Parallel Numerical Algorithms Chapter 3 – Dense Linear Systems Section 3.1 – Vector and Matrix Products

Michael T. Heath and Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

CS 554 / CSE 512

4 Matrix-Vector Product

Basic Linear Algebra Subprograms

- Basic Linear Algebra Subprograms (BLAS) are building blocks for many other matrix computations
- BLAS encapsulate basic operations on vectors and matrices so they can be optimized for particular computer architecture while high-level routines that call them remain portable
- BLAS offer good opportunities for optimizing utilization of memory hierarchy
- Generic BLAS are available from netlib, and many computer vendors provide custom versions optimized for their particular systems

Examples of BLAS

Level	Work	Examples	Function
1	$\mathcal{O}(n)$	daxpy	Scalar \times vector + vector
		ddot	Inner product
		dnrm2	Euclidean vector norm
2	$\mathcal{O}(n^2)$	dgemv	Matrix-vector product
		dtrsv	Triangular solve
		dger	Outer-product
3	$\mathcal{O}(n^3)$	dgemm	Matrix-matrix product
		dtrsm	Multiple triangular solves
		dsyrk	Symmetric rank-k update
	γ_1	>	$\gamma_2 \gg \gamma_3$

BLAS 1 effective sec/flop BLAS 2 effective sec/flop BLAS 3 effective sec/flop

• Inner product of two *n*-vectors *x* and *y* given by

$$\boldsymbol{x}^T \boldsymbol{y} = \sum_{i=1}^n x_i y_i$$

 Computation of inner product requires n multiplications and n - 1 additions

$$M_1 = \Theta(n), \quad Q_1 = \Theta(n), \quad T_1 = \Theta(\gamma n)$$

 Effectively as hard as scalar reduction, can be done via binary or binomial tree summation

Parallel Algorithm Scalability

Parallel Algorithm

Partition

• For i = 1, ..., n, fine-grain task *i* stores x_i and y_i , and computes their product $x_i y_i$

Communicate

• Sum reduction over *n* fine-grain tasks

$$x_1y_1$$
 + x_2y_2 + x_3y_3 + x_4y_4 + x_5y_5 + x_6y_6 + x_7y_7 + x_8y_8 + x_9y_9

Parallel Algorithm Scalability

Fine-Grain Parallel Algorithm

 $z_i = x_i y_i$

{ local scalar product }

reduce z_i across all tasks i = 1, ..., n { sum reduction }

Parallel Algorithm Scalability

Agglomeration and Mapping

Agglomerate

- Combine *k* components of both *x* and *y* to form each coarse-grain task, which computes inner product of these subvectors
- Communication becomes sum reduction over n/k coarse-grain tasks

Мар

 Assign (n/k)/p coarse-grain tasks to each of p processors, for total of n/p components of x and y per processor

$$(x_1y_1) + (x_2y_2) + (x_3y_3) + (x_4y_4) + (x_5y_5) + (x_6y_6) + (x_7y_7) + (x_8y_8) + (x_9y_9)$$

Parallel Algorithm Scalability

Coarse-Grain Parallel Algorithm

 $z_i = oldsymbol{x}_{[i]}^T oldsymbol{y}_{[i]}$

{ local inner product }

reduce z_i across all processors i = 1, ..., p { sum reduction }

$[oldsymbol{x}_{[i]} -$ subvector of $oldsymbol{x}$ assigned to processor i]

Performance

The parallel costs (L_p, W_p, F_p) for the inner product are given by

- Computational cost $F_p = \Theta(n/p)$ regardless of network
- The latency and bandwidth costs depend on network:
 - 1-D mesh: $L_p, W_p = \Theta(p)$
 - 2-D mesh: $L_p, W_p = \Theta(\sqrt{p})$
 - hypercube: $L_p, W_p = \Theta(\log p)$
- For a hypercube or fully-connected network time is

$$T_p = \alpha L_p + \beta W_p + \gamma F_p = \Theta(\alpha \log(p) + \gamma n/p)$$

