 — 4sin(z) = 0 has two solutions

o 73+ 822+ 11x — 6 = 0 has three solutions

20 r

10

10 |

-20 1

-30

/
"

f=ax°+8x°+ 11lx —

§




Examples: One Dimension

Nonlinear equations can have any number of solutions

e ¢’ + 1 = 0 has no solution ] f =sin(z)

05
—X

e ¢ ¥ — 1 = 0 has one solution

o 73+ 822+ 11x — 6 = 0 has three solutions

0
e 27 — 4sin(z) = 0 has two solutions s d \/
qt
5 0 5

e sin(x) = 0 has infinitely many solutions



Examples: Systems in Two Dimensions

ri— T3+ = 0 |
A pair of parabolas

\/1 solution

-
\/7 4 solutions
-

v=-1.0

—z+ x5 +y =0

\

No solution

AN




Multiplicity

o If f(z*) = f'(a*) = f'(a*) = -~ = fO" V(") = 0, but f"(z*) # 0
(i.e., mth derivative is lowest nonvanishing derivate at £*), then root * has
multiplicity m

o lfm=1(f(z*)=0and f'(x*) #0), then z* is simple root

three roots at 1
two roots at x=1, multiplicity=3
multiplicity=2

-
(-
rO —
-




Sensitivity and Conditioning

e Conditioning of root finding problem is opposite to that for evaluating
function (steeper is better!)

e Absolute condition number of root finding problem is root z* of fis 1 /| f'(z*)]
e Root is ill-conditioned if tangent line is nearly horizontal

e [n particular, multiple root (m > 1) is ill-conditioned

e Absolute condition number of root finding problem for system of equations
at root x* is HJ;1<X*)H, where J is Jacobian matriz of £:

{Jr(x)};; = 8];52()

e Root is ill-conditioned if J ;(x*) is nearly singular



Sensitivity and Conditioning

f is near zero for large range of
x in neighborhood of x'.

Difficult to find x™ to significant
precision.

——

e well-conditioned e ill-conditioned



Sensitivity and Conditioning

e What do we mean by approximate solution X to nonlinear system,

[f(x)||~0 or |[x—x"=~07
e [irst corresponds to “small residual,” second measures closeness to (usually
unknown) true solution x*
e These solution criteria are not necessarily “small” simultaneously

e Small residual implies accurate solution only if problem is well-conditioned

High muiltiplicity at x” implies that values of x near x°
will yield “small” values of f(x) ~ C|x-x'|"



Convergence Rate

e For general iterative methods, define error at iteration £ by
€ — X — x*
where X;. is approximate solution and x* is true solution
e For methods that maintain interval known to contain solution, rather than

specific approximate value for solution, take error to be length of interval
containing solution

e Sequence converges with rate r if

T Important definition
koo ||eg|” for this chapter...

for some finite nonzero constant C'

A central theme throughout the chapter (and the course) is
to build methods that have a high rate of convergence.



Convergence Rate, continued

Some particular cases of interest

or=1:linear (C < 1)
e > 1: superlinear

e v = 2 : quadratic

Convergence | Digits gained
Rate| per iteration
linear constant
superlinear Increasing
quadratic double




Methods for One-Dimensional Problems



Interval Bisection Method

Bisection method begins with initial bracket and repeatedly halves
the bracket length until solution is isolated as accurately as desired

while ((b —a) > tol) do
m=a+(b—a)/2
if sign(f(a)) = sign(f(m)) then

a=m

else
b=m

end

end




Bisection Method, continued

e Bisection method makes no use of magnitudes of function values, only their
SIgNS

e Bisection is certain to converge, but does so slowly

e At each iteration, length of interval containing solution is reduced by half,
so convergence rate is linear, with (r = 1) and C' = 0.5

e One bit of accuracy is gained in approximate solution fo reach iteration of
bisection

e Civen starting interval [a, b], length of interval after k iterations is (b—a) /2,
so achieving error tolerance tol reqires

{IOgQ (bt;zaﬂ

iterations, regardless of function f involved




Example: Bisection Method

fa=x*xx-4xsin(x);
fb=x*x-4%xsin(x);

il

2

3

4

5

_ 6
bisect.m 4
9

= b=3; 1
1

1

il

1.

k

.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+00
.0000e+01
.1000e+01
.2000e+01
.3000e+01
.4000e+01

RPRRPRPRPRPRRRPRPRRPRRRRR

a

.0000e+00
.5000e+00
.7500e+00
.8750e+00
.8750e+00
.9062e+00
.9219e+00
.9297e+00
.9336e+00
.9336e+00
.9336e+00
.9336e+00
.9336e+00
.9337e+00

f(a)

.3659e+00
.7400e+00
.7344e-01
.0072e-01
.0072e-01
.4326e-01
.2406e-02
.1454e-02
.4602e-04
.4602e-04
.4602e-04
.4602e-04
.4602e-04
.0062e-04

PRRPRPRPRPRPRPRPREPNNNN

b

.0000e+00
.0000e+00
.0000e+00
.0000e+00
.9375e+00
.9375e+00
.9375e+00
.9375e+00
.9375e+00
.9355e+00
.9346e+00
.9341e+00
.9338e+00
.9338e+00

PERPPOPRPPPPPWOWWW

f(b)

.6281e-01
.6281e-01
.6281e-01
.6281e-01
.9849e-02
.9849e-02
.9849e-02
.9849e-02
.9849e-02
.4906e-03
.3196e-03
.7361e-03
.4486e-04
.4486e—-04

PNPPOPRPONPWOOOEREPDNDOPR

b-a

.0000e+00
.0000e-01
.5000e-01
.2500e-01
.2500e-02
.1250e-02
.5625e-02
.8125e-03
.9062e-03
.9531e-03
.7656e-04
.8828e-04
4414e-04
.2207e-04

for k=1:50;

m=a+(b-a)/2; fm=mxm-4%sin(m);

if sign(fa)==sign(fm);
a=m; fa=fm;

else
b=m;

end;

fb=fm;

plotia;fTa; ro",b; Th;'bo” 1w, 2):

disp([k a fa b fbl)
wk(k)=b-a; kk(k)=k;
pause

end;




10

Bisection applied to z? — 4sin(x)

bisect.m

10718

10714

10°1°

Bisection applied to x2 — 4sin(z)

3 T I I T 3
= Convergence is linear: :
- 2xiteration count --> twice as many ¥gi :
modulo round-off

i 1 1 1 1

0 10 40 50

20 30
lteration Number: k

Q. What happens if we go beyond 50 iterations?



Fixed-Point Problems

e [ized point of given function g : R — IR is value x such that

v = g(z)

Fixed Point for cos z

1
08 .
r = cos(x
06 1
~
N—"
N
3
O 04
02t
0 |
0 0.2 04 0.6 0.8 1



Fixed-Point Problems

e [ized point of given function g : R — IR is value x such that

v = g(z)

e Many iterative methods for solving nonlinear equations use fixed-point
iteration of the form

Tr+1 = g<xk>7

e Also called functional iteration, since g is applied repeatedly to the output,
starting with initial value x

e For given equation f(x) = 0, there may be many equivalent fixed-point
problems with different choices for g and different rates of convergence



Example: Fixed-Point Problems

If f(z) = 2*— x — 2, then fixed points of each of the functions

o g(z) = 2% — 2

¢ g(v) = Vo +2 )
o g(z)=1+2/a

¢ g(x) = £

are solutions to equation
flx)=0at x* =2




Essential Questions for Fixed-Point lteration

r* = g(x™) fized-point
r. = g(xp_1) fized-point iteration
T — T convergent?

e [s the convergence linear? Superlinear?”
e [ixed-point iteration is often superlinear.
e [ixed-point iteration extends to multiple dimensions.

e Newton's method is a fixed-point iteration.



fixpt_ demo.m

2

18
16

14

X=.001; ll

for k=1:30;
g=sqrt(4xsin(x));
disp([k x g abs(x-g)l);

g(x)

08

plot(x,g,'ro',1lw,2); pause ost
x=g ; 04

end;

02

0

1

Fixed-Point Iteration: x=2sin"?(x)

1 1 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 16 158 2
v

but converge to x near 1.9 ?

