
Chapter 4: Eigenvalue Problems
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Eigenvalues and Eigenvectors

• Standard eigenvalue problem: Given n⇥ n matrix
A, find scalar � and nonzero vector x such that

Ax = �x

• � is the eigenvalue and x is the eigenvector

• � (and x) may be complex even if A is real

• Spectrum of A = set of all eigenvalues �(A)

• Spectral radius ⇢(A) = max{|�| : � 2 �(A)}
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Geometric Interpretation

• The matrix-vector product v̂ = Av stretches or shrinks any vector v lying
in direction of eigenvector x

• Scalar expansion or contraction factor is given by corresponding �

• Eigenvalues and eigenvectors lead to simple interpretation of general linear
transformations (e.g., as represented by matrix-vector products)

• They are particularly useful when considering iterative processes that can
be cast as a sequence of matrix-vector products, such as

x1 = Ax0, x2 = Ax1, . . . ,xk = Akx0,

• Such sequences are in fact at the core of most of the algorithms used to find
the eigenpairs (�,x) of A
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Examples: Eigenvalues and Eigenvectors

• A =


1 0
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


0
1

�

• A =


1 1
0 2

�
: �1 = 1, x1 =


1
0

�
, �2 = 2, x2 =


1
1

�

• A =


3 �1

�1 3

�
: �1 = 2, x1 =


1
1

�
, �2 = 4, x2 =


1

�1

�

• A =


1.5 0.5
0.5 1.5

�
: �1 = 2, x1 =


1
1

�
, �2 = 1, x2 =


�1
1

�

• A =


0 1

�1 0

�
: �1 = i, x1 =


1
i

�
, �2 = �i, x2 =


i
1

�
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Classic Eigenvalue Problem

• Consider the coupled pair of di↵erential equations:

dv

dt
= 4v � 5w, v = 8 at t = 0,

dw

dt
= 2v � 3w, w = 5 at t = 0.

• This is an initial-value problem.

• With the coe�cient matrix,

A =


4 �5

2 �3

�
,

we can write this as,

d

dt

✓
v(t)
w(t)

◆
=


4 �5

2 �3

�✓
v(t)
w(t)

◆
.

• Introducing the vector unknown, u(t) := [v(t) w(t)]T with u(0) = [8 5]
T
,

we can write the system in vector form,

du

dt
= Au, with u = u(0) at t = 0.

• How do we find u(t) ?



• If we had a 1 ⇥ 1 matrix A = a, we would have a scalar equation:

du

dt
= a u with u = u(0) at t = 0.

The solution to this equation is a pure exponential:

u(t) = eat u(0),

which satisfies the initial condition because e0 = 1.

• The derivative with respect to t is aeatu(0) = au, so it satisfies
the scalar initial value problem.

• The constant a is critical to how this system behaves.

– If a > 0 then the solution grows in time.

– If a < 0 then the solution decays.

– If a 2 Im then the solution is oscillatory.
(More on this later...)
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• Coming back to our system, suppose we again look for solutions that are

pure exponentials in time, e.g.,

v(t) = e�ty

w(t) = e�tz.

• If this is to be a solution to our initial value problem, we require

dv

dt
= �e�ty = 4e�ty � 5e�tz

dw

dt
= �e�tz = 2e�ty � 3e�tz.

• The e�t cancels out from each side, leaving:

�y = 4y � 5z

�z = 2y � 3z,

which is the eigenvalue problem.

Classic Eigenvalue Problem


4 �5
2 �3

�✓
y
z

◆
=


� 0
0 �

�✓
y
z

◆
.



• In vector form, u(t) = e�tx, yields

du

dt
= Au () �e�tx = A(e�tx)

which gives the eigenvalue problem in matrix form:

�x = Ax or

Ax = �x.

• As in the scalar case, the solution behavior depends on whether � has

– positive real part �! a growing solution,

– negative real part �! a decaying solution,

– an imaginary part �! an oscillating solution.