Efficiency and scaling are the same as for binary tree sum

Parallel Algorithm Scalability

Inner product on 1-D Mesh

- For 1-D mesh, total time is $T_p = \Theta(\gamma n/p + \alpha p)$
- $\bullet\,$ To determine strong scalability, we set constant efficiency and solve for p_s

$$\begin{split} & \mathsf{const} = E_{p_s} = \frac{T_1}{p_s T_{p_s}} = \Theta\!\left(\frac{\gamma n}{\gamma n + \alpha p_s^2}\right) = \Theta\!\left(\frac{1}{1 + (\alpha/\gamma) p_s^2/n}\right) \\ & \mathsf{which yields} \; p_s = \Theta(\sqrt{(\gamma/\alpha)n}) \end{split}$$

• 1-D mesh weakly scalable to $p_w = \Theta((\gamma/\alpha)n)$ processors:

$$E_{p_w}(p_w n) = \Theta\left(\frac{1}{1 + (\alpha/\gamma)p_w^2/(p_w n)}\right) = \Theta\left(\frac{1}{1 + (\alpha/\gamma)p_w/n}\right)$$

Parallel Algorithm Scalability

Inner product on 2-D Mesh

- For 2-D mesh, total time is $T_p = \Theta(\gamma n/p + \alpha \sqrt{p})$
- To determine strong scalability, we set constant efficiency and solve for p_{s}

$$\mathsf{const} = E_{p_s} = \frac{T_1}{p_s T_{p_s}} = \Theta\left(\frac{\gamma n}{\gamma n + \alpha p_s^{3/2}}\right) = \Theta\left(\frac{1}{1 + (\alpha/\gamma)p_s^{3/2}/n}\right)$$

which yields $p_s = \Theta((\gamma/\alpha)^{2/3}n^{2/3})$

• 2-D mesh weakly scalable to $p_w = \Theta((\gamma/\alpha)^2 n^2)$, since

$$E_{p_w}(p_w n) = \Theta\left(\frac{1}{1 + (\alpha/\gamma)p_w^{3/2}/(p_w n)}\right) = \Theta\left(\frac{1}{1 + (\alpha/\gamma)\sqrt{p_w}/n}\right)$$

Parallel Algorithm Agglomeration Schemes Scalability

Outer Product

- Outer product of two *n*-vectors \boldsymbol{x} and \boldsymbol{y} is $n \times n$ matrix $\boldsymbol{Z} = \boldsymbol{x} \boldsymbol{y}^T$ whose (i, j) entry $z_{ij} = x_i y_j$
- For example,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}^T = \begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 \\ x_2y_1 & x_2y_2 & x_2y_3 \\ x_3y_1 & x_3y_2 & x_3y_3 \end{bmatrix}$$

• Computation of outer product requires n^2 multiplications,

$$M_1 = \Theta(n^2), \quad Q_1 = \Theta(n^2), \quad T_1 = \Theta(\gamma n^2)$$

(in this case, we should treat M_1 as output size or define the problem as in the BLAS: $Z = Z_{input} + xy^T$)

Parallel Algorithm Agglomeration Schemes Scalability

Parallel Algorithm

Partition

- For i, j = 1,..., n, fine-grain task (i, j) computes and stores z_{ij} = x_i y_j, yielding 2-D array of n² fine-grain tasks
- Assuming no replication of data, at most 2n fine-grain tasks store components of x and y, say either
 - for some j, task (i, j) stores x_i and task (j, i) stores y_i , or
 - task (i, i) stores both x_i and y_i , $i = 1, \ldots, n$

Communicate

- For *i* = 1, ..., *n*, task that stores *x_i* broadcasts it to all other tasks in *i*th task row
- For j = 1, ..., n, task that stores y_j broadcasts it to all other tasks in *j*th task column