Q: Why does the iteration diverge near x=0,




Convergence of Fixed-Point Iteration

e Define error at kth iterate: e, = v — 2" <— z, = 2" + e,

e Apply fixed-point iteration and subtract fixed-point solution,

LTh+1 = 9(37/%)

*

- 2" = g(z)

el = glogp) — g(a7)
e Use Taylor series expansion about x*

er1 = gla”+ep) — gz’

= [g(a") +erg(@”) + Sy (@) + -] = gla”)

2
= e g/(ZC*) + %g”([lf*) —+ higher-order terms

e Therefore, as k —> o0,

el lg @it o) 0 (e

1
|\€§J§‘ ~ 519" (@)l g'(2) = 0 and ¢" (") # 0 (quadratic)




Convergence of Fixed-Point Iteration

o If 2* = g(a*) and |¢'(x*)| < 1, then there is an interval containing =* such
that the iteration

Lr+1 = g(ilfk),

converges to x* if started within that interval
o If |¢'(z*)| > 1, then the iterative scheme diverges

e Asymptotic convergence rate of fixed-point iteration is usually linear, with
constant C' = |¢'(z*)]

e But if ¢'(z*) = 0, then convergence rate is at least quadratic



Returning to Our Fixed Point Examples

If f(z) = 2*— x — 2, then fixed points of each of the functions

o g(z) = 2% — 2

e g(z) = Vo +2 ’
o g(z)=1+2/a

¢ g(x) = £

are solutions to equation
flx)=0at x* =2




Example: Fixed-Point Problems

3 - - , ' - 3
25 f 22 _ 9 - o5 |
2t - 2| .
vVTr+2
157 1 15 ¢ i
1} - 1}
05 f 1 05
0 : : : : : 0 : : : : :
0 0.5 1 15 2 2.5 3 0 0.5 1 1.5 2 2.5 3
3 ; : , ; 3
25 . 25
2t + 2/.’13' 2r >
=42
2x—1
151 1 1.57
1} : 1
05 | Q: Which of these will converge the fastest?
| <o
0 - . - . - 0

o 05 1 15 2 25 3 o 05 1 15 2 25 3 ﬂxpt(k)m



Example: Fixed-Point Problems

3 - i 3 -
y=ax°—2
y=a
2 2
1 - 1
0 | | | 0 | |
0 1 2 3 0 1 2 3

Diverges! Converges!



Example: Fixed-Point Problems

| 2

Converges!

3 - \ :
y = ££2
[~
2 —
y=x

1 —
0 | I

0 1 2 3

Converges!



Accelerating Linearly Convergent Sequences

e Often, we don’t have an equation of the form f(x) = 0.
e Instead, we have a sequence x; that is approaching a value z* .
e Linear convergence can be accelerated via many methods.

e One historically important one is Aitken’s A? Method:

AVYAY,
Ye+2 = T2 —
Ay — Ay’
with
Ay = Tppr — T
Ay = Tpyo — Thtt

e For a linearly-convergent sequence x;, the corresponding ;s will
generally be closer to x*. (One must be careful about round-off.)



e This improved convergence suggests the following modified fixed point
iteration for the solution z* = g(x*):

Fixed Point Iteration Accelerated Iteration
e Start with x. e Start with x.
for k£=0,1,..., for k=0,2,4,...,
Trr1 = g(xr) Trr1 = g(T)
end Trro = §(Thi1)

szzziﬁk+2'—iﬁh+h A1:$kz+1'—113k
2
Th+o = Tpro — A5/ (Ao — Ay)

end

e matlab code: e Aitken’s A? method is essentially linear

extrapolation of successive outputs from

x0=0; .
a linearly-convergence sequence.
for k=1:5;
x1=g(x0) ;
x2=g(x1) ;

dl=x1-x0; d2=x2-x1;
x0=x2 - (d2*d2)/(d2-d1);
end;



Matlab demo: aitken.m

$% Aitken's D"2 method applied to FPI
clear all; close all; format compact; format longe;
x=0; for k=1:100; x=cos(x); end; xstar = x;

x=0;

for k=1:30;
x=cos(x); [k x]
xk(k)=x;
semilogy(k,abs(x-xstar), 'ro', ' 'linewidth',1.3)
legend('Standard Fixed Point')
title('Fixed Point Iteration: x=cos(x)', 'fontsize',14)
xlabel('Iteration (number of function evaluations)', 'fontsize',14)
ylabel('|x_k - x** |','fontsize',6 14)
hold on; pause(.1l)

end;

pause

x0=0;
for k=1:5;
xl=cos(x0);
x2=cos(x1l);
dl=x1-x0; d2=x2-x1;
x0=x2 - (d2*d2)/(d2-dl);
[2*k xk(2*k) x0]
semilogy(2*k,abs(xk(2*k)-xstar), 'ro',2*k,abs(x0-xstar), 'bo', 'linewidth’',1.3)
title('Fixed Point Iteration: x=cos(x)', ' 'fontsize',614)
xlabel('Iteration (number of function evaluations)', 'fontsize',14)
ylabel('|x_k - x** |', 'fontsize',614)
legend('Standard Fixed Point', 'Aitkens \Delta"2')
hold on; pause
end;



Tp — X7

10710

10712

10714

10716

Matlab demo: aitken.m

Fixed Point Iteration: x=cos(x)

I I I I I

O  Standard Fixed Point
O  Aitkens A2

| O | | | |

5 10 15 20 25
Iteration (number of function evaluations)

30



Aitken’s A2 Method Converges for a Divergent Sequence!

aitken2.m
g .
% Aitken's Delta-Squared Method applied altken3m
% to a linearly DIVERGENT sequence.
%
% x k =x k"2 - 2
format compact; format longe
x0=1.5;
for k=1:9;
Xx1=x0*x0-2;
X2=x1*x1-2;
dl=x1-x0; d2=x2-x1;
x0=x2 - (d2*d2)/(d2-d1l);
[k x0 x2 x1]
end;
y_{k+2} x_{k+2} x_{k+1}

W o oL WN K-

3.166666666666667e+00
2.689827429609444e+00
2.322268653039224e+00
2.095202364357393e+00
2.010650222187136e+00
2.000148988746703e+00
2.000000029590617e+00
2.000000000000001e+00
2.000000000000000e+00

-1.937500000000000e+00

6.244521604938275e+01
2.540702169274772e+01
9.511985499751427e+00
3.711492705712416e+00
2.172681776714464e+00
2.002384263926645e+00
2.000000473449884e+00
2.000000000000021e+00

2.500000000000000e-01
8.027777777777780e+00
5.235171601079349e+00
3.392931696888611e+00
2.389872947608809e+00
2.042714315981181e+00
2.000595977184460e+00
2.000000118362467e+00
2.000000000000005e+00



Aitken’s A2 Method Converges for a Divergent Sequence!

0P oP oP oP oP

format compact;

Aitken's Delta-Squared Method applied
to a linearly DIVERGENT sequence.

X

k = x k™2 - 2

x0=1.5;

for k=1:9;
Xx1=x0*x0-2;
X2=x1*x1-2;

end;

W o oL WN K-

dl=x1-x0;
x0=x2 -

d2=x2-x1;

[k x0 x2 x1]

y_{k+2}
3.166666666666667e+00

2.689827429609444e+00
2.322268653039224e+00
2.095202364357393e+00
2.010650222187136e+00
2.000148988746703e+00
2.000000029590617e+00
2.000000000000001e+00
2.000000000000000e+00

format longe

(d2*d2)/(d2-d1);

aitken2.m

x_{k+2}

-1.937500000000000e+00

6.244521604938275e+01
2.540702169274772e+01
9.511985499751427e+00
3.711492705712416e+00
2.172681776714464e+00
2.002384263926645e+00
2.000000473449884e+00
2.000000000000021e+00

x_{k+1}
2.500000000000000e-01
8.027777777777780e+00
5.235171601079349e+00
3.392931696888611e+00
2.389872947608809e+00
2.042714315981181e+00
2.000595977184460e+00
2.000000118362467e+00
2.000000000000005e+00



Alternatives to Aitken’s A%-Method

e If you start with a sequence

LTh+1 = g(xk:),

with fixed point z* = g(x*), you can rewrite this as a root-finding
problem:

for which f(x*) = 0.

e Thus, any fixed-point iteration can also be transformed into a
root-finding problem, to which we can apply standard acceleration
techniques.

e The most common technique is Newton’s Method, also known
as the Newton-Raphson Method.

e Other related techniques (e.g., Secant Method) try to mimic the
main idea of Newton’s Method with lower cost.