• Note that here we have two unknowns: � and x.

• We refer to (�,x) as an eigenpair, with eigenvalue � and eigenvector x.



Solving the Eigenvalue Problem

• The eigenpair satisfies

(A � �I)x = 0,

which is to say,

– x is in the null-space of A� �I

– � is chosen so that A� �I has a null-space.

• We thus seek � such that A� �I is singular.

• Singularity implies det(A� �I)=0.

• For our example:

0 =

����
4� � �5
2 �3� �

���� = (4� �)(�3� �) � (�5)(2),

or

�2 � �� 2 = 0,

which has roots � = �1 or � = 2.



Finding the Eigenvectors

• For the case � = �1 = �1, (A� �1I)x1 satisfies,


5 �5

2 �2

�✓
y
z

◆
=

✓
0

0

◆
,

which gives us the eigenvector x1

x1 =

✓
y
z

◆
=

✓
1

1

◆
.

• Note that any nonzero multiple of x1 is also an eigenvector.

• Thus, x1 defines a subspace that is invariant under multiplication by A.

• For the case � = �2 = 2, (A� �2I)x2 satisfies,


2 �5

2 �5

�✓
y
z

◆
=

✓
0

0

◆
,

which gives us the second eigenvector as any multiple of

x2 =

✓
y
z

◆
=

✓
5

2

◆
.

Because Ax1 = l x1 , i.e., it is simply a stretching of x1



Return to Model Problem

• Note that our model problem
du
dt = Au, is linear in the unknown u.

• Thus, if we have two solutions u1(t) and u2(t) satisfying the di↵erential

equation, their sum u := u1 + u2 also satisfies the equation:

du1

dt
= Au1

+
du2

dt
= Au2

d

dt
(u1 + u2) = A(u1 + u2)

du

dt
= Au



• Take u1 = c1e�1tx1:
du1

dt
= c1�1e

�1tx1

Au1 = A
�
c1e

�1tx1

�

= c1e
�1tAx1

= c1e
�1t�1x1

=
du1

dt
.

• Similarly, for u2 = c2e�2tx2:
du2

dt
= Au2.

• Thus,
du

dt
=

d

dt
(u1 + u2) = A (u1 + u2)

u = c1e
�1tx1 + c2e

�2tx2.

• The only remaining part is to find the coe�cients c1 and c2 such that

u = u(0) at time t = 0.

• This initial condition yields a 2 ⇥ 2 system,

2

4 x1 x2

3

5
✓

c1
c2

◆
=

✓
8

5

◆
.



• Solving for c1 and c2 via Gaussian elimination:


1 5

1 2

� ✓
c1
c2

◆
=

✓
8

5

◆


1 5

0 �3

� ✓
c1
c2

◆
=

✓
8

�3

◆

c2 = 1

c1 = 8 � 5c1 = 3.

• So, our solution is u(t) = x1c1e
�1t + x2c2e

�2t

=

✓
1

1

◆
3e�t

+

✓
5

2

◆
e2t.

• Clearly, after a long time, the solution is going to look like a multiple

of x2 = [5 2]
T
because the component of the solution parallel to x1 will

decay.

• (More precisely, the component parallel to x1 will not grow as fast as the

component parallel to x2.)



Summary

• Model problem, u 2 Rn,

du

dt
= Au, u = u(0) at time t = 0.

• Assuming A has n linearly independent eigenvectors, can express

u(t) =
nX

j=1

xjcje
�jt.

• Coe�cients cj determined by initial condition:

Xc =
nX

j=1

xjcj = u(0) () c = X�1u(0).

• Eigenpairs (�j,xj) satisfy

Axj = �jxj.

Example Summary
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Growing / Decaying Modes

• Our model problem,

du

dt
= Au �! u(t) = x1c1e

�1t + x2c2e
�2t

leads to growth/decay of components.