Parallel Algorithm Agglomeration Schemes Scalability

Fine-Grain Tasks and Communication

Parallel Algorithm Agglomeration Schemes Scalability

Fine-Grain Parallel Algorithm

 $z_{ij} = x_i y_j$

broadcast x_i to tasks (i, k), k = 1, ..., n { horizontal broadcast }

broadcast y_j to tasks (k, j), k = 1, ..., n { vertical broadcast }

{ local scalar product }

Parallel Algorithm Agglomeration Schemes Scalability

Agglomeration

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- 2-D: Combine k × k subarray of fine-grain tasks to form each coarse-grain task, yielding (n/k)² coarse-grain tasks
- 1-D column: Combine *n* fine-grain tasks in each column into coarse-grain task, yielding *n* coarse-grain tasks
- 1-D row: Combine *n* fine-grain tasks in each row into coarse-grain task, yielding *n* coarse-grain tasks

Parallel Algorithm Agglomeration Schemes Scalability

2-D Agglomeration

- Each task that stores portion of x must broadcast its subvector to all other tasks in its task row
- Each task that stores portion of y must broadcast its subvector to all other tasks in its task column

Parallel Algorithm Agglomeration Schemes Scalability

2-D Agglomeration

Parallel Algorithm Agglomeration Schemes Scalability

1-D Agglomeration

- If either *x* or *y* stored in one task, then broadcast required to communicate needed values to all other tasks
- If either x or y distributed across tasks, then multinode broadcast required to communicate needed values to other tasks

Parallel Algorithm Agglomeration Schemes Scalability

1-D Column Agglomeration

Parallel Numerical Algorithms

Parallel Algorithm Agglomeration Schemes Scalability

1-D Row Agglomeration

Parallel Algorithm Agglomeration Schemes Scalability

Mapping

Мар

- 2-D: Assign $(n/k)^2/p$ coarse-grain tasks to each of p processors using any desired mapping in each dimension, treating target network as 2-D mesh
- 1-D: Assign n/p coarse-grain tasks to each of p processors using any desired mapping, treating target network as 1-D mesh

Parallel Algorithm Agglomeration Schemes Scalability

2-D Agglomeration with Block Mapping

Parallel Algorithm Agglomeration Schemes Scalability

1-D Column Agglomeration with Block Mapping

Parallel Algorithm Agglomeration Schemes Scalability

1-D Row Agglomeration with Block Mapping

Parallel Algorithm Agglomeration Schemes Scalability

Coarse-Grain Parallel Algorithm

broadcast $m{x}_{[i]}$ to *i*th process row { horizontal broadcast }

broadcast $y_{[j]}$ to *j*th process column

{ vertical broadcast }

 $oldsymbol{Z}_{[i][j]} = oldsymbol{x}_{[i]}oldsymbol{y}_{[j]}^T$ { local outer product }

$\left[\pmb{Z}_{[i][\,j\,]} \text{ means submatrix of } \pmb{Z} \text{ assigned to process } (i,j) \text{ by mapping } \right]$

Parallel Algorithm Agglomeration Schemes Scalability

Performance

The parallel costs (L_p, W_p, F_p) for the outer product are

- Computational cost $F_p = \Theta(n^2/p)$ regardless of network
- The latency and bandwidth costs can be derived from the cost of broadcast/allgather
 - 1-D agglomeration: $L_p = \Theta(\log p), W_p = \Theta(n)$
 - 2-D agglomeration: $L_p = \Theta(\log p), W_p = \Theta(n/\sqrt{p})$
- For 1-D agglomeration, execution time is

$$T_p^{\text{1-D}} = T_p^{\text{allgather}}(n) + \Theta(\gamma n^2/p) = \Theta(\alpha \log(p) + \beta n + \gamma n^2/p)$$

