Chapter 4: Eigenvalue Problems



Eigenvalues and Eigenvectors

e Standard eigenvalue problem: Given n X n matrix
A, find scalar A and nonzero vector x such that

Ax = \x

e )\ is the eigenvalue and x is the eigenvector
e )\ (and x) may be complex even if A is real

e Spectrum of A = set of all eigenvalues A(A)

e Spectral radius p(A) = max{|A| : A € A(A)}



Geometric Interpretation

e The matrix-vector product v = Av stretches or shrinks any vector v lying
in direction of eigenvector x

e Scalar expansion or contraction factor is given by corresponding A

e Figenvalues and eigenvectors lead to simple interpretation of general linear
transformations (e.g., as represented by matrix-vector products)

e They are particularly useful when considering iterative processes that can
be cast as a sequence of matrix-vector products, such as

k
X = Axg, X9 = Axy, ... X = A"X,

e Such sequences are in fact at the core of most of the algorithms used to find
the eigenpairs (A, x) of A



Examples: Eigenvalues and Eigenvectors
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Examples: Eigenvalues and Eigenvectors
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Examples: Eigenvalues and Eigenvectors

1.5 0.5
¢ A= [0.5 1.5]

L AL =2 X1:[”, Ay =1, X2:[



Classic Eigenvalue Problem

e Consider the coupled pair of differential equations:

d
@ 4v — dw, v = 8att=0,
dt
d
T~ 9oy - Jw, w = datt=0.
dt

e This is an tnitial-value problem.

e With the coeflicient matrix,

4 -5
-5
we can write this as,

d [ v(t) 4 =5 v(t)
dt\wi) ) |2 -3 w(t) )
e Introducing the vector unknown, u(t) := [v(t) w(t)] with u(0) = [8 5],
we can write the system in vector form,

du

- = Au, withu=u(0) att=0.

e How do we find u(t¢) ?



o [f we had a 1 x 1 matrix A = a, we would have a scalar equation:

du
dt

The solution to this equation is a pure exponential:

= au with u =u(0) at t = 0.

u(t) = e u(0),
which satisfies the initial condition because €' = 1.

e The derivative with respect to t is ae®u(0) = au, so it satisfies
the scalar initial value problem.

e The constant a is critical to how this system behaves.

— It a > 0 then the solution grows in time.
— It a < 0 then the solution decays.

— If @ € Im then the solution is oscillatory:.
(More on this later...)



e Coming back to our system, suppose we again look for solutions that are
pure exponentials in time, e.g.,

v(t) = e

w(t) = eMz.

e If this is to be a solution to our initial value problem, we require

d
—d: = Ae”y = 46Aty — 5eMy
d
—C;) — ey = 26Aty — 3eMy.

e The e cancels out from each side, leaving:
Ay = 4y — bz
Az = 2y — 3z,

which is the eigenvalue problem.




e In vector form, u(t) = ex, yields
du At At
E:Au<:>)\eX:A(ex)
which gives the eigenvalue problem in matrix form:
AX = Ax or
Ax = Ix.

e As in the scalar case, the solution behavior depends on whether A\ has

— positive real part — a growing solution,
— negative real part — a decaying solution,

— an imaginary part — an oscillating solution.
e Note that here we have two unknowns: A and x.

e We refer to (A, x) as an eigenpair, with eigenvalue A and eigenvector x.



Solving the Eigenvalue Problem

e The eigenpair satisfies
(A — X)x = 0,
which is to say,

— x is in the null-space of A — A\J

— A is chosen so that A — A has a null-space.
e We thus seek A such that A — A is singular.
e Singularity implies det(A — \I )=0.
e For our example:

o= |10 L0, = aenes-n - o),

or
M- A—2 =0,

which has roots A = —1 or A = 2.



Finding the Eigenvectors

e For the case A = \y = —1, (A — A\ ])x; satisfies,

2] (1) - ()

which gives us the eigenvector x;

<= (1)-()

e Note that any nonzero multiple of x; is also an eigenvector.

e Thus, x; defines a subspace that is invariant under multiplication by A.