• Also get growth/decay through matrix-vector products.

• Consider u = c1x1 + c2x2.

Au = c1Ax1 + c2Ax2

= c1�1x1 + c2�2x2

Aku = c1�
k
1x1 + c2�

k
2x2

= �k
2

"
c1

✓
�1

�2

◆k

x1 + c2x2

#
.

lim
k�!1

Aku = �k
2 [c1 · 0 · x1 + c2x2] = c2�

k
2x2.

• So, repeated matrix-vector products lead to emergence of eigenvector
associated with the eigenvalue � that has largest modulus.

• This is the main idea behind the power method, which is a common
way to find the eigenvector associated with max |�|.



Characteristic Polynomial

• Equation Ax = �x is equivalent to

(A � �I)x = 0

which has nonzero solution x i↵ matrix (A � �I) is singular

• Eigenvalues of A are roots �i of characteristic polynomial

det(A � �I)x = 0

of degree n in �

• Fundamental Theorem of Algebra implies that n⇥n matrixA always has
n eigenvalues, but they need not be real nor distinct

• Complex eigenvalues of real matrix occur in complex conjugate pairs: If
� = ↵ + i� is an eigenvalue of a real matrix then so is ↵ � i�, where
i =

p
�1

5



Example: Characteristic Polynomial

• Evaluate det(A� �I) of earlier example

|A � �I| = det

✓
3 �1

�1 3

�
� �


1 0
0 1

�◆

= det

✓
3� � �1
�1 3� �

�◆

= (3� �)(3� �)� (�1)(�1) = �2 � 6� + 8 = 0

• Eigenvalues are

� =
6±

p
36� 32

2
, or �1 = 2, �2 = 4

3



Companion Matrix

• Monic polynomial

p(�) = c0 + c1� + · · · + cn�1�
n�1 + cn�

n

is characteristic polynomial of companion matrix

Cn =

2

66664

0 0 · · · 0 -c0
1 0 · · · 0 -c1
0 1 · · · 0 -c2
... ... . . . ... ...
0 0 · · · 1 -cn�1

3

77775

• Roots of polynomial degree > 4 cannot always be computed in
finite number of steps

• So in general, computation of eigenvalues of matrices of order
> 4 requires a (theoretically infinite) iterative process

1



Example: Companion Matrix, n = 3

• Consider companion matrix

C =

2

4
0 0 �c0
1 0 �c1
0 1 �c2

3

5

• Evaluate determinant of C� �I

|C � �I| =

������

�� 0 �c0
1 �� �c1
0 1 �(c2 + �)

������

= �c0

����
1 ��
0 1

���� + c1

����
�� 0
0 1

���� � (c2 + �)

����
�� 0
1 ��

����

= �c0 � c1� � c2�
2 � �3 = 0

• Roots of resultant monic polynomial, p(�) = c0 + c1� + c2�2 + �3 = 0,
are the 3 eigenvalues, �1, �2, and �3

2

Example: Companion Matrix, n = 3

• Consider companion matrix

C =

2

4
0 0 �c0
1 0 �c1
0 1 �c2

3

5

• Evaluate determinant of C� �I

|C � �I| =

������

�� 0 �c0
1 �� �c1
0 1 �(c2 + �)

������

= �c0

����
1 ��
0 1

���� + c1

����
�� 0
0 1

���� � (c2 + �)

����
�� 0
1 ��

����

= �c0 � c1� � c2�
2 � �3 = 0

• Roots of resultant monic polynomial, p(�) = c0 + c1� + c2�2 + �3 = 0,
are the 3 eigenvalues, �1, �2, and �3

2

Example: Companion Matrix, n = 3

• Consider companion matrix

C =

2

4
0 0 �c0
1 0 �c1
0 1 �c2

3

5

• Evaluate determinant of C� �I

|C � �I| =

������

�� 0 �c0
1 �� �c1
0 1 �(c2 + �)