• For 2-D agglomeration, execution time is

$$T_p^{\text{2-D}} = 2T_{\sqrt{p}}^{\text{bcast}}(n/\sqrt{p}) + \Theta(\gamma n^2/p) = \Theta(\alpha \log(p) + \beta n/\sqrt{p} + \gamma n^2/p)$$

Parallel Algorithm Agglomeration Schemes Scalability

Outer Product Strong Scaling

• 1-D agglomeration is strongly scalable to

$$p_s = \Theta(\min((\gamma/\alpha)n^2/\log((\gamma/\alpha)n^2), (\gamma/\beta)n))$$

processors, since

$$E_{p_s}^{\text{1-D}} = \Theta(1/(1 + (\alpha/\gamma)\log(p_s)p_s/n^2 + (\beta/\gamma)p_s/n))$$

• 2-D agglomeration is strongly scalable to

$$p_s = \Theta(\min((\gamma/\alpha)n^2/\log((\gamma/\alpha)n^2),(\gamma/\beta)^2n^2))$$

processors, since

$$E_{p_s}^{\text{2-D}} = \Theta(1/(1 + (\alpha/\gamma)\log(p_s)p_s/n^2 + (\beta/\gamma)\sqrt{p_s}/n))$$

Parallel Algorithm Agglomeration Schemes Scalability

Outer Product Weak Scaling

1-D agglomeration is weakly scalable to

$$p_w = \Theta(\min(2^{(\gamma/\alpha)n^2}, (\gamma/\beta)^2 n^2))$$

processors, since

$$E_{p_w}^{\text{1-D}}(\sqrt{p_w}n) = \Theta(1/(1 + (\alpha/\gamma)\log(p_w)/n^2 + (\beta/\gamma)\sqrt{p_w}/n))$$

2-D agglomeration is weakly scalable to

$$p_w = \Theta(2^{(\gamma/\alpha)n^2})$$

processors, since

$$E_{p_w}^{\text{2-D}}(\sqrt{p_w}n) = \Theta(1/(1 + (\alpha/\gamma)\log(p_w)/n^2 + (\beta/\gamma)/n))$$

Parallel Algorithm Agglomeration Schemes Scalability

Memory Requirements

- The memory requirements are dominated by storing *Z*, which in practice means the outer-product is a poor primitive (local *flop-to-byte ratio* of 1)
- If possible, Z should be operated on as it is computed, e.g. if we really need

$$v_i = \sum_j f(x_i y_j)$$
 for some scalar function f

- If Z does not need to be stored, vector storage dominates
- Without further modification, 1-D algorithm requires $M_p = \Theta(np)$ overall storage for vector
- Without further modification, 2-D algorithm requires $M_p = \Theta(n\sqrt{p})$ overall storage for vector

Parallel Algorithm Agglomeration Schemes Scalability

Matrix-Vector Product

Consider matrix-vector product

$$y = Ax$$

where \boldsymbol{A} is $n \times n$ matrix and \boldsymbol{x} and \boldsymbol{y} are *n*-vectors

• Components of vector y are given by inner products:

$$y_i = \sum_{j=1}^n a_{ij} x_j, \quad i = 1, \dots, n$$

• The sequential memory, work, and time are

$$M_1 = \Theta(n^2), \quad Q_1 = \Theta(n^2), \quad T_1 = \Theta(\gamma n^2)$$

Parallel Algorithm Agglomeration Schemes Scalability

Parallel Algorithm

Partition

- For i, j = 1,...,n, fine-grain task (i, j) stores a_{ij} and computes a_{ij} x_j, yielding 2-D array of n² fine-grain tasks
- Assuming no replication of data, at most 2n fine-grain tasks store components of x and y, say either
 - for some *j*, task (*j*,*i*) stores *x_i* and task (*i*,*j*) stores *y_i*, or
 - task (i, i) stores both x_i and $y_i, i = 1, \dots, n$