Newton’s Method

Newton’s method approximates nonlinear function f near x; by tangent line

at f(xy)

05 1/ ] ]

-0.5 0 0.5 1 1.5 2




Newton’s Method

e Truncated Taylor series

fle+h) = f(z) + f(z)h

is linear function approximating f near x

e Replace f by this linear function, solve for f(xz + h) =0,
0 = flx+h) = flx) + flw)h — h=—f(x)/f(x)

e Zero of this linear function does not exactly match that of f(x), so repeat
process starting at x = x + h, yields iteration scheme, Newton’s Method

f(fl?k;)

T T T i)




Example: Newton’s Method

e Use Newton’s method to find root of f(x) = 2* — 4sin(x) = 0

e Derivative is f'(x) = 2x — 4 cos(x), so iteration is

Lk+1 — Tk —

r7 — 4sin(zy)

2wy, — 4cos(xy)

e Taking x( = 3 as starting point, we obtain

k
1.0000e+00
2.0000e+00
3.0000e+00
4.0000e+00
5.0000e+00
6.0000e+00

PRRRREN

X_k

.1531e+00
.9540e+00
.9340e+00
.9338e+00
.9338e+00
.9338e+00

NP RRREO®

f_k

.4355e+00
.2948e+00
.0844e-01
.1516e-03
.3605e-07
.2204e-15

dx_k

.4694e-01
.9902e-01
.0067e-02
.1774e-04
.5731e-08
.1993e-16

df_k

.4355e+00
.1407e+00
.1863e+00
.0729e-01
.1515e-03
.3605e-07

newton _4sin.m



hdr; format shorte

Xx=0:.01:3; f = X.*kx—4%xsin(x);
hold off; plot(x,@*x,'k-',1w,2,x,f, " 'b-',1w,2); hold on;
xlabel('x',fs,20); ylabel('f',6 fs,20);

x=3; f=0;
disp("' k X_k f k dx_
for k=1:10;

fo = f;

f = xkx—4xsin(x); fp = 2xx-4*cos(x);

plot(x,f,'ro',1w,2); pause(.4);

S
X

y

end;

-f/fp;
X+S;

f-fo; disp([k x f s y]l) % print convergence

newton _4sin.m

k

df_k ')




Convergence of Newton’s Method

e Newton’s method is a fixed-point iteration with

f(z)
f'(x)

glx) = v -

and

o [f x* is a simple root then f(x*) = 0 and

e @P
9@ = 1= e = °

so we expect at quadratic convergence (r = 2)

e [terations must start close enough to root to converge
(i.e., need xy in “ball of convergence™)



Examples of Newton’s Method
e Newton’s method is often used for intrinsic functions such as x = 1/A

and z = VA.

e In addition to the rate of convergence, it is important to know how to gen-
erate an initial guess that will be in the interval of convergence, so that
for any xg, xp — z*

e Let’s look at three examples for these cases.



Examples of Newton’s Method: Compute 1/A.

o Start with  f(z) — A_é f(%):A_A:()
g(x) = x —% fl=a""
A1
— r — :1:—296
— o — (A =)
= 21 — Az’

e Verify: g(1/A) = 2/A—-1/A=1/A
g(1/A) = 2—2A/A =0

e The fixed-point iteration is therefore

Tpr1 = (2 — Axyp) o

e Note that this expression involves two multiplies and one addition and of
course no divisions since that is the operator we are trying to implement



Compute 1/A: Interval of Convergence

e [t is important to understand the interval of convergence for this method.
e That is, for what range of x; will |¢'(z)] < 17
e Usually easiest to answer the question with respect to x*.

e S0, one has

g(z) = 2240 =2-2—.
xr

e Inserting into the bracketing range, —1 < ¢’ < 1,

1 < i < 3
2 xT* 2
will guarantee convergence.
o If A = 1.bbb... x 2% then
1><2"‘/’<A_1: ! x 27 F<1x27F
2 - 1.bbb . .. -
e Can take as an initial guess
3 _
Xo = E X 2 k,

newton inv.m

1

from which one easily verifies that x9A is in [3, 1].



intel® PROGRAMMING EXAMPLES

9.2 SINGLE-PRECISION DIVIDE

Example 9-3 computes Z = X + Y for single-precision variables. The algorithm begins
by using the reciprocal instruction frep to obtain an initial guess for the value of 1/Y. The
frep instruction gives a result that can differ from the true value of 1/Y by as much as
27%. The algorithm then continues to make guesses based on the prior guess, refining
each guess until the desired accuracy is achieved. Let G represent a guess, and let E
represent the error, i.e. the difference between G and the true value of 1/Y. For each
guess...

Gnew i (}old(2 T Gold*Y)'
Enew m 2(Eold)2'

This algorithm is optimized for high performance and does not produce results that are
rounded according to the IEEE standard. Worst case error is about two least-significant
bits. If the result is referenced by the next instruction, 22 clocks are required to perform
the divide.

// SINGLE-PRECISION DIVIDE

/7 The dividend X is in fb

1/ The divisor Y is in f2

1/ The result Z is left in f3

/7 f5 contains single-precision floating-peoint 2.
frcp.ss f2, f3 // first guess has 2**-8 error
fmul.ss fg, f3, fy // guess x divisor
fsub.ss f5, fu, fy // 2 - guess x divisor
fmul.ss f3, fu, f3 // second guess has 2*x-15 error
fmul.ss fe, f3, fu // avoid using f3 as srcl
fsub.ss f5, fu, fu s/ 2 - guess % divisor
fmul.ss fh, f3, f5 // second guess % dividend

fmul.ss fy, f5, f3 // result = second guess * dividend




intel” PROGRAMMING EXAMPLES

9.3 DOUBLE-PRECISION DIVIDE

Example 9-4 computes Z = X + Y for double-precision variables. The algorithm is
similar to that shown previously for single-precision divide. For double-precision divide,
one more iteration is needed to achieve the required accuracy.

This algorithm is optimized for high performance and does not produce results that are
rounded according to the IEEE standard. Worst case error is about two least-significant
bits. If the result is referenced by the next instruction, 38 clocks are required to perform
the divide.

// DOUBLE~-PRECISION DIVIDE
1/ The dividend X is in f2
/7 The divisor Y is in fy
/7 The result Z is left in fA8
frcp-dd f4, fb // first guess has 2xx-8 error
fmul.dd fu, fb, f& // guess x divisor
fld.d flttwo, f1i0 // load double-precision floating &
// The fld.d is free. It completely overlaps the preceding fmul.dd
fsub.dd f1@, fa, f8 // 2 - guess x divisor
fmul.dd fh, fa, ftk // second guess has 2xx-15 error
fmul.dd fu, fb, f& // avoid using fk as srcl
fsub.dd f1@, f8, f&8 // 2 - guess x divisor
fmul.dd fb, fg, fb // third guess has 2¥x-29 error
fmul.dd fu, fb, f& // avoid using fb as srcl
fsub.dd f18, fa, f8 // 2 - guess * divisor
fmul.dd fb, f2, fb // guess x dividend
fmul.dd fa, fb, f8 // result = third guess * dividend

Example 9-4. Double-Precision Divide




o Stop Here



Example: Newton for v/ A

A common usage for Newton iteration is in computation of square roots. Suppose we want to find
z* = v/ A, which can be expressed as the root-finding problem:

flz) = z*—A. (1)

Applying Newton’s method to generate a fixed point scheme ;11 = g(xy), we have

B [ ?—-A4 1 A
g(x) = a:—?—x— 5 —Q(x—l—;)

This is a very well-known scheme and is globally convergent. Assuming A > 0, we establish the
latter claim as follows. Note that if xg < «* then x1 > z*. Moreover,

g(z) = % (1 — %)

is between 0 and 1/2 for all x > x*, so each iteration yields a contraction in the error for any
xp > x*. Quadratic convergence results because ¢'(x*) = 0.



Example: Newton for VA

e Because g(x) is concave up with slope 0 at x*, every value satisfies g(x) > z*

e Therefore, for any xy > 0, we have 1 > ™.

e For x > x*, ¢'(xx) € [0: 1/2], so we gain at least one bit per iteration for
k> 1.

Fixed-Point Newton Iterations for \/Z




Generating a Good Initial Guess for A'/2

A good initial guess xy can be obtained through range reduction, in which one maps the problem
to a suitable range over which the error is known. Range reduction for the square-root problem
begins by exploiting the binary representation of A,

A = 1.bbb... x 2F
— Bb.bbb... x 2.

In the second expression, the mantissa is normalized (via a shift) onto the interval [1,4) so that the
exponent [ is even. That is, if k£ is even, take B=0 and [ = k. If k is odd, take B=1and [ = k — 1.
The exponent of z* is thus [/2, which is effected as a bit shift to the right, with no information
loss. The mantissa of x* is the square-root of the normalized mantissa and will be on [1,2), such
that the result will be normalized.

25 T T

1.5F

05}

I o

R L S ——

4.5

Figure 1: Plot of z = VA, y1 =2/3+ A/3, and y» = 3/4 + A/3.



Generating a Good Initial Guess for A'/2

25 T T T T

1.5

05

o o

L

4.5

Figure 1: Plot of 2 = /A, y1 =2/3 + A/3, and yo = 3/4 + A/3.

There are many ways to generate a good initial guess for the mantissa. Without loss of generality,
assume A € [1,4). Figure 1 shows zx = /A along with two lines, y1(A) = (2 + A)/3 and
y2(A) = 3/4 + A/3, which bound x* on the interval [1,4]. The gap between y; and ys is 1/12.
Taking the average of these two lines, let

17 A
= — 4+ . 2
To 51 T 3 (2)
We know that |rg — 2*| < 1/24 ~ .04 and, with quadratic convergence, we can anticipate about 4

iterations to reduce the error to below €jy.