������

= �c0

����
1 ��
0 1

���� + c1

����
�� 0
0 1

���� � (c2 + �)

����
�� 0
1 ��

����

= �c0 � c1� � c2�
2 � �3 = 0

• Roots of resultant monic polynomial, p(�) = c0 + c1� + c2�2 + �3 = 0,
are the 3 eigenvalues, �1, �2, and �3

2



Characteristic Polynomial, continued

• Computing eigenvalues using characteristic polynomial is not recommended
because of

• work in computing coe�cients of characteristic polynomial

• sensitivity of coe�cients of characteristic polynomial

• work in solving for roots of characteristic polynomial

• Characteristic polynomial is a powerful theoretical tool but usually not

useful computationally

• In fact, in many cases we use eigenvalue solvers to find the roots

of poynomials

1



Example: Characteristic Polynomial

• Consider A =


1 ✏

✏ 1

�

with ✏M < ✏ <
p
✏M

• Exact eigenvalues of A are 1 + ✏ and 1� ✏

• Computing characteristic polynomial in float point arithmetic leads to

det(A� �I) = �
2 � 2� + (1� ✏

2
) = �

2 � 2� + 1

which as 1 as a double root

• Thus, eigenvalues cannot be resolved by this method even though they are

distinct to working precision

2



Multiplicity and Diagonalizability

• Multiplicity is number of times root appears when polynomial is written as

product of linear factors

• Eigenvalue with multiplicity 1 is simple

• Defective matrix has eigenvalue of k > 1 with fewer than k linearly inde-

pend corresponding eigenvectors

• Nondefective matrix A has n linearly independent eigenvectors, so it is

diagonalizable

X�1AX = D

where X = [x1 x2 · · ·xn] is nonsingular matrix of eigenvectors

• Note: every matrix is ✏ away from being diagonalizable

3

Algebraic
Multiplicity

Geometric 
Multiplicity



Diagonalization
• The real merit of eigenvalue decomposition is that it simplifies powers of a matrix.

• Consider X�1AX = D, diagonal

AX = XD

A = XDX�1

A2
=

�
XDX�1

� �
XDX�1

�

= XD2X�1

Ak
=

�
XDX�1

� �
XDX�1

�
· · ·

�
XDX�1

�

= XDkX�1

= X

2

664

�k
1

�k
2

. . .

�k
n

3

775X�1

• High powers of A tend to be dominated by largest eigenpair (�1, x1),

assuming |�1| � |�2| � · · · � |�n|.

1

pow_a.m



Matrix Powers Example
• Consider our 1D finite di↵erence example introduced earlier.

d2u

dx2
= f(x) �! � ui�1 � 2ui + ui+1

�x2
⇡ f(xi).

where u(0) = u(1) = 0 and �x = 1/(n+ 1).

• In matrix form,

Au =
1

�x2

0

BBBBBBBB@

2 �1

�1 2 �1

�1
. . .

. . .

. . .
. . . �1

�1 2

1

CCCCCCCCA

0

BBBBBBBB@

u1

u2
...

...

um

1

CCCCCCCCA

=

0

BBBBBBBB@

f1

f2
...

...

fm

1

CCCCCCCCA

• Eigenvectors and eigenvalues have closed-form expression:

(zk)i = sin k⇡xi = sin k⇡i�x �k =
2

�x2
(1� cos k⇡�x)

• Eigenvalues are in the interval ⇠ [⇡2, 4(n+ 1)
2
].



Matlab Example: heat_demo.m

q Repeatedly applying A to a random input vector reveals the 
eigenvalue of maximum modulus.

q This idea leads to one of the most common (but not most efficient) 
ways of finding an eigenvalue/vector pair, called the power method.



q h



Diagonalization
• Note that if we define A0

= I, we have any polynomial of A defined as

pk(A)x = X

2

6666664

pk(�1)

pk(�2)

. . .

pk(�n)

3

7777775
X�1x.

• We can further extend this to other functions,

f(A)x = X

2

6666664

f(�1)

f(�2)

. . .

f(�n)

3

7777775
X�1x.

• For example, the solution to f(A)x = b is would be

x = X [f(D)]
�1 X�1b.

