
Numerical Analysis / Scientific Computing
CS450

Andreas Kloeckner

Spring 2026

1



Outline
Introduction to Scientific Computing

Notes
Notes (unfilled, with empty boxes)
Notes (source code on Github)
About the Class
Errors, Conditioning, Accuracy, Stability
Floating Point

Systems of Linear Equations

Linear Least Squares

Eigenvalue Problems

Nonlinear Equations

Optimization

Interpolation

Numerical Integration and Differentiation

Initial Value Problems for ODEs

Boundary Value Problems for ODEs

Partial Differential Equations and Sparse Linear Algebra

Fast Fourier Transform

Additional Topics

Wrap-up

2



What’s the point of this class?
’Scientific Computing’ describes a family of approaches to obtain
approximate solutions to problems once they’ve been stated
mathematically.
Name some applications:

▶ Engineering simulation
▶ E.g. Drag from flow over airplane wings, behavior of photonic

devices, radar scattering, . . .
▶ → Differential equations (ordinary and partial)

▶ Machine learning
▶ Statistical models, with unknown parameters
▶ → Optimization

▶ Image and Audio processing
▶ Enlargement/Filtering
▶ → Interpolation

▶ Lots more.

3



What’s the point of this class?
’Scientific Computing’ describes a family of approaches to obtain
approximate solutions to problems once they’ve been stated
mathematically.
Name some applications:

▶ Engineering simulation
▶ E.g. Drag from flow over airplane wings, behavior of photonic

devices, radar scattering, . . .
▶ → Differential equations (ordinary and partial)

▶ Machine learning
▶ Statistical models, with unknown parameters
▶ → Optimization

▶ Image and Audio processing
▶ Enlargement/Filtering
▶ → Interpolation

▶ Lots more.
3



What do we study, and how?

Problems with real numbers (i.e. continuous problems)

▶ As opposed to discrete problems.
▶ Including: How can we put a real number into a computer?

(and with what restrictions?)

What’s the general approach?

▶ Pick a representation (e.g.: a polynomial)
▶ Existence/uniqueness?

4



What do we study, and how?

Problems with real numbers (i.e. continuous problems)

▶ As opposed to discrete problems.
▶ Including: How can we put a real number into a computer?

(and with what restrictions?)

What’s the general approach?

▶ Pick a representation (e.g.: a polynomial)
▶ Existence/uniqueness?

4



What makes for good numerics?

How good of an answer can we expect to our problem?

▶ Can’t even represent numbers exactly.
▶ Answers will always be approximate.
▶ So, it’s natural to ask how far off the mark we really are.

How fast can we expect the computation to complete?

▶ A.k.a. what algorithms do we use?
▶ What is the cost of those algorithms?
▶ Are they efficient?

(I.e. do they make good use of available machine time?)

5



What makes for good numerics?

How good of an answer can we expect to our problem?

▶ Can’t even represent numbers exactly.
▶ Answers will always be approximate.
▶ So, it’s natural to ask how far off the mark we really are.

How fast can we expect the computation to complete?

▶ A.k.a. what algorithms do we use?
▶ What is the cost of those algorithms?
▶ Are they efficient?

(I.e. do they make good use of available machine time?)

5



Implementation concerns

How do numerical methods get implemented?

▶ Like anything in computing: A layer cake of abstractions
(“careful lies”)

▶ What tools/languages are available?
▶ Are the methods easy to implement?
▶ If not, how do we make use of existing tools?
▶ How robust is our implementation? (e.g. for error cases)

6



Implementation concerns

How do numerical methods get implemented?

▶ Like anything in computing: A layer cake of abstractions
(“careful lies”)

▶ What tools/languages are available?
▶ Are the methods easy to implement?
▶ If not, how do we make use of existing tools?
▶ How robust is our implementation? (e.g. for error cases)

6



Class web page

https://bit.ly/cs450-s26

▶ Assignments
▶ HW1 (soon!)
▶ Pre-lecture quizzes
▶ In-lecture interactive content (bring computer or phone if possible)

▶ Textbook
▶ Exams
▶ Class outline (with links to notes/demos/activities/quizzes)
▶ Discussion forum
▶ Policies
▶ Video

7

https://bit.ly/cs450-s26


Programming Language: Python/numpy

▶ Reasonably readable
▶ Reasonably beginner-friendly
▶ Mainstream (top 5 in ‘TIOBE Index’)
▶ Free, open-source
▶ Great tools and libraries (not just) for scientific computing
▶ Python 2/3? 3!
▶ numpy: Provides an array datatype

Will use this and matplotlib all the time.
▶ See class web page for learning materials

Demo: Sum the squares of the integers from 0 to 100. First without
numpy, then with numpy.