Example: Newton for v/ A

A common usage for Newton iteration is in computation of square roots. Suppose we want to find
z* = v/ A, which can be expressed as the root-finding problem:

flz) = z*—A. (1)

Applying Newton’s method to generate a fixed point scheme ;11 = g(xy), we have

B [ ?—-A4 1 A
g(x) = a:—?—x— 5 —§(x—|—g)

This is a very well-known scheme and is globally convergent. Assuming A > 0, we establish the
latter claim as follows. Note that if xg < «* then x1 > z*. Moreover,

g(z) = % (1 — %)

is between 0 and 1/2 for all x > x*, so each iteration yields a contraction in the error for any
xp > x*. Quadratic convergence results because ¢'(x*) = 0.

e Can you find a Newton method for v/ A that does not require

division on each iteration??




Example: Faster Newton for v A

e The problem with the classic fixed point iteration

olos) = (:c ¥ %)

is that it requires evaluation of A/x on each iteration

e As we've seen, division also requires a Newton iteration

e A method that avoids repeated division can be found by starting with

A
f==-1=A"-1
X
fl = —227°A
f_=

§
24 2



Example: Faster Newton for /A

e The resulting fixed-point iteration is based on

glz) = v — = = —x — = = (c] — ¥,

which requires one addition and three multiplies after an initial computa-
tion of (2A4)7!

e Unlike the classic iteration, this new one, which is polynomial in x, is not
globally convergent

e However, after range reduction to [1 : 4], it is convergent for the initial guess
of the preceding slides or even for something as simple as x¢g = .5(1 + A)

sqrt_bad Init.m



Fixed-Point Newton Iterations for VA

[ [ | /

sqrt_bad Initm




Returning to Newton

e Recall main result

e At root, f(x*) =0, so

AR

provided f’(x*) # 0.

e Moreover,
/ f/ 2 ff//
i) =1
N2

e So convergence is quadratic if f'(x*) # 0



Newton, continued
e What if f'(z*) = 07

e Assume f"(z*) # 0. Then,

e Because f(x*) = f'(z*) = 0, we have to use L’hopital’s Rule:

lim =~ = lim =~ = 0
r—x* f/ r—x* f//

e So, yes, still a fived-point because g(x*) = z*

e What about convergence?

e Does ¢'(z*) = 0 in this case?



Newton, continued

e Here, we need to evaluate ¢'(x*),

) =fr _ ff

A VN
1 O

e [’hopital again,

. /(x> . %(ff”) o f,f//+ff,// _ 9
:z:—)a:*g r—x* %(f’)Q r—a* 2f’f” 0

lfﬂZ 4+ f/f/// + f/f/// + ff////
Ty D (f//>2+f/f”/
I

R YR R

e More generally, if multiplicity is m, convergence is linear, with constant

o114 Convergence is slower
m with increasing m




Alternatives to Newton

e Main issue with Newton iteration is the need for f'(x)

e Often, only know f(x), maybe only as a function call (i.e., f(x) is

a “black box™)

e Several methods exist for constructing a model (i.e., interpolant)
that approximates f(x) and passes through |xy, f(xy)] pairs.

e One can then approximate f'(xy) or simply use the interpolant to
find approximate root, Ty

e Common choices:

e Secant method
e Muller’s method
e [nverse interpolation

e Linear fractional iteration

e We'll look at three of these



Secant Method

e By far the most popular nonlinear solver for f(z) = 0 is the secant method

e [t is similar to Newton in that it uses slope information and converges su-
perlinearly, but it does not require evaluation of f'(x)
Af flag)—flzg—1)

e Instead, on approximates the derivative as f'(z;) ~ z& = p—

Secant Method




Secant Method, continued

e The resulting secant method is

Tpyl = Tp — fn) = T — f) (xp — xp_1)
k1 k AfJAT k Flan) — Flan) ko Tk-1

e Here, you need two starting values xy and x4

e Don’t make these too close or round-off (cancellation) may affect the result



Example: Secant Method

e We apply the secant method to f(x) = x* — 4sin(z)

for k=1:15;

dx

= x1-x0;

disp([k x1 f1 dx1)
if abs(fl) < tol; break; end;
if abs(dx) < tol; break; end;

[x1,x0,f1,fol=secant(x1,x0,f1,f0);

plot(x9,f0, 'k.',ms,12,x1,f1,'r."',ms,12); pause(.4);

end;

NO O P~ WN P

k

.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000000000000000e+00

PRRPRRPRPPRN

x_k

.000000000000000e+00
.867038861132927e+00
.931354568387107e+00
.933844526748519e+00
.933753644474301e+00
.933753762821192e+00
.933753762827021e+00

function [x1,x0,f1,f0l=secant(x1,x0,f1,f0);

dx =

Xnew =

x0=x1; x1=xnew;
fo=f1; fl=fnc(xnew);

f_k

.628102926972732e-01
.399264892893270e-01
.266962609341338e-02
.799532782651106e-04
.258100517797516e-07
.082512023411255e-11
.440892098500626e-16

demo _sec.m

x1-x0; df = f1-f0;

x1 - flxdx/df;

x_k-x_{k-1}
1.000000000000000e+00
-1.329611388670726e-01
6.431570725418001e—-02
2.489958361411304e-03
-9.088227421760742e-05
1.183468905097129e-07
5.829559057701772e-12



Example: Secant Method demo_sec.m

e We apply the secant method to f(x) = x* — 4sin(z)

for k=1:15; function [x1,x0,f1,f@]l=secant(xl,x0,f1,f0);
dx = x1-x0;
disp([k x1 f1 dx1) dx = x1-x0; df = f1-f0;
if abs(fl) < tol; break; end;
if abs(dx) < tol; break; end; xnew = x1 — flxdx/df;

[x1,x0,f1,fol=secant(x1,x0,f1,f0); x0=x1: X1=Xnew:

plot(x@,f9, 'k.',ms,12,x1,f1,'r.',ms,12); pause(.4); fo=f1; fl=fnc(xnew);

end;
Secant Method

-0.5 0 0.5 1 1.5 2 25 3



Example: Secant Method

e For reference, here compare to the Newton results:

octave:9> demo_sec

NO O~ WN P

k

.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000000000000000e+00

octave:10> demo_newt

3 B9
2
3.
4,
5.

k
000000000000000e+00
000000000000000e+00
000000000000000e+00
000000000000000e+00
000000000000000e+00

PRRPRPRRPN

PRERPPRPN

x_k

.000000000000000e+00
.867038861132927e+00
.931354568387107e+00
.933844526748519e+00
.933753644474301e+00
.933753762821192e+00
.933753762827021e+00

x_k

.000000000000000e+00
.935951152215635e+00
.933756376157758e+00
.933753762830728e+00
.933753762827021e+00

f_k

.628102926972732e-01
.399264892893270e-01
.266962609341338e-02
.799532782651106e-04
.258100517797516e-07
.082512023411255e-11
.440892098500626e-16

f_k

.628102926972732e-01
.163292318786135e-02
.381844935011145e-05
.959898909831281e-11
.440892098500626e-16

e We see that, as expected, the convergence is superlinear, but not as fast as
Newton

x_k-x_{k-1}

.000000000000000e+00
.329611388670726e-01
.431570725418001e-02
.489958361411304e-03
.088227421760742e-05
.183468905097129e-07
.829559057701772e-12

x_k-x_{k-1}

.000000000000000e+00
.404884778436526e-02
.194776057877101e-03
.613327029887813e-06
.706590590013548e-12



Secant Method: Rate of Convergence

e Note, the secant method is not a fixed-point iteration as it requires two
function evaluations for the update

e As k — o0, the asymptotic error behavior for the secant method for a
simple root is

1f”<$*)
€pi1 ~ = €per_1 = CERpej_
k+1 2 Fla) kCk—1 kCk—1

e We sketch the derivation as follows.

e Near the root, assume
f=ar>+br+c=alr—a)2+bxz—1z*) = ad>+bd

with 0 .= 2 — &*

e Note that a = 5 f"(z*) and b = f'(z*)



Secant Method: Rate of Convergence

e This approximation is simply retaining the first 3 terms in the Taylor series
expansion of f at x*

e Define successive iterates as xg, x1, and (to be determined) x5, with corre-
sponding 0’s, dg, 01, and 09

e The secant update step is then
d1 — g
(67 — d5) + b(d1 — d)

52 = (51 — (a(Sf + b51>a

~adj + b
a0y + dp) + b

e Now use the result that d; < 9y, retain only bd; in the numerator, and use

: 1 2
the expansion, 77— ~ 1 — €+ ¢+, to find

4
b

~%@+Oﬁ)

5 ~ 01 [0+ 80)] + O



Secant Method: Rate of Convergence

e We've now established
1f//($>l<)

2 f'(a)

Chl ™~ erer—1 = Ceper—1

e What about the convergence rate, r, in the expression for the asymptotic
convergence

|€k+1|

~ C
lex]”

e As k — 00, we have

err1 ~ cege—_1 ~ Cep

e For simplicity, assume errors are positive

€t €reh—1 ,
N~ PR Ce,_1 = ey
€k €k
1
C ere;, C 1+1i_,
E— —e, ' = constant, C

NEeg C



Secant Method: Rate of Convergence

e Both sides of the preceding expression are constant,

e [f this is a constant, independent of k, then the exponent 1 + % — 7 must
equate to 0, which implies that r is the positive root of the quadratic equa-
tion

rP—r—1=0

e The solution is the golden ratio,

14++/5

r o= ~ 1.618
2

e Thus, convergence of the secant method is superlinear, with rate
r = 1.618...