• The diagonalization concept is very powerful because it transforms systems
of equations into scalar equations.

2



Eigenspaces and Invariant Subspaces

• Eigenvectors can be scaled arbitrarily: if Ax = �x, then A(�x) = �(�x)
for any scalar �, so �x is also eigenvector corresponding to �

• Eigenvectors are usually normalized by requiring some norm of eigenvector

to be 1 (2-norm is most favored...)

• Eigenspace = S� = {x : Ax = �x}

• Subspace S of lR
n
(or lC

n
) is invariant if AS ✓ S

• For eigenvectors x1 · · ·xp span([x1 · · ·xp]) is invariant subspace

• Q: When might invariance fail?

A: In floating-point arithmetic, because of round-o↵ error

4



Relevant Properties of Matrices

• Properties of matrix A relevant to eigenvalue problems

Property Definition

diagonal aij = 0 for i 6= j

tridiagonal aij = 0 for |i� j| > 1

triangular aij = 0 for i > j (upper)

aij = 0 for i < j (lower)

Hessenberg aij = 0 for i > j + 1 (upper)

aij = 0 for i < j � 1 (lower)

orthogonal ATA = AAT
= I

unitary AHA = AAH
= I (A 2 lC

ntimesn

symmetric A = AT

skew-symmetric A = �AT

Hermitian A = AH

normal A = AH

normal AHA = AAH

5



Upper Hessenberg (from last lecture…)

q A is upper Hessenberg – A is upper triangular with one additional 
nonzero diagonal below the main one:    Aij = 0  if  i > j+1

q Requires only n Givens rotations, instead of O(n2), to effect QR 
factorization.



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Characteristic Polynomial
Relevant Properties of Matrices
Conditioning

Examples: Matrix Properties

Transpose:

1 2
3 4

�T
=


1 3
2 4

�

Conjugate transpose:

1 + i 1 + 2i
2� i 2� 2i

�H
=


1� i 2 + i
1� 2i 2 + 2i

�

Symmetric:

1 2
2 3

�

Nonsymmetric:

1 3
2 4

�

Hermitian:


1 1 + i
1� i 2

�

NonHermitian:


1 1 + i
1 + i 2

�

Michael T. Heath Scientific Computing 15 / 87

Skew-Symmetric:


0 �2
2 0

�
= �


0 �2
2 0

�T

1



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Characteristic Polynomial
Relevant Properties of Matrices
Conditioning

Examples, continued

Orthogonal:

0 1
1 0

�
,


�1 0
0 �1

�
,

 p
2/2

p
2/2

�
p
2/2

p
2/2

�

Unitary:

i
p
2/2

p
2/2

�
p
2/2 �i

p
2/2

�

Nonorthogonal:

1 1
1 2

�

Normal:

2

4
1 2 0
0 1 2
2 0 1

3

5

Nonnormal:

1 1
0 1

�
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ß “canonical non-normal matrix”
     Defective – has only one eigenvector.



Normal Matrices

Normal matrices have orthogonal eigenvectors, so xH
i
xj = �ij

XT = X�1

A = XDXH

Normal matrices include

• symmetric (A = AT )

• skew-symmetric (A = �AT )

• unitary (UHU = I)

• circulant (periodic+Toeplitz)

• others . . .

1



Properties of Eigenvalue Problems

Properties of eigenvalue problem a↵ecting choice of algorithm and software

• Are all eigenvalues needed, or only a few?

• Are only eigenvalues needed, or are corresponding eigenvectors also needed?

• Is the matrix real or complex?