Because Ax, = A1 x4, i.e., itis simply a stretching of x,

e For the case A\ = Ay = 2, (A — A\ [)x satisfies,

2] (1) - ()

which gives us the second eigenvector as any multiple of

<= (1)-(2)



Return to Model Problem

e Note that our model problem ‘é—‘; = Au, is linear in the unknown u.

e Thus, if we have two solutions u;(¢) and us(t) satisfying the differential
equation, their sum u := u; 4+ uy also satisfies the equation:




e Take u; = clemxl: @ = cl)\le/\lt}q
dt
Au; = A(clehtxl)
= e Axy
— 616A1t>\1X1
. du1
=
e Similarly, for us = coe*?'xy: @ = Au,.
dt
du d
e Thus, — = —Z(u w) = A(u u
- oa\m ) (w1 + uz)
u = cle’\ltxl + 026)‘2tX2.

e The only remaining part is to find the coefficients ¢; and ¢y such that
u = u(0) at time t = 0.

e This initial condition yields a 2 X 2 system,

<x](2)- ()



e Solving for ¢; and ¢y via Gaussian elimination:

e (2) = (G)
o 5 (8) = (5)

e So, our solution is u(t) = x1c1eM 4+ xocpe??t

_ 1 ¢ 5 2t
= <1>36 + (2)6.

e Clearly, after a long time, the solution is going to look like a multiple
of x9 = [5 2]! because the component of the solution parallel to x; will
decay.

e (More precisely, the component parallel to x; will not grow as fast as the
component parallel to Xs.)



Example Summary

e Model problem, u € R",

du

= Au, u =u(0) at time t = 0.

e Assuming A has n linearly independent eigenvectors, can express
n
u(t) = Z x;c;e.
j=1
o Coefficients c¢; determined by initial condition:

Xc = ijcj = u(0) <= c = X 'u(0).
j=1

e Eigenpairs ()}, x;) satisfy

AXj = )\ij.



Growing / Decaying Modes

e Our model problem,

d
d_ltl = Au — u(t) = x;¢eM

leads to growth/decay of components.

t -+ XQCQe)‘?t

e Also get growth/decay through matrix-vector products.
e Consider u = X1 + 9Xo.
Au = Clel + CQAXQ

= Cl)\le —+ CQ)\QXQ

Akll = Cl)\lel + CQ)\SXQ
A k
= )\IS [Cl (—1> X1 + C9Xo
A2

kll_I)IlOO Aku = )\lg [Cl -0 - X1 + CQXQ] = CQASXQ.

e So, repeated matrix-vector products lead to emergence of eigenvector
associated with the eigenvalue A\ that has largest modulus.

e This is the main idea behind the power method, which is a common
way to find the eigenvector associated with max |A|.



Characteristic Polynomial

e Equation Ax = Ax is equivalent to
(A —A)x =0

which has nonzero solution x iff matrix (A — AI) is singular

e Eigenvalues of A are roots \; of characteristic polynomial
det(A — AXI)x = 0

of degree n in A

o ['undamental Theorem of Algebra implies that n x n matrix A always has
n eigenvalues, but they need not be real nor distinct

e Complex eigenvalues of real matrix occur in complex conjugate pairs: If
A = a4+ 18 is an eigenvalue of a real matrix then so is a — i3, where

|



Example: Characteristic Polynomial

e Evaluate det(A — AI) of earlier example

3 —1 10
N )
(3 -\ —1
:det(_ - H])

= B3=NB=XN)—(-1)(-1) = ¥*=61+8=0

e igenvalues are

6 £ +/36 — 32
A= , O )\122, )\2:4




Companion Matrix

e Monic polynomial
pA) = ¢y + aX+ - F N+ N
is characteristic polynomial of companion matrix

(00 --- 0 -
10 -+ 0 -
C,= 010 -c

100 -+ 1 -¢p1 |
e Roots of polynomial degree > 4 cannot always be computed in

finite number of steps

e S0 in general, computation of eigenvalues of matrices of order
> 4 requires a (theoretically infinite) iterative process