Muller’s Method

e Muller’s method is a natural extension of the secant method but (as we will
see) is not as robust as the superior quadratic inverse iteration (or simply
“inverse iteration”)

e Nonetheless, Muller’s method has one attractive feature that warrants at-
tention, and that is that it can find complex roots

e The idea behind Muller’s metho is to use three successive function pairs
[z, f(xk)] to fit a parabola to approximate f(z) and to then find the nearby
root of this parabola.

e When it works, the convergence rate of Muller’s method is r ~ 1.839, the
same as inverse iteration

e We will see in the following demos that it is not as robust as secant or inverse
1teration



Muller’s Method demo _mul.m

X0=2.0; fo=fnc(x0); %% Update step for Muller's Method
x1=1.5; fl=fnc(x1); %%
x2=1.0;  f2=fnc(x2); %% Following Wofram Mathworld Implementation

plot(xe,fe, 'k.',ms,12,x1,f1,'k."',ms,12,x2,f2,'b.',ms,8);
function [x2,x1,x0,f2,f1,fel=muller(x2,x1,x0,f2,f1,f0);

for k=1:15;
d{ = x2-x1; h2=x2-x1; %% recent
disp([k x2 f2 dx]) hl=x1-x0; %% older
if abs(f2) < tol; break; end;
if abs(dx) < tol; break; end; g=h2/h1; %% recent/older

gql=qg+1;
[x2,x1,x0,f2,f1, f0l=muller(x2,x1,x0,f2,f1,f0);
A=qgx (f2-q1lxf1+q*f0) ;
B=(g+ql)*xf2—qlxqlxfl+qxqxf0O;
C=ql1xf2;

plot(xe,fo, 'k.',ms,12,x1,f1, 'k."',ms,12,x2,f2,'b."',ms,8);

end;

Dp = B-sqrt(BA2-4%AxC);

Dm = B+sqrt(B”2-4%AxC);

D max(Dp,Dm); %% Wolfram MathWorld suggestion

D min(Dp,Dm); %% OPPOSITE of Wolfram MathWorld suggestion
xnew = x2-h2x(2xC)/D;

X0=x1; x1=x2; X2=xnew;
fo=Ff1; f1=f2; f2=fnc(xnew);



Inverse Quadratic Interpolation

e With inverse quadratic interpolation, the idea is to fit a curve of the form

xr = x(y) which is quadratic in y

e One then evaluates that curve at y = 0 to get the next iterate, xp,1.

e We can see how this compares to Muller’s method (dashed-line) in the figure

from the tex, below

—

regular )
quadratic fit —=

inverse fit

next iterate

=i



Inverse Quadratic Interpolation

o If f.. fu, fp, are three successive function evaluations at (¢, a, b), then the
update is given by,

/
c =a, a

where p and ¢ are
p=v(wlu—w)(c—=b) — (1—u)(b—a),
and u = fy/fe, v = [/ fs, and w = [,/ f.

/

b,

V=0b+p/q,

¢ = (w=1)(v=1)(u—1)

e For the test problem of f = x? — 4sin(z) we have the results below, which
are superlinear but not as fast as Muller for this particular case.

e Generally, however, inverse iteration is more robust than Muller

octave:13> demo_inv

ONOOTPH~WN P

k

.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000000000000000e+00
.000090200000000e+00

PRRPRRPRRLNONPR

x_k

.000000000000000e+00
.043533508306118e+00
.105473554891674e+00
.908724959689660e+00
.933511046619406e+00
.933754349354884e+00
.933753762829330e+00
.933753762827021e+00

f_k

.365883939231586e+00
.147279280058893e-01
.912863030585370e-01
.305426952747446e-01
.283234075938555e-03
.101366593316612e-06
.220801237877822e-11
.440892098500626e-16

X_k=x_{k-1}

.000000000000000e—-01
.043533508306118e+00
.194004658555574e-02
.967485952020138e-01
.478608692974582e-02
.433027354777906e—-04
.865255536807723e-07
.308819802010476e-12



Inverse Quadratic Interpolation

demo _inv.m

hdr function [x2,x1,x0,f2,f1,fel=inverse(x2,x1,x0,f2,f1,f0);
tol = 100xeps; % Following Heath, p.234:
X=—.4:.001:3;
f=fnc(x); % Generate: new a = old b
% new ¢ = old a
hold off; % new b = b + p/q
plot(x,@x*x, 'k-',1w,2,0%x,x, 'k-',1w,2,x,f, 'r-',1w,2); % old ¢ is discarded
title('Quadratic Inverse Iteration',fs,20);
hold on; % Initially: x0=c
% x1=a
format longe; % x2=b
disp(" k x_k f_k x_k=x_{k-1}")
c=x0; fc=f0;
X0=2.0; fo=fnc(x0); a=x1; fa=f1;
x1=1.5; fl=fnc(x1); b=x2; fb=f2;
x2=1.0; f2=fnc(x2);
plot(xe,fe, 'k.',ms,12,x1,f1, 'k.',ms,12,x2,f2,'b."',ms,8); hc=c-b;
hb=b-a;
for k=1:15;
dx = x2-x1; u=fb/fc; v=fb/fa; w=fa/fc;
disp([k x2 f2 dx1)
if abs(f2) < tol; break; end; p=vk( wk(u-w)*hc — (1-u)xhb );
if abs(dx) < tol; break; end; g=(w-1)*(v-1)*(u-1);
[x2,x1,x0,f2,f1,fol=inverse(x2,x1,x0,f2,f1,f0); xnew = b + (p/q);
x0=x1; fo=f1;
plot(xe,fo, 'k.',ms,12,x1,f1, 'k."',ms,12,x2,f2,'b."',ms,8); x1=x2; f1=f2;
x2=xnew; f2=fnc(xnew);
end;

function f=fnc(x);

f = X.kx=4*xsin(x);



Other Test Cases

e We can explore secant, Muller, and inverse iteration on other functions and
starting conditions

e One case is f = e*/? — 2

Stopped Here



Finding Multiple Roots

e Often we need to find more than one root of a scalar function f(x)

e We may have a precise definition of the function but the particular zeros of
interest are not known or tabulated .

Bessel Function, Jy(x)

e Fixamples include:

e Chebyshev polynomials Ta) = L /w cos(asin £ dt
0

e Legendre polynomials
e Bessel functions

e The Bessel function is an example /\ /\ /\
of a relatively expensive function \\/
to evaluate, so rapid root finders 02t

are of interest




Finding Multiple Roots

e Zeros of these functions are of interest for many reasons

e The Chebyshev zeros are central to many approximation problems because
their monomial product T,,(x) = (x —r1)(x —19) - - - (x —7,,) (the nth-order
Chebyshev polynomial) has the property that all of its extrema on the stan-
dard [—1, 1] interval are +1.

e Out of all nth-order polynomials, only T}, has this property.

e [f one can bound an error by max |p, ()| for any nth-order polynomial, then
the minimal error bound will be realized by T,.

e This is the mini-max property that is invariably linked to some form of
Chebyshev polynomial

e Fortunately, the roots of T, (x) are known in closed form:

r; =cos(j0 —0/2), 0 :=m/n



Finding Multiple Roots

e For Legendre polynomials and Bessel functions the zeros are not availabe
in closed form.

e The Legendre zeros are important for numerical integration.

e One robust way to find them is to develop a companion matrix that exploits
the 3-term recurrence, starting with £y =1 and P, =«

_2n+1 n

Poia(z) = 1 xPy(x) — n—HPn—l(@

and to solve for the eigenvalues of the n X n tridiagonal companion matrix
that results from this relationship

e The zeros of Bessel functions correspond to eigenvalues of functions con-
strained to disk shapes, such as drum heads and the liquid surface of a cup
of coffee

bessel surf.m

R
IR
R

i




Main Ingredients for Multiple Roots

e Safeguards
— bracketing or other known limits (e.g., roots r; € [—1, 1] for orthogonal
polynomials)
— Brent’s (also Van Wijngaarden-Dekker) method combines bracketing/bisection
with inverse quadratic interpolation Numerical Recipes, SciPy, efc.