8



Supplementary Material

▶ Numpy (from the SciPy Lectures)
▶ 100 Numpy Exercises
▶ Dive into Python3

9

https://scipy-lectures.github.io/intro/numpy/index.html
https://github.com/rougier/numpy-100
https://diveintopython3.net/


Sources for these Notes

▶ M.T. Heath, Scientific Computing: An Introductory Survey, Revised
Second Edition. Society for Industrial and Applied Mathematics,
Philadelphia, PA. 2018.

▶ CS 450 Notes by Edgar Solomonik
▶ Various bits of prior material by Luke Olson

10

https://relate.cs.illinois.edu/course/cs450-f18/


Open Source <3
These notes (and the accompanying demos) are open-source!

Bug reports and pull requests welcome:
https://github.com/inducer/numerics-notes

Copyright (C) 2020 Andreas Kloeckner

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. 11

https://github.com/inducer/numerics-notes


What problems can we study in the first place?

To be able to compute a solution (through a process that introduces
errors), the problem. . .

▶ Needs to have a solution
▶ That solution should be unique
▶ And depend continuously on the inputs

If it satisfies these criteria, the problem is called well-posed. Otherwise,
ill-posed.

12



What problems can we study in the first place?

To be able to compute a solution (through a process that introduces
errors), the problem. . .

▶ Needs to have a solution
▶ That solution should be unique
▶ And depend continuously on the inputs

If it satisfies these criteria, the problem is called well-posed. Otherwise,
ill-posed.

12



Dependency on Inputs

We excluded discontinuous problems–because we don’t stand much chance
for those.
. . . what if the problem’s input dependency is just close to discontinuous?

▶ We call those problems sensitive to their input data.
Such problems are obviously trickier to deal with than
non-sensitive ones.

▶ Ideally, the computational method will not amplify the
sensitivity

13



Dependency on Inputs

We excluded discontinuous problems–because we don’t stand much chance
for those.
. . . what if the problem’s input dependency is just close to discontinuous?

▶ We call those problems sensitive to their input data.
Such problems are obviously trickier to deal with than
non-sensitive ones.

▶ Ideally, the computational method will not amplify the
sensitivity

13



Approximation

When does approximation happen?

▶ Before computation
▶ modeling
▶ measurements of input data
▶ computation of input data

▶ During computation
▶ truncation / discretization
▶ rounding

Demo: Truncation vs Rounding [cleared]

14

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Truncation vs Rounding.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Truncation vs Rounding.ipynb


Approximation

When does approximation happen?

▶ Before computation
▶ modeling
▶ measurements of input data
▶ computation of input data

▶ During computation
▶ truncation / discretization
▶ rounding

Demo: Truncation vs Rounding [cleared]

14

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Truncation vs Rounding.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Truncation vs Rounding.ipynb


Example: Surface Area of the Earth

Compute the surface area of the earth.
What parts of your computation are approximate?

All of them.
A = 4πr2

▶ Earth isn’t really a sphere
▶ What does radius mean if the earth isn’t a sphere?
▶ How do you compute with π? (By rounding/truncating.)

15



Example: Surface Area of the Earth

Compute the surface area of the earth.
What parts of your computation are approximate?

All of them.
A = 4πr2

▶ Earth isn’t really a sphere
▶ What does radius mean if the earth isn’t a sphere?
▶ How do you compute with π? (By rounding/truncating.)

15



Measuring Error

How do we measure error?
Idea: Consider all error as being added onto the result.

16



Recap: Norms

What’s a norm?

Define norm.

17





Norms: Examples

Examples of norms?

Demo: Vector Norms [cleared]

18

https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/demos/error_and_fp/Vector Norms.ipynb
https://scicomp-jupyterlab.cs.illinois.edu/lab/?path=cs450-kloeckner/cleared/error_and_fp/Vector Norms.ipynb