Communicate

- For j = 1, ..., n, task that stores x_j broadcasts it to all other tasks in *j*th task column
- For i = 1, ..., n, sum reduction over *i*th task row gives y_i

Parallel Algorithm Agglomeration Schemes Scalability

Fine-Grain Tasks and Communication

Parallel Algorithm Agglomeration Schemes Scalability

Fine-Grain Parallel Algorithm

broadcast x_j to tasks (k, j), k = 1, ..., n { vertical broadcast }

 $y_i = a_{ij} x_j$

{ local scalar product }

reduce y_i across tasks (i, k), k = 1, ..., n { horizontal sum reduction }

Parallel Algorithm Agglomeration Schemes Scalability

Agglomeration

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- 2-D: Combine $k \times k$ subarray of fine-grain tasks to form each coarse-grain task, yielding $(n/k)^2$ coarse-grain tasks
- 1-D column: Combine *n* fine-grain tasks in each column into coarse-grain task, yielding *n* coarse-grain tasks
- 1-D row: Combine *n* fine-grain tasks in each row into coarse-grain task, yielding *n* coarse-grain tasks

Parallel Algorithm Agglomeration Schemes Scalability

2-D Agglomeration

- Subvector of x broadcast along each task column
- Each task computes local matrix-vector product of submatrix of A with subvector of x
- Sum reduction along each task row produces subvector of result y

Parallel Algorithm Agglomeration Schemes Scalability

2-D Agglomeration

Parallel Algorithm Agglomeration Schemes Scalability

1-D Agglomeration

- 1-D column agglomeration
 - Each task computes product of its component of *x* times its column of matrix, with no communication required
 - Sum reduction across tasks then produces y
- 1-D row agglomeration
 - If *x* stored in one task, then broadcast required to communicate needed values to all other tasks
 - If x distributed across tasks, then multinode broadcast required to communicate needed values to other tasks
 - Each task computes inner product of its row of *A* with *entire* vector *x* to produce its component of *y*

Parallel Algorithm Agglomeration Schemes Scalability

1-D Column Agglomeration

Parallel Numerical Algorithms

Parallel Algorithm Agglomeration Schemes Scalability

1-D Row Agglomeration

Parallel Algorithm Agglomeration Schemes Scalability

1-D Agglomeration

Column and row algorithms are dual to each other

- Column algorithm begins with communication-free local vector scaling (daxpy) computations combined across processors by a reduction
- Row algorithm begins with broadcast followed by communication-free local inner-product (ddot) computations

Parallel Algorithm Agglomeration Schemes Scalability

Mapping

Мар

- 2-D: Assign $(n/k)^2/p$ coarse-grain tasks to each of p processes using any desired mapping in each dimension, treating target network as 2-D mesh
- 1-D: Assign n/p coarse-grain tasks to each of p processes using any desired mapping, treating target network as 1-D mesh

BLAS

Inner Product Outer Product

Matrix-Vector Product

Matrix-Matrix Product

Parallel Algorithm Agglomeration Schemes Scalability

2-D Agglomeration with Block Mapping

Parallel Algorithm Agglomeration Schemes Scalability

1-D Column Agglomeration with Block Mapping

Parallel Algorithm Agglomeration Schemes Scalability

1-D Row Agglomeration with Block Mapping

Parallel Algorithm Agglomeration Schemes Scalability

Coarse-Grain Parallel Algorithm

broadcast $x_{[j]}$ to *j*th process column {vertical broadcast }

 $m{y}_{[i]} = m{A}_{[i][j]} m{x}_{[j]}$ { local matrix-vector product }

reduce $y_{[i]}$ across *i*th process row

{ horizontal sum reduction }

Parallel Algorithm Agglomeration Schemes Scalability

Performance

The parallel costs (L_p, W_p, F_p) for the matrix-vector product are

- Computational cost $F_p = \Theta(n^2/p)$ regardless of network
- Communication costs can be derived from the cost of collectives
 - 1-D agglomeration: $L_p = \Theta(\log p), W_p = \Theta(n)$
 - 2-D agglomeration: $L_p = \Theta(\log p), W_p = \Theta(n/\sqrt{p})$
- For 1-D row agglomeration, perform allgather,