e Good initial guess, if possible

— roots of Legendre polynomials are close to Chebyshev roots
— For Bessel function, Jj, successive roots satisty 7.1 ~ 7,7 as ¢ increases

— Start with first root near 0, then set initial guess for 75 to be ri + 7



Main Ingredients for Multiple Roots

Deflation

e A key point is to ensure that the root finder does not return to known roots

o [f f(x) has say, 3 roots of interest, idea is to use one of the methods dis-
cussed so far (e.g., inverse quadratic interpolation) to find a root, denoted

as 1i

e Define new function

o J()

and apply root finder to get ry

e Next define I
fle) = (x —r)(x — 79)

and apply root finder to get r3

function f=fnc_deflate(x,rts);
f=fnc(x);

nrts = length(rts);

for k=l:nrts;

f=f./(x-rts(k));
end;




Code Example

hdr; format shorte; clear rts;

tol = 100%eps;

N=6; %% Number of roots (must match "fnc")

: fo=fnc(x0); % Chebyshev roots are on (-1:1)

; fl=fnc(x1);
: f2=fnc(x2);

X X

il
[ R S]
N PO

0
1
2

x

rts=[1;
for j=1:N
for k=1:30;
dx = x2-x1;
disp([j k x2 f2 dx]1)
if abs(f2) < tol || abs(dx) < tol; break; end;
[x2,x1,x0,f2,f1, fol=inverse_def(x2,x1,x0,f2,f1,f0,rts);
end;
disp(' ');

rts(j) = x2;
if j<N; x0=0.01; x1=0.02; x2=0.03; % Reinitialize guesses
fO=fnc_deflate(x0,rts);
fl=fnc_deflate(x1,rts);
f2=fnc_deflate(x2,rts);
if f2 > fO; t=f2;f2=f0;f0=t; t=x2;x2=x0;x0=t; end;
end;
end;
rts=reshape(rts,N,1); rts=sort(rts, 'descend');

%% EXACT ROOTS FOR Nth-Order Chebyshev Polynomial

theta = pi/N; j=[1:N]'; exact = cos(jxtheta - theta/2);



Code Example

hdr; format shorte; clear rts;

tol = 100%eps;

N=6; %% Number of roots (must match "fnc")

: fo=fnc(x0); % Chebyshev roots are on (-1:1)

; fl=fnc(x1);
: f2=fnc(x2);

X X

il
[ R S]
N PO

0
1
2

x

rts=[1;
for j=1:N
for k=1:30;
dx = x2-x1;
disp([j k x2 f2 dx]1)
if abs(f2) < tol || abs(dx) < tol; break; end;
[x2,x1,x0,f2,f1, fol=inverse_def(x2,x1,x0,f2,f1,f0,rts);
end;
disp(' ');

rts(j) = x2;
if j<N; x0=0.01; x1=0.02; x2=0.03; % Reinitialize guesses
fO=fnc_deflate(x0,rts);
fl=fnc_deflate(x1,rts);
f2=fnc_deflate(x2,rts);
if f2 > fO; t=f2;f2=f0;f0=t; t=x2;x2=x0;x0=t; end;
end;
end;
rts=reshape(rts,N,1); rts=sort(rts, 'descend');

%% EXACT ROOTS FOR Nth-Order Chebyshev Polynomial

theta = pi/N; j=[1:N]'; exact = cos(jxtheta - theta/2);



Deflating Roots of Chebyshev Polynomial

Chebyshev Polynomial

Te/(X-X1)(X-X2)...

TG/(x—.x1 )()‘(-Xg)...

05

ANVA

Te

05k

Root 1

-0.5 0 05 1

/TN

-20

-25

-30

80

60

40

20

-20

-05 0 05 1
Root 3
- :
-05 0 05 1

Root 5

T

-0.5 0

05

Root 2
15
HRTS
=
Y
o
>
X
-5
x
0
x
=
>
= o
5 s ‘
-1 05 0 05
Root 4
5
0
st
o
o
X -10
X
=
X g5
x
S
20l
}—
sl
30 \ / L
-1 -05 0 05
Root 6
35 '
30 -
/—:\ 25 -
&
o
X 20 [
X
X 15
x
=
2 10l
sl
0 L L )
-1 -05 0 05
X




Systems of Nonlinear Equations



Systems of Nonlinear Equations

Solving systems of nonlinear equations is much more difficult than the scalar
case because

e Wider variety of behavior is possible, so determining existence and number
of solutions or good starting guess is more complex

e There is no simple way, in general, to guarantee convergence to desired so-
lution or to bracket solution to produce absolutely safe method

e Computational overhead inreases rapidly with problem dimension, n



Examples: Systems in Two Dimensions

ri— T3+ = 0 |
A pair of parabolas

\/1 solution

-
\/7 4 solutions
-

v=-1.0

—z+ x5 +y =0

\

No solution

AN




Fixed-Point Iteration

e Fixed-point problem for g: R" — IR" is to find vector x such that
x = g(x)
e Corresponding fized-point iteration is
Xpr1 = 8(Xx)
e [f spectral radius p(G(x*)) < 1, where G(x) is the Jacobian matrix of g

evaluated at x, then fixed-point iteration converges if started close enough
to solution

e Convergence rate is normally linear with constant C' = p(G(x*))

e Since p(G) < ||G]|| for any matrix G, can bound p by some
easy-to-compute norm (e.g., 1- or oco-norm)

o [f G(x*) = O (the zero matrix) at x*, then convergence is at least quadratic



Fixed-Point Iteration: Newton’s Method

e [n n > 1 dimensions, Newton’s method for f(x) = 0 takes the form
Xpp1 = Xp — I i,

where f}, ;= f(x;) and Jj := J(x;) is the Jacobian matrix of f evaluated at
Xk

- 3



Comments about the Jacobian

e Suppose f(x) is linear, with form

f(x) = Ax — b

of;
[J]z' —
J 0z
e 1th equation:
fZ(X) — Zaija:j — bz — Zazkxk bz
j=1 k=1
afz B - 8xk abz
Oz B ;alkﬁ% Oz

Therefore, for linear equations of this form, J = A



Newton Example: Linear Case

e Suppose f(x) = Ax—b =0

e Newton step 1s

xp1 = g(xk) = xp — J; '

e Start with xy = 0,
f, = A0 —-b = —Db
Jyo= A
x;=0—- A" (-b) = Ab = x

e Newton is just Ax = b for this case.

e [t will always converge in one (full-Newton) step



What About G?

e Consider the Jacobian of the Newton-derived fixed-point
operator, g(x),

o agi . a -1
Gij = dr. O, (x — A7'[Ax — b))
. 0 1 1
—axj(x A TAx+ A b)
— iA—llo =0
8:13]-

e The last term is zero because A~ 'b is a constant vector
that does not depend on x



Simple Example for Nonlinear f
e Consider f(x) = Ax — ge*

e This is known as the Bratu problem when Au ~ —V?u and is a mathemat-
ical model for reaction-diffusion that governs many combustion processes

e Here, 2
e
e = |
a O
8—6X = | 1| €Y = eje, e;=jthcol of n x n identity
ZCj 0
\0)
- _
T
J=A —o0 ¢




Jacobian Example

e Nonlinear example:

fo B el 4 2

e Jacobian:



Linear Example for g

dgi
e Here, we have the Jacobian of g(x), [G];;, = 89
L
e The fixed-point function evaluation, g(x) is,
y, = [Gx]; = > Gijaj = 5. L
j=1 j=1 "/

e For this linear case, fixed-point evaluation simplifies to g(x) = Gx

e Can analyze error as follows

x" = g(x)
x' = Gx* — Db
Xk+1 — GXk; — b

e,+1 = Gey



Linear Example for g, continued

e Have a contractor if p(G) < 1

— ||lexr1|| < pller||  (for k sufficiently large )

e In nonlinear case, G(x) ~ G(x*) for x ~ x*.

o If p(G(x)) < 1 at x = x*, there is a neighborhood near x* for which we
will have a contractor



Linear Example for g, continued

e Suppose g(x) is given as
ST 100 05 | 2 0.5 |
which has x* = [2 1]! as a fixed point
o What 1s the expected convergence rate?

e For upper triangular matrix G, eigenvalues are diagonal entries and max
diagonal entry is 0.5, corresponding to p(G)

e Therefore, expect asympotic error, ||x — x*|| to contract by a factor of two
with each iteration.