Example: Companion Matrix, n = 3

e Consider companion matrix

0 O —Cp
C = 1 0 —C1
i 0 1 —62_

e Kvaluate determinant of C — A1

—A 0 —Cp
’C—)\I‘: 1 —A —C1
0 1—(62—|—)\)
I —=A —A 0 —A 0
P N e

:—CO—Cl)\—Cg)\Q—)\SZO

e Roots of resultant monic polynomial, p(A) = ¢y + ci A + caA? + A = 0,
are the 3 eigenvalues, A1, Ao, and As



Characteristic Polynomial, continued

e Computing eigenvalues using characteristic polynomial is not recommended
because of
e work in computing coeflicients of characteristic polynomial
e sensitivity of coefficients of characteristic polynomial

e work in solving for roots of characteristic polynomial

e Characteristic polynomial is a powerful theoretical tool but usually not
useful computationally

e In fact, in many cases we use eigenvalue solvers to find the roots
of poynomials



Example: Characteristic Polynomial

e Consider A = [1 6]
€ 1

with €y < e < \/en
e [ixact eigenvalues of A are 1 +eand 1 — €

e Computing characteristic polynomial in float point arithmetic leads to
det(A = M) =X =22+ (1 —e) =X -2\ +1

which as 1 as a double root

e Thus, eigenvalues cannot be resolved by this method even though they are
distinct to working precision



Multiplicity and Diagonalizability

e Multiplicity is number of times root appears when polynomial is written as
product of linear factors

e Figenvalue with multiplicity 1 is simple

e Defective matrix has eigenvalue of & > 1 with fewer than £ linearly inde-
pend corresponding eigenvectors

e Nondefective matrix A has n linearly independent eigenvectors, so it is
diagonalizable

X 'TAX =D

where X = [x1 X3 - - - X,] is nonsingular matrix of eigenvectors

e Note: every matrix is € away from being diagonalizable

Algebraic
Multiplicity

Geometric
Multiplicity



Diagonalization

e The real merit of eigenvalue decomposition is that it simplifies powers of a matrix.

e Consider X1'AX = D, diagonal
AX = XD
A = XDX!

A* = (XDX ') (XDX™)
= XD*X™!

A* = (XDX Y (XDX7')--- (XDX)
= XDFX!

-l i

Powers of A

pow_a.m

e High powers of A tend to be dominated by largest eigenpair (A, z,),
assuming [Ai| > [Ao| > -+ > [Ay].



Matrix Powers Example

e Consider our 1D finite difference example introduced earlier.

d*u Ui — 2U; + Ujpq

e v ™ S

where 4(0) =u(l) =0and Az =1/(n+1).

e In matrix form,
(2 - VRN AR
-1 2 -1 Uy f2
Au = — -1 - e : =

.
. .
.

\ —i;)\%) \E/

e Eigenvectors and eigenvalues have closed-form expression:

2
(zx); = sinknrz; = sinkmilAx A = A—xz(l—cos krAx)

e Eigenvalues are in the interval ~ [72 4(n + 1)?].



Matlab Example: heat demo.m

J Repeatedly applying A to a random input vector reveals the

eigenvalue of maximum modulus.

 This idea leads to one of the most common (but not most efficient)
ways of finding an eigenvalue/vector pair, called the power method.

hdr

n = 50;

h =1/(n+l);

e = ones(n,1);

A = spdiags([-e 2xe -e],-1:1, n,n)/(h*h);
X = 1:n; x=h%x';

z=sin(pixx);
for k=1:3000;
z=A%*z; z=z/norm(z);
plot(x,z,'r-',1w,2);
title('$A*k {\bf z}$ (convergence is {\em
drawnow;
K
end;

Az (convergence is slow)

0.1}

slow})',intp,1ltx,fs,24);



hdr

n=100;

h =1/(n+1); e = ones(n,1); A = spdiags([-e 2xe -el,-1:1, n,n)/(hxh);
x=1:n; x=h*x';

z=rand(n,1); hold off;
z=sin(pixx);
for k=1:2000;
z=A%z; z=z/norm(z);
plot(x,z,'r-',1w,2); pause;
Kk
end;
if -min(z) > max(z); z=-z; end; plot(x,z,'r-'); pause;