 $T_p^{\text{1-D}} = T_p^{\text{allgather}}(n) + \Theta(\gamma n^2/p) = \Theta(\alpha \log(p) + \beta n + \gamma n^2/p)$

• For 2-D agglomeration, perform broadcast and reduction,

$$\begin{split} T_p^{\text{2-D}} &= T_{\sqrt{p}}^{\text{bcast}}(n/\sqrt{p}) + T_{\sqrt{p}}^{\text{reduce}}(n/\sqrt{p}) + \Theta(\gamma n^2/p) \\ &= \Theta(\alpha \log(p) + \beta n/\sqrt{p} + \gamma n^2/p) \end{split}$$

Parallel Algorithm Agglomeration Schemes Scalability

Matrix-Matrix Product

• Consider matrix-matrix product

$$C = A B$$

where A, B, and result C are $n \times n$ matrices

• Entries of matrix *C* are given by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \quad i, j = 1, \dots, n$$

• Each of n^2 entries of *C* requires *n* multiply-add operations, so model serial time as

$$T_1 = \gamma \, n^3$$

Parallel Algorithm Agglomeration Schemes Scalability

Matrix-Matrix Product

- Matrix-matrix product can be viewed as
 - n^2 inner products, or
 - sum of *n* outer products, or
 - n matrix-vector products

and each viewpoint yields different algorithm

- One way to derive parallel algorithms for matrix-matrix product is to apply parallel algorithms already developed for inner product, outer product, or matrix-vector product
- However, considering the problem as a whole yields the best algorithms

Parallel Algorithm Agglomeration Schemes Scalability

Parallel Algorithm

Partition

- For i, j, k = 1, ..., n, fine-grain task (i, j, k) computes product $a_{ik} b_{kj}$, yielding 3-D array of n^3 fine-grain tasks
- Assuming no replication of data, at most 3n² fine-grain tasks store entries of A, B, or C, say task (i, j, j) stores a_{ij}, task (i, j, i) stores b_{ij}, and task (i, j, k) stores c_{ij} for i, j = 1,...,n and some fixed k
- We refer to subsets of tasks along *i*, *j*, and *k* dimensions as rows, columns, and layers, respectively, so *k*th column of *A* and *k*th row of *B* are stored in *k*th layer of tasks

Parallel Algorithm Agglomeration Schemes Scalability

Parallel Algorithm

Communicate

- Broadcast entries of *j*th column of *A* horizontally along each task row in *j*th layer
- Broadcast entries of *i*th row of *B* vertically along each task column in *i*th layer
- For i, j = 1, ..., n, result c_{ij} is given by sum reduction over tasks (i, j, k), k = 1, ..., n

Parallel Algorithm Agglomeration Schemes Scalability

Fine-Grain Algorithm

 $c_{ij} = a_{ik}b_{kj}$

broadcast a_{ik} to tasks $(i, q, k), q = 1, \ldots, n$

{ horizontal broadcast }

broadcast b_{kj} to tasks $(q, j, k), q = 1, \ldots, n$

{ vertical broadcast }

{ local scalar product }

reduce c_{ij} across tasks (i, j, q), q = 1, ..., n { lateral sum reduction }

Parallel Algorithm Agglomeration Schemes Scalability

Agglomeration

Agglomerate

With $n \times n \times n$ array of fine-grain tasks, natural strategies are

- 3-D: Combine $q \times q \times q$ subarray of fine-grain tasks
- 2-D: Combine $q \times q \times n$ subarray of fine-grain tasks, eliminating sum reductions
- 1-D column: Combine $n \times 1 \times n$ subarray of fine-grain tasks, eliminating vertical broadcasts and sum reductions
- 1-D row: Combine $1 \times n \times n$ subarray of fine-grain tasks, eliminating horizontal broadcasts and sum reductions