Linear Example for g, continued fixot 2d.m

hdr; format shorte
G=[ 0.1 -.1 ;

9.0 0.5 1;
b=[1.9 .5]1';
x=[0 0]';
for k=1:9;

X = Gxx + b;

disp([k x' x(1)-2 x(2)-1 1)
and

octave:2> fixpt_2d

1.0000e+00 1.9000e+00 5.0000e-01 -1.0000e-01 -5.0000e-01
2.0000e+00 2.0400e+00 7.5000e-01 4.0000e-02 -2.5000e-01
3.0000e+00 2.0290e+00 8.7500e-01 2.9000e-02 -1.2500e-01
4.0000e+00 2.0154e+00 9.3750e-01 1.5400e-02 -6.2500e-02
5.0000e+00 2.0078e+00 9.6875e-01 7.7900e-03 -3.1250e-02
6.0000e+00 2.0039e+00 9.8438e-01 3.9040e-03 -1.5625e-02
7.0000e+00 2.0020e+00 9.9219e-01 1.9529e-03 -7.8125e-03
8.0000e+00 2.0010e+00 9.9609e-01 9.7654e-04 -3.9062e-03
9.0000e+00 2.0005e+00 9.9805e-01  4.8828e-04 -1.9531e-03

Note the asymptotic 2-fold reduction in error



Fixed-Point Iteration: Newton’s Method

e [n n > 1 dimensions, Newton’s method for f(x) = 0 takes the form
Xpp1 = Xp — I i,

where f}, ;= f(x;) and Jj := J(x;) is the Jacobian matrix of f evaluated at
Xk

- 3



Fixed-Point Iteration: Newton’s Method

Why this works:

e Consider Taylor series in n dimensions:

f = O(e
(x+ ev) X)|, + eza v, + O(é%)
Xk+1 i
=0 =ev = —J;lfk

e Thus, the fixed point iteration is
Xp+1 — Xgp + €V
= X — Jk 1fk

= g(xz)



Convergence

dgi
o [t [G(X>]z =
J Ox;
0 -1
= — |, f
_1 Ofi -
= ] — Jkl 7 pr(X)Hp(X>
J p=1
I
= 0 Convergence is at
least quadratic
e Here,
0 . _
[Hp] — a.. [J 1]2]



Example

e Here, we initiate a sketch of how the terms are evaluated

£ x1+2r9 — 21 |0 . |0
DR s NN T
7 afi |1 2
- Ox; | 2w 8wy
J_1 _ 1 85172 —2
S8r9 —4xy | =221 1
g =x — Jf

e Note that if f(x) is linear with form
f(x) = Ax — b
then the Jacobian is simply J = A.



Example, continued

e We look at the gradient of g(x):

ggj N [(1) (1)] - J [2;:] - > Hx (Ejjp [J‘l]ip)
——

p

J

= Z fp(x)H,(x)
p
e For x = x*, each term is 0.

e Q: What is H,, 77



Example, continued

elctJ 1= A

e Fvaluate the terms involving H,

0 0
o 205 = 2 (o

D

e Bvaluate H):

iA _ 4 Sy
65131 B (83(32 — 45131)2) _2551

ﬁA _ —8 872
8x2 B (8332 — 4331)2 _2551

—2

1

1

_9 N
Sro — 4xy

)+8LI}2

— 45171



Cost of Newton’s Method

Cost per iteration of Newton’s method for dense problem in n dimensions is
substantial

e Computing Jacobian matrix costs n? scalar function evaluations

e Solving linear systems costs O(n?) operations

e Can, however, re-use the LU factorization for several iterations, rather than
recomputing at each step

e Alternatives are to seek secant-like methods



Secant Updating Methods

e Secant updating methods reduce cost by
— Using function values at successive iterates to build approximate Jaco-

bian and avoiding explicit evaluation of derivatives

— Updating factorization of approximation using Sherman-Morrison, rather
than refactoring it each iteration

e Most secant updating methods have superlinear but not quadratic conver-
gence rate

e Secant updating methods often cost less overall than Newton’s method be-
cause of lower cost per iteration



Broyden’s Method

e As in the 1D case, working with the Jacobian is potentially painful

e Idea is to build a secant type method by solving the linear model problem

0~ frp =+ Jp (X0 —xp)

S

—> S = —lelfk

Xk+1 = X 1+ S

e Here, we let B = J; be a low-cost approximation to Jy

e Redefine Newton step as

BkS — —fk

Xk+1 = Xp T8

update By



Broyden’s Method

e As in the 1D case, we want to update By,
e Nominally, we need something like

i1 — 1

Bii1 =

Xk+1 — Xk

e Of course, fractions with vectors are difficult, so consider

fio1 —fi = Br(Xp1 — %) = Byiisy  Secant condition

e Not enough to uniquely determine By



Broyden’s Method, continued

e To resolve uniqueness issue in a simple (low-cost) way, choose By 1 to be a
rank-one perturbation of By,

e That is By; — Bj should be a rank-one matrix such that Bj; satisfies
the secant condition, Byyis; =t — {}.

e Resulting Jacobian update is

1
Bk+1 = Bk + T (fk—H — fk; — BkSk> SZ:

e Main advantage is that Sherman-Morrison can be used to update the LU
factorization of By, which avoids the O(n?) refactor cost



Robust Newton-Like Methods

e Newton’s method and its variants may fail to converge when started far
from solution.

e Safeguards can enlarge region of convergence for Newton-like methods

e Simlest precaution is damped-Newton method, in which new iterate is
Xp4+1 = Xg + Sk

where sy is Newton (or Newton-like) step and ay, is scalar parameter chosen
to ensure progess toward solution

e Parameter oy reduces Newton step when it is too large, but aj = 1 suffices
near solution and still yields fast asymptotic convergence rate



Example: Broyden’s Method

Use Broyden’s method to solve nonlinear system

B 1 + 229 — 2 B
F(x) = [x%—l—él:c%—éll =0

1" 1", and we choose

fxg =[1 2|, then f(xo) = 3 13

Bo = Jy(@0) = E 1?3]

ERCE

], SO w12w0+80=[

Solving system

—1.83

—0.83
—0.58

gives sg = [ 1.49



Example: Broyden’s Method

Evaluating at new point x; gives f(x1) = [ A 072] SO

yo = f(x1) — f(zo) = [_g.328]

From updating formula, we obtain

1 2 0 0 1 2
B = [2 16] " [—2.34 —0.74] - [—0.34 15.3]

Solving system
1 21, _[ 0
—0.34 15.3| "t [—4.72

0.99

—0.30

—0.24
1.120

giVGSSlz[ ], SO iBQZiBl—i—Sl:[



Example: Broyden’s Method

Evaluating at new point x- gives f(x3) = L (())SJ , SO

y1 = f(x2) — f(m1) = [—30.64]

From updating formula, we obtain

B[ 1 2], [0 0] [1 2
27 1-0.34 15.3 1.46 —0.73| ~ |1.12 14.5

. . . . . 0
lterations continue until convergence to solution x* = [ 1]



broyden4.m

format compact; format longe; hold off
x=2*ones(2,1); f£=0*x;

J =12 ; 2*x(1) 8*x(2) ]; ans =
£(1) = x(1) + 2%x(2) - 2; 2.139655346077961e+00 2.054687500000000e+00
f(2) = x(1).72 + 4*x(2)."3 - 3; ans =
6.734825454103858e-01 4.826427692876747e+00
ans =
for iter=1:10; 1.172734304676712e+00 2.562485091574165e-01
_ \fs ans =
z _ ;is;’ 6.575484354786346e-02 5.210384348368891e-02
ans =
fo = £; 1.678260886810548e-02 1.508348427554207e-03
f(1) = x(1) + 2*x(2) - 2; ans =
£(2) = x(1)."2 + 4*x(2).%3 - 3; 5.003216525182486e-04 9.672703087826307e-06
ans =
y = f-fo; 3.229159393332246e-06 1.828977858053804e-09
ans =
J =J - ((J*s-y)*s')/(s'*s); 6.107060192670134e-10 1.776356839400250e-15
ans =
plot(x(1),x(2),'ro"); hold on 5.931361405127450e-16 4.440892098500626e-16
ns = norm(s); nf = norm(f); [ns nf] ans =
1.977120468375818e-16 4.440892098500626e-16
end;

* Notice the e, e, 1
convergence behavior.



