#!/usr/bin/env python
# coding: utf-8

# # Rounding in the Characteristic Polynomial (using Sympy)
# 
# Copyright (C) 2019 Andreas Kloeckner
# 
# <details>
# <summary>MIT License</summary>
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# 
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# 
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
# </details>

# In[2]:


import sympy as sp
sp.init_printing()


# In[3]:


eps = sp.Symbol("epsilon")
lam = sp.Symbol("lambda")


# In[4]:


m = sp.Matrix([[1, eps], [eps, 1]])
m


# In[5]:


m.charpoly(lam)


# Observe the occurrence of $(1-\epsilon^2)$ above.