[Z,D]=eig(full(A)); zn=Z(:,n);

hold on

zn=zn/norm(zn); if -min(zn) > max(zn); zn=-zn; end;
plot(x,zn, "kx"')

sn = sin(nxpi*x); sn=sn/norm(sn);

plot(x,sn, 'go"')



Diagonalization

e Note that if we define A° = I, we have any polynomial of A defined as

[ Pre(A1)
pk()\z)
Az = X X1z
i pk()\n) i
e We can further extend this to other functions,
- f(A) '
f(A2)
f(Az = X X'z
i f(n) |

e For example, the solution to f(A)z = b is would be

x=X[f(D) " X7"b.

e The diagonalization concept is very powerful because it transforms systems
of equations into scalar equations.



Eigenspaces and Invariant Subspaces

e Eigenvectors can be scaled arbitrarily: if Ax = Ax, then A(yx) = A\(yx)
for any scalar ~y, so yx is also eigenvector corresponding to A

e Ligenvectors are usually normalized by requiring some norm of eigenvector
to be 1 (2-norm is most favored...)

o Figenspace = S) = {x : Ax = \x}
e Subspace S of R" (orC") is invariant if AS C S
e For eigenvectors X; - - - X, span(|[xy - - - X,|) is invariant subspace

e Q: When might invariance fail?

A In floating-point arithmetic, because of round-oft error



Relevant Properties of Matrices

e Properties of matrix A relevant to eigenvalue problems

Property Definition
diagonal a;;j = 0forz #j
tridiagonal a;; =0 for |i — j| > 1
triangular a;; = 0 for ¢ > j (upper)
a;; = 0 for i < j (lower)
Hessenberg a;; =0 for i > 5+ 1 (upper)
a;; =0 for i < j —1 (lower)
orthogonal ATA = AAT =1
unitary AFA = AAH =T (A eqmmes
symmetric A=A"
skew-symmetric A = —AT'
Hermitian A =AY
normal A =AY

normal AHEA = AAH



Upper Hessenberg (from last lecture...)

 Ais upper Hessenberg — A is upper triangular with one additional
nonzero diagonal below the main one: A; =0 if | >j+1

0.1967 0.2973 0.0899 0.3381 0.5261 0.3965 0.1279
0.0934 0.0620 0.0809 0.2940 0.7297 0.0616 0.5495
0 0.2982 0.7772 0.7463 0.7073 0.7802 0.4852
0 0 0.9051 0.0103 0.7814 0.3376 0.8905
0 0 0 0.0484 0.2880 0.6079 0.7990
0 0 0 0 0.6925 0.7413 0.7343
0 0 0 0 0 0.1048 0.0513

 Requires only n Givens rotations, instead of O(n?), to effect QR
factorization.



Characteristic Polynomial
Existence, Uniqueness, and Conditioning Relevant Properties of Matrices
Conditioning

Examples: Matrix Properties

| [1 2]T [1 3]
@ T[ranspose: =

3 4 2 4

H
. 14 2 1—i 247
@ Conjugate transpose: [1 T Z] = [ ! +7’]

2—1 2—2 1 —20 2+ 21
T
. |1 2 |10 =21 |0 =2
@ Symmetric: [2 3] Skew-Symmetric: [2 0 ] = [2 0 ]

. |1 3
@ Nonsymmetric: [2 4]

. 142
@ Hermitian: [1 . 9 ]
@ NonHermitian: L+
1+ 2 T




Characteristic Polynomial
Existence, Uniqueness, and Conditioning Relevant Properties of Matrices
Conditioning

Examples, continued

@ Orthogonal: [(1) (1)]7 [—01 _01]7 [_g;; gg]

oo [ V2/2 V2)2
@ Unitary: [_\/5/2 —i\/§/2]

@ Nonorthogonal: b1
1 2
1 2 0]
@ Normal: [0 1 2
2 0 1]

@ Nonnormal: [0 1 & “canonical non-normal matrix”
i Defective — has only one eigenvector. T

Michael T. Heath Scientific Computing




Normal Matrices

Normal matrices have orthogonal eigenvectors, so z;

Beware!

e If A is normal, it has orthogonal eigenvectors.

e That does not mean that all eigensolvers will
return orthogonal eigenvectors.