Broyden’s Method, continued

e Note that we can also initiate Broyden’s method with By = I, which avoids
all derivative evaluation.

e In this case, a damped update is generally needed to keep the update in
scale, at least for the early iterations

e We explore this option in the following demo

 demo_broyden.m
« demo_broyqg.m



broyden_bratu.m

Solve 1D Bratu Problem: -u'' = sigma exp(u), u(0)=u(l)=0

-u approximated by 2nd-order finite differences

0P oP oP oP oP

Usage: sigma=3.5; broyden bratu

n=180; % sigma = 3.3; % Sigma c is ~ 3.5+
h=1./(n+l); b = ones(n,1l); x=1:n; x=h*x'; h2i = 1./(h*h);

a=-2*b; A = h2i*spdiags([b a b],-1:1, n,n);
=-2*b + sigma*h*h*exp(x); J = h2i*spdiags([b ¢ b],-1:1, n,n);

J = A
u=b*0; £ = A*u + sigma*exp(u);

for iter=1:20;

MNorm of stepsize andfvs. k

$ mesh(log(abs(J))); pause(l);
s = =J\f; .
u u+s; 1
f = A*u + sigma*exp(u); .
c=-2*b + sigma*h*h*exp(u); L
$ J = A; % Constant
$ J =A + (f*s')/(s'*s); $ A + rank 1 10
$ J = h2i*spdiags([b ¢ b],-1:1, n,n); % Newton
J =J + (f*s')/(s'*s); $ Broyden 10°
k(iter) = iter; ns(iter) = norm(s); nf(iter) = norm(f); 10*
[ns(iter) nf(iter)]
10" .
plot(x,u,'r-',x,0*x,'k-"',x,£f,'g-"); pause(.1l) H
10" | e
end; i
plot(x,u,'r-',x,0*x,'k-"',x,£f,'g-"); pause 10 ) . )
semilogy(k,ns, 'r-',k,nf, 'b-") 0 3 10 15

title('Norm of stepsize and f vs. k'); axis square






Higher-Dimensional Examples

J Bratu Problem — a nonlinear ODE or PDE

 Jacobi-Free Newton-Krylov methods



1 Newton’s Method in Higher Space Dimensions

We are interested in solving a system of nonlinear equations in n dimensions, f(x) = 0. As with
the scalar (n=1) case, we recast the problem as a fixed point iteration using Newton’s method

Xk+1 = Xk — J_lf(Xk;) (1)
= X+t Sk
where the update step s;. satisfies Js, = —f;, and
ofi
Ji‘ = = 2
J axj _ ( )
X=Xk

is the Jacobian matrix associated with the f(x) at x = xj. In some cases we use a damped Newton
update of the form

Xk+1 = Xk 1+ asg
with o < 1 chosen to guarantee that ||fy1]|| < ||fk]].

A major difference between the scalar and vector case is that (1) requires the solution of an n x n
system for each iteration. Given that the factor (LU decomposition of J) cost nominally scales as
O(n?), a great deal of effort is expended to develop algorithms that can reduce this overhead. We
explore one of these, Jacobi-Free Newton-Krylov (JFNK) methods at the end of this discussion.
Presently, we carry on with the notion that we can solve systems in J, ever mindful that it typically
represents the leading-order overhead in our method.



2 The Bratu Example

The text has a couple of nonlinear system examples for the case n=2. Here, we consider a larger
problem that is motivated by (but not exactly like) the reaction-diffusion problem. In the following,
we seek an unknown function u(z) (where z € [0, 1] is a spatial coordinate) that satisfies the steady-
state heat (diffusion) equation

d?u

-~ = 4w =u() =0, g

where q(z) represents the heat source. For the Bratu problem, we define

where o is a parameter.

Equation (3) is a ordinary differential equation (ODE) and in particular it is a nonlinear two-point
boundary value problem with boundary conditions prescribed as above. To turn this continous
problem into a system of nonlinear equations we first discretize the second derivate term in (3)
using a finite difference appoximation. Through application of Taylor series at points x; := jh,
j=1,...,n, with grid spacing h = 1/(n + 1). we derive

2
_uj—l — 2uj — Uj+1 . d“u

& = @,

+ O(h?) = oe" + O(h?). (4)

If we neglect the O(h?) error term then the system is solvable we can anticipate that our solution
u; will approximate u(x;) to order h?.



Subtracting the right-hand side from both sides of (4) and changing the sign, we arrive at the
n-dimensional root-finding problem f(u) = 0,
Uj—1 — 2Uj — Uji1

fi = h2 +oe¥ =0, j=1,...,n ()

To apply (1), we need the Jacobian (2), which is given by the tridiagonal matrix

(al b \

b an b
1 : :
o
K b ay )
with b = 1 and a; = —2 + h%*ce%. Note that, as is often the case with systems arising from

differential equations, J is sparse. That is, it has a fixed number of nonzeros per row, independent
of n and thus has O(n) nonzeros. Moreover, because this system is tridiagonal, the factor cost is
only O(n), which is of the same order as the other update steps in the algorithm. (In higher space
dimensions, the factor costs is O(nY) with v > 1 and direct factorization loses favor in comparison
to iterative JFNK methods.)



We illustrate the result for n = 80 and ¢ = 1. Using (1), and ug = 0, we have the following results

for the norms of the step size and residual,

from which see that we are converging to a fixed point (||sg|| — 0) quadratically, as is typical
when Newton’s method is working. In addition, we see that ||f;|| is not going to €ps, which might

O WD - ®

R P, P W o ©

Il s_k ||

.141106002022624e-01
.555298143445134e-03
.746387054601207e-07
.5563772829606369e-15
.184226711286128e-15
.746857971735465e-16

=~~~ W O

Il £k ||

.944271909999159e+00
.803485294158030e-02
.363605689013008e-06
.007219709041583e-12
.430323637721320e-12
.074544804307374e-12

be expected given that the condition number of J is about 4 x 103.

0.6

Bratu Solution, 0 =3

tion




The corresponding source code is

n=80; sigma = 1;
h=1./(n+1); b = ones(n,1); x=1:n; x=h*x’; h2i = 1./(hxh);

a=-2*b; A = h2ix*spdiags([b a b],-1:1, n,n);
c=-2xb + sigmaxhxh*exp(x); J = h2i*spdiags([b c bl,-1:1, n,n);

u=b*0;

for iter=1:31;
f=A*u + sigmaxexp(u);
c=-2%b + sigmaxh¥h*exp(u);

< Nonlinear term

J = h2ixspdiags([b ¢ b],-1:1, n,n); % J is sparse
s = -J\f;
u = u+s;
ns = norm(s); nf = norm(f); [ns nf]
end;

plot(x,u,’r-’,x,0%x,’k-’); hold on

The solution u(x) is not terribly interesting, but we plot it for completeness in Fig. 1.



3 Refinements of the Algorithm

It turns out that for some values of ¢ the Bratu problem has two solutions, whereas above a critical
value there are no solutions. We discuss a bit of the behavior for ¢ on the interval [0, o.], where
o. ~ 3.51355. In Fig. 2, we plot max, |u(z)| as a function of o on the lower branch of solutions.
There is another branch (not shown) which sits above this one. The existance of this branch is
indicated by the fact that the solution is turning as ¢ — o.. The path that is shown here was
found by monitoring convergence of Newton’s method for a sequence 07,1 = 0; + do, and reducing
0o whenever Newton’s method required more than 20 iterations. The work was reduced by using
the solution at o; as the starting point for ¢ = 0;1;. Finding the upper branch is beyond the scope
of this discussion. We mention, however, that a commonly used approach that has proven quite
successful is pseudo-arclength continuation, developed by H.B. Keller and coworkers. With this
approach, o is taken as an additional unknown and a new parameter, s, the arclength of the path,
is introduced as an auxiliary parameter (which will not be multivalued).!

Bratu Lower Branch
1.4

121

'See, for example, Sec. 4.5 in http://www.math.tifr.res.in/~publ/In /tifr79.pdf

1

08

max lul

06

041

02

I I I 1 I I I
0 0.5 1 1.5 2 2.5 3 3.5

Figure 2: Lower branch of Bratu solutions vs o.



4 JFNK: Reducing Factorization Costs

For large sparse Jacobians, the solution of
JSk — —fk

is best effected with iterative methods such as conjugate Gradients (if J is SPD, which is rare) or
GMRES.

Iterative methods for Ax = b simply require repeated matrix-vector product evaluation of the form
p = Aw. (7)

For Newton iteration in higher space dimensions where A = J this apparently requires forming the
Jacobian,

Jij =

— )
0xj X=X},

which may be very complex for a large nonlinear system arising from a partial differential equation.



Fortunately, careful inspection of (7) reveals that we do not need to produce A (=: J). We only
need to produce w. This observation leads to the idea of developing a Jacobi-free method that does
precisely that.

Consider a Taylor series about x; in terms of x5 + es. We can write
f(x, +es) = f(xi) + eJ(xp)s + O(€%).
Neglecting the O(€?) term, we solve for J(x;)s =: Js,

Is f(xy + €s) — f(xk), (8)

€

which is a finite difference approximation to Js. As we know from Chapter 1, we can expect this
approximation to be accurate to only =~ ,/€); and we should take € no smaller than ~ ,/e);. In
general, one needs to consider norms of the terms involved in order to better understand how e
should be selected. There is a vast literature on the topic.?

The key advance here is that one can use (8) inside an iterative method for solving Js = —f without
ever forming (or factoring!) J. One simply needs repeated evaluation of the nonlinear functional,
f(xp + es) for varying values of s.

2 An excellent starting point is Knoll and Keyes, Jacobian-free NewtonKrylov methods: a survey of approaches and
applications, J. Comp. Phys, 2004.