Parallel Algorithm Agglomeration Schemes Scalability

Mapping

Мар

Corresponding mapping strategies are

- 3-D: Assign $(n/q)^3/p$ coarse-grain tasks to each of p processors using any desired mapping in each dimension, treating target network as 3-D mesh
- 2-D: Assign $(n/q)^2/p$ coarse-grain tasks to each of p processors using any desired mapping in each dimension, treating target network as 2-D mesh
- 1-D: Assign n/p coarse-grain tasks to each of p processors using any desired mapping, treating target network as 1-D mesh

BLAS

Inner Product Outer Product Matrix-Vector Product Matrix-Matrix Product Parallel Algorithm Agglomeration Schemes Scalability

Agglomeration with Block Mapping

Parallel Algorithm Agglomeration Schemes Scalability

Coarse-Grain 3-D Parallel Algorithm

broadcast $A_{[i][k]}$ to *i*th processor row { horizontal broadcast } broadcast $B_{[k][j]}$ to *j*th processor column { vertical broadcast } $C_{[i][j]} = A_{[i][k]}B_{[k][j]}$ { local matrix product }

reduce $C_{[i][j]}$ across processor layers { late

{ lateral sum reduction }

BLAS

Inner Product Outer Product Matrix-Vector Product Matrix-Matrix Product Parallel Algorithm Agglomeration Schemes Scalability

Agglomeration with Block Mapping

Parallel Algorithm Agglomeration Schemes Scalability

Coarse-Grain 2-D Parallel Algorithm

 $\begin{array}{ll} \text{allgather } \boldsymbol{A}_{[i][j]} \text{ in } i\text{th processor row} & \{ \text{ horizontal broadcast } \} \\ \text{allgather } \boldsymbol{B}_{[i][j]} \text{ in } j\text{th processor column} & \{ \text{ vertical broadcast } \} \\ \boldsymbol{C}_{[i][j]} = \boldsymbol{0} & \\ \text{for } k = 1, \dots, \sqrt{p} & \\ \boldsymbol{C}_{[i][j]} = \boldsymbol{C}_{[i][j]} + \boldsymbol{A}_{[i][k]} \boldsymbol{B}_{[k][j]} & \{ \text{ sum local products } \} \\ \text{end} & \end{array}$

Parallel Algorithm Agglomeration Schemes Scalability

SUMMA Algorithm

- Algorithm just described requires excessive memory, since each process accumulates \sqrt{p} blocks of both A and B
- One way to reduce memory requirements is to
 - broadcast blocks of A successively across processor rows
 - broadcast blocks of B successively across processor cols

$$\begin{split} & \boldsymbol{C}_{[i][j]} = \boldsymbol{0} \\ & \text{for } k = 1, \dots, \sqrt{p} \\ & \text{broadcast } \boldsymbol{A}_{[i][k]} \text{ in } i\text{th processor row} \\ & \text{broadcast } \boldsymbol{B}_{[k][j]} \text{ in } j\text{th processor column} \\ & \boldsymbol{C}_{[i][j]} = \boldsymbol{C}_{[i][j]} + \boldsymbol{A}_{[i][k]}\boldsymbol{B}_{[k][j]} \\ & \text{end} \end{split}$$

{ horizontal broadcast } { vertical broadcast } { sum local products }

Parallel Algorithm Agglomeration Schemes Scalability

SUMMA Algorithm

Parallel Algorithm Agglomeration Schemes Scalability

Cannon Algorithm

- Another approach, due to Cannon (1969), is to circulate blocks of *B* vertically and blocks of *A* horizontally in ring fashion
- Blocks of both matrices must be initially aligned using circular shifts so that correct blocks meet as needed
- Requires less memory than SUMMA and replaces line broadcasts with shifts, lowering the number of messages