Norm al e e In particular, if two or more eigenvectors share the same

eigenvalue, then they needn’t be orthogonal to each other.

e You probably need to orthogonalize them yourself.

® Ssymm

e skew-symmetric (A = —AT)

e unitary (UHU = I) i

e circulant (periodic+Toeplitz)

e others ... |

H

Lj =

0
9




Properties of Eigenvalue Problems
Properties of eigenvalue problem affecting choice of algorithm and software
e Are all eigenvalues needed, or only a few?
e Are only eigenvalues needed, or are corresponding eigenvectors also needed?
e [s the matrix real or complex?
e [s the matrix relatively small and dense, or large and sparse?

e Does the matrix have any special properties such as symmetry, or is it a
general matrix?



Sparsity

Sparsity, either direct or implied, is a big driver in choice of
eigenvalue solvers.

Typically, only O(n) entries in entire matrix, where n ~ 109—1018
might be anticipated.

Examples include Big Data (e.g., google page rank) and physics
simulations (fluid, heat transfer, electromagnetics, fusion, etc.).

Usually, need only a few (k << n) eigenvectors / eigenvalues.

Often, there are special properties of A that make it difficult to
create A. Instead, work strictly with matrix-vector products

y=Ax



Conditioning of Eigenvalue Problems

e Condition of eigenvalue problem is sensitivity of eigenvalues and eigenvec-
tors to changes in matrix

e Condition of eigenvalue problem is not same as conditioning of solution to
linear system for same matrix

e Finding A = 0 is a common situation in eigenvalue problems, but indi-
cates a singularity when trying to solve Ax = b sensitivity of coefficients
of characteristic polynomial

e Different eigenvalues and eigenvectors are not necessarily equally sensitive
to perturbations in matrix



Conditioning of Eigenvalues

e If 11 is eigenvalue of A + E of nondefective matrix A, then
= A < condy(X)[El|;

where \j is closest eigenvalue of A to p and X is the nonsingular matrix of
eigenvectors of A

e Absolute condition number of eigenvalues is condition number of matrix of
eigenvectors with respect so solving linear equations (e.g., Xc = b)

e Figenvalues may be sensitive if eigenvectors are nearly linearly dependent
(i.e., matrix is nearly defective)

e For normal matrix (AA" = A”A), eigenvectors are orthogonal, so eigen-
values are well-conditioned



Conditioning of Eigenvalues

o [f (A+E)(x+ Ax) = (A+ AA)(x + Ax), where A is a simple eigenvalue
of A, then

Iy llz - lIx]]2 1
AN < E|, = E
‘ ‘ ~ ‘yHX‘ H H2 COSHH ||2

where x and y are corresponding right and left eigenvectors and 6 is the
angle between them

e For symmetric or Hermitian matrix right and left eigenvectors aare same so
cos# = 1 and eigenvalues are inherently well-conditioned

e Figenvalues of nonnormal matrices may be sensitive

e For multiple or closely clustered eigenvalues, corresponding eigenvectors may
be sensitive



Problem Transformations

e Shift: If Ax = Ax and ¢ is any scalar, then (A — ol)x = (A — 0)x, so
eigenvalues of shifted matrix are shifted eigenvalues of A

e [nversion: If A is nonsingular and Ax = Ax with x # 0, then X\ # 0 and
A~x = (1/)\)x, so eigenvalues of inverse are reciprocals of A\(A)

e Powers: If Ax = \x, then A¥*x = \*x, so eigenvalues of power of matrix
are \

e Polynomial: If Ax = A\x, and p(t) is a polynomial, then p(A)x = p(\)x,
so eigenvalues of polynomial in A are p(\).