• Is the matrix relatively small and dense, or large and sparse?

• Does the matrix have any special properties such as symmetry, or is it a

general matrix?

6



Sparsity

q Sparsity, either direct or implied, is a big driver in choice of 
eigenvalue solvers.

q Typically, only O(n) entries in entire matrix, where n ~ 109—1018 
might be anticipated.

q Examples include Big Data (e.g., google page rank) and physics 
simulations (fluid, heat transfer, electromagnetics, fusion, etc.).

q Usually, need only a few (k << n) eigenvectors / eigenvalues.

q Often, there are special properties of A that make it difficult to 
create A.   Instead, work strictly with matrix-vector products

q    y = A x 

Add growth example



Conditioning of Eigenvalue Problems

• Condition of eigenvalue problem is sensitivity of eigenvalues and eigenvec-

tors to changes in matrix

• Condition of eigenvalue problem is not same as conditioning of solution to

linear system for same matrix

• Finding � = 0 is a common situation in eigenvalue problems, but indi-

cates a singularity when trying to solveAx = b sensitivity of coe�cients

of characteristic polynomial

• Di↵erent eigenvalues and eigenvectors are not necessarily equally sensitive

to perturbations in matrix

7



Conditioning of Eigenvalues

• If µ is eigenvalue of A + E of nondefective matrix A, then

|µ� �k|  cond2(X)kEk2
where �k is closest eigenvalue of A to µ and X is the nonsingular matrix of

eigenvectors of A

• Absolute condition number of eigenvalues is condition number of matrix of

eigenvectors with respect so solving linear equations (e.g., Xc = b)

• Eigenvalues may be sensitive if eigenvectors are nearly linearly dependent

(i.e., matrix is nearly defective)

• For normal matrix (AAH
= AHA), eigenvectors are orthogonal, so eigen-

values are well-conditioned
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Conditioning of Eigenvalues

• If (A + E)(x +�x) = (� +�⇤)(x +�x), where � is a simple eigenvalue

of A, then

|��| . kyk2 · kxk2
|yHx| kEk2 =

1

cos ✓
kEk2

where x and y are corresponding right and left eigenvectors and ✓ is the

angle between them

• For symmetric or Hermitian matrix right and left eigenvectors aare same so

cos ✓ = 1 and eigenvalues are inherently well-conditioned

• Eigenvalues of nonnormal matrices may be sensitive

• For multiple or closely clustered eigenvalues, corresponding eigenvectors may

be sensitive

9



Problem Transformations

• Shift: If Ax = �x and � is any scalar, then (A � �I)x = (� � �)x, so
eigenvalues of shifted matrix are shifted eigenvalues of A

• Inversion: If A is nonsingular and Ax = �x with x 6= 0, then � 6= 0 and
A�1x = (1/�)x, so eigenvalues of inverse are reciprocals of �(A)

• Powers: If Ax = �x, then Akx = �kx, so eigenvalues of power of matrix
are �k

• Polynomial: If Ax = �x, and p(t) is a polynomial, then p(A)x = p(�)x,
so eigenvalues of polynomial in A are p(�).

•

1



Similarity Transformation

• B is similar to A if there exists a nonsingular matrix T such that

B = T�1AT

• Then,

By = �y =) T�1ATy = �y =) ATy = �Ty

so A and B have the same eigenvalues, and if y is eigenvector of B, then
x = Ty is eigenvector of A

• Similarity transformations preserve eigenvalues and eigenvectors are easily
recovered

2



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Example: Similarity Transformation

From eigenvalues and eigenvectors for previous example,


3 �1
�1 3

� 
1 1
1 �1

�
=


1 1
1 �1

� 
2 0
0 4

�

and hence

0.5 0.5
0.5 �0.5

� 
3 �1

�1 3

� 
1 1
1 �1

�
=


2 0
0 4

�

So original matrix is similar to diagonal matrix, and
eigenvectors form columns of similarity transformation
matrix
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Diagonal Form

