#!/usr/bin/env python
# coding: utf-8

# # Newton's method in 1D
# 
# Copyright (C) 2020 Andreas Kloeckner
# 
# <details>
# <summary>MIT License</summary>
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# 
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# 
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
# </details>

# In[28]:


import numpy as np
import matplotlib.pyplot as pt


# Here's a function:

# In[29]:


a = 17.09
b = 9.79
c = 0.6317
d = 0.9324
e = 0.4565

def f(x):
    return a*x**4 + b*x**3 + c*x**2 + d*x + e

def df(x):
    return 4*a*x**3 + 3*b*x**2 + 2*c*x + d

def d2f(x):
    return 3*4*a*x**2 + 2*3*b*x + 2*c


# Let's plot the thing:

# In[30]:


xmesh = np.linspace(-1, 0.5
                    , 100)
pt.ylim([-1, 3])
pt.plot(xmesh, f(xmesh))


# Let's fix an initial guess:

# In[31]:


x = 0.3


# In[32]:


dfx = df(x)
d2fx = d2f(x)

# carry out the Newton step
xnew = x - dfx / d2fx

# plot approximate function
pt.plot(xmesh, f(xmesh))
pt.plot(xmesh, f(x) + dfx*(xmesh-x) + d2fx*(xmesh-x)**2/2)
pt.plot(x, f(x), "o", color="red")
pt.plot(xnew, f(xnew), "o", color="green")
pt.ylim([-1, 3])

# update
x = xnew
print(x)


# * What convergence order does this method achieve?

# In[33]:


# Quadratic, because it's just like doing 'equation-solving Newton' on f'.