Similarity Transformation

e B is similar to A if there exists a nonsingular matrix T such that
B=T"'AT
e Then,
By = )\y = T 'ATy =)y = ATy = \Ty
so A and B have the same eigenvalues, and if y is eigenvector of B, then

x = Ty is eigenvector of A

e Similarity transformations preserve eigenvalues and eigenvectors are easily
recovered



Problem Transformations
Power lteration and Variants
Computing Eigenvalues and Eigenvectors Other Methods

Example: Similarity Transformation

@ From eigenvalues and eigenvectors for previous example,

3 —1][t 1] [1r 1][2 0
—1 3|1 —=1] |1 —=1|1]0 4
and hence
0.5 0.5 3 —1| 11 1l (2 0
0.0 —0.5| |—1 3 {1 =11 (0 4
@ So original matrix is similar to diagonal matrix, and

eigenvectors form columns of similarity transformation
matrix

1

Michael T. Heath Scientific Computing



Diagonal Form
e Figenvalues of diagonal matrix are diagonal entries, eigenvectors are X =1

e Diagonal form is desirable in simplifying eigenvalue problems for general
matrices by similarity transformations

e But not all matrices are diagonalizable

e Closest one can get, in general, is Jordan form, which is nearly diagonal but
may have som nonzero entries on first superdiagonal corresponging to one
or more multiple eigenvalues



1
0

I —A
0

1

0

1
1

1
1

Only one eigenvector: x = <

X1

),

)
:
()

Simple non-diagonalizable example, 2 x 2 Jordan block:



3 x 3 Non-Diagonalizable Example

e Characteristic polynomial is (A — 2)? for both A and B.
e Algebraic multiplicity is 3.
e For A, three eigenvectors. Say, eq, e, and es.

e For B, only one eigenvector (aeq), so geometric multiplicity of B is 1.



Eigenvectors / Eigenvalues of Upper Triangular Matrix

Suppose A is upper triangular

[ A ou Uss |
A = 0 X ol
O 0 Asz
Then
(U uw Us | [y Uny —u

O=A-X)z=| 0 0 of -1 | = 0
O 0 Uss |\ O 0
(A —XI) x 0

Because Uj; is nonsingular, can solve U1y = u to find eigenvector x.



Problem Transformations
Power lteration and Variants
Computing Eigenvalues and Eigenvectors Other Methods

Block Triangular Form

@ |f _
A1 Ajpg Aqp
Ago Aa),
A= _
App._

with square diagonal blocks, then
p
MA) = | AAy))
j=1

so eigenvalue problem breaks into p smaller eigenvalue
problems

@ Real Schur form has 1 x 1 diagonal blocks corresponding
to real eigenvalues and 2 x 2 diagonal blocks
corresponding to pairs of complex conjugate eigenvalues 1

Michael T. Heath Scientific Computing




Eigenvalue-Revealing Factorizations

e Diagonalization: A = XAX ! if A is nondefective.
e Unitary diagonalization: A = QAQ* if A is normal.

e Unitary triangularization: A = QT'Q)* always exists.
(T" upper triangular.)



Problem Transformations
Power lteration and Variants

Computing Eigenvalues and Eigenvectors Other Methods
Forms Attainable by Similarity
A T B

distinct eigenvalues nonsingular diagonal

real symmetric orthogonal real diagonal

complex Hermitian  unitary real diagonal

normal unitary diagonal

arbitrary real orthogonal  real block triangular
real Schur

arbitrary unitary upper triangular | Always
Schur exists

arbitrary nonsingular almost diagonal
(Jordan)

@ Given matrix A with indicated property, matrices B and T
exist with indicated properties such that B = T AT

@ |f B is diagonal or triangular, eigenvalues are its diagonal
entries

@ If B is diagonal, eigenvectors are columns of T 1
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Similarity Transformations

e (Given

B is diagonal, T is unitary (T~1 = TH).
o If A is symmetric real,
A = QAQY
B is diagonal, T is orthogonal (T = T7).

e If B is diagonal, T is the matrix of eigenvectors.



Computing Eigenpairs via Various

(Sophisticated!) Forms of Power Iteration