• Eigenvalues of diagonal matrix are diagonal entries, eigenvectors are X = I

• Diagonal form is desirable in simplifying eigenvalue problems for general
matrices by similarity transformations

• But not all matrices are diagonalizable

• Closest one can get, in general, is Jordan form, which is nearly diagonal but
may have som nonzero entries on first superdiagonal corresponging to one
or more multiple eigenvalues

3



Simple non-diagonalizable example, 2 x 2 Jordan block:
Simple non-diagonalizable example, 2⇥ 2 Jordan block:

"
1 1

0 1

# 
x1

x2

!
= �

 
x1

x2

!

�����
1� � 1

0 1� �

����� = (1� �)2 = 0

Only one eigenvector: x =

 
1

0

!

"
1 1

0 1

# 
1

0

!
=

 
1

0

!

1



3⇥ 3 Non-Diagonalizable Example

A =

2

664

2

2

2

3

775 , B =

2

664

2 1

2 1

2

3

775 .

• Characteristic polynomial is (�� 2)
3
for both A and B.

• Algebraic multiplicity is 3.

• For A, three eigenvectors. Say, e1, e2, and e3.

• For B, only one eigenvector (↵e1), so geometric multiplicity of B is 1.



Eigenvectors / Eigenvalues of Upper Triangular Matrix

Suppose A is upper triangular

A =

2

664

A11 u U13

0 � v
T

O 0 A33

3

775

Then

0 = (A� �I)x =

2

664

U11 u U13

0 0 v
T

O 0 U33

3

775

0

BB@

y

�1

0

1

CCA =

0

BB@

U11y � u

0

0

1

CCA

(A� �I) x 0

Because U11 is nonsingular, can solve U11y = u to find eigenvector x.

1



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Block Triangular Form

If

A =

2

6664

A11 A12 · · · A1p

A22 · · · A2p
. . . ...

App

3

7775

with square diagonal blocks, then

�(A) =
p[

j=1

�(Ajj)

so eigenvalue problem breaks into p smaller eigenvalue
problems
Real Schur form has 1⇥ 1 diagonal blocks corresponding
to real eigenvalues and 2⇥ 2 diagonal blocks
corresponding to pairs of complex conjugate eigenvalues
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Eigenvalue-Revealing Factorizations

Eigenvalue-Revealing Factorizations

• Diagonalization: A = X⇤X�1 if A is nondefective.

• Unitary diagonalization: A = Q⇤Q⇤ if A is normal.

• Unitary triangularization: A = QTQ⇤ always exists.
(T upper triangular.)



Eigenvalue Problems
Existence, Uniqueness, and Conditioning
Computing Eigenvalues and Eigenvectors

Problem Transformations
Power Iteration and Variants
Other Methods

Forms Attainable by Similarity
A T B

distinct eigenvalues nonsingular diagonal
real symmetric orthogonal real diagonal
complex Hermitian unitary real diagonal
normal unitary diagonal
arbitrary real orthogonal real block triangular

(real Schur)
arbitrary unitary upper triangular

(Schur)
arbitrary nonsingular almost diagonal

(Jordan)

Given matrix A with indicated property, matrices B and T
exist with indicated properties such that B = T�1AT
If B is diagonal or triangular, eigenvalues are its diagonal
entries
If B is diagonal, eigenvectors are columns of T
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Always 
exists



Similarity Transformations

• Given B = T�1AT

A = T B T�1

• If A is normal (AAH = AHA),

A = Q⇤QH

B is diagonal, T is unitary (T�1 = TH).

• If A is symmetric real,

A = Q⇤QT

B is diagonal, T is orthogonal (T�1 = T T ).

• If B is diagonal, T is the matrix of eigenvectors.



Computing Eigenpairs via Various 

(Sophisticated!) Forms of Power Iteration