Parallel Algorithm Agglomeration Schemes Scalability

Cannon Algorithm

Parallel Algorithm Agglomeration Schemes Scalability

Fox Algorithm

- It is possible to mix techniques from SUMMA and Cannon's algorithm:
 - circulate blocks of *B* in ring fashion vertically along processor columns step by step so that each block of *B* comes in conjunction with appropriate block of *A* broadcast at that same step
- This algorithm is due to Fox et al.
- Shifts, especially in Cannon's algorithm, are harder to generalize to nonsquare processor grids than collectives in algorithms like SUMMA

Parallel Algorithm Agglomeration Schemes Scalability

Execution Time for 3-D Agglomeration

• For 3-D agglomeration, computing each of p blocks $C_{[i][j]}$ requires matrix-matrix product of two $(n/\sqrt[3]{p}) \times (n/\sqrt[3]{p})$ blocks, so

$$F_p = (n/\sqrt[3]{p})^3 = n^3/p$$

• On 3-D mesh, each broadcast or reduction takes time $T_{n^{1/3}}^{\text{bcast}}((n/p^{1/3})^2) = O(\alpha \log p + \beta n^2/p^{2/3})$

Total time is therefore

$$T_p = O(\alpha \log p + \beta n^2 / p^{2/3} + \gamma n^3 / p)$$

• However, overall memory footprint is

$$M_p = \Theta(p(n/p^{1/3})^2) = \Theta(p^{1/3}n^2)$$

Parallel Algorithm Agglomeration Schemes Scalability

Strong Scalability of 3-D Agglomeration

The 3-D agglomeration efficiency is given by

$$E_p(n) = \frac{pT_1(n)}{T_p(n)} = O(1/(1 + (\alpha/\gamma)p\log p/n^3 + (\beta/\gamma)p^{1/3}/n))$$

• For strong scaling to p_s processors we need $E_{p_s}(n)=\Theta(1),$ so 3-D agglomeration strong scales to

 $p_s = O(\min((\gamma/\alpha)n^3/\log(n), (\gamma/\beta)n^3))$ processors

Parallel Algorithm Agglomeration Schemes Scalability

Weak Scalability of 3-D Agglomeration

- For weak scaling (with constant input size / processor) to p_w processor, we need $E_{p_w}(n\sqrt{p_w}) = \Theta(1)$, which holds
- However, note that the algorithm is not memory-efficient as $M_p = \Theta(p^{1/3}n^2)$, and if keeping memory footprint per processor constant, we must grow n with $p^{1/3}$
- Scaling with constant memory footprint processor $(M_p/p = \text{const})$ is possible to p_m processors where $E_{p_m}(np_m^{1/3}) = \Theta(1)$, which holds for

$$p_m = \Theta(2^{(\gamma/\alpha)n^3})$$
 processors

• The isoefficiency function is $\tilde{Q}(p) = \Theta(p \log(p))$

Parallel Algorithm Agglomeration Schemes Scalability

Execution Time for 2-D Agglomeration

• For 2-D agglomeration (SUMMA), computation of each block $C_{[i][j]}$ requires \sqrt{p} matrix-matrix products of $(n/\sqrt{p}) \times (n/\sqrt{p})$ blocks, so

$$F_p = \sqrt{p} \left(n / \sqrt{p} \right)^3 = n^3 / p$$

• For broadcast among rows and columns of processor grid, communication time is

$$2\sqrt{p}T_{\sqrt{p}}^{\text{bcast}}(n^2/p) = \Theta(\alpha\sqrt{p}\log(p) + \beta n^2/\sqrt{p})$$

• Total time is therefore

$$T_p = O(\alpha \sqrt{p} \log(p) + \beta n^2 / \sqrt{p} + \gamma n^3 / p)$$

• The algorithm is memory-efficient, $M_p = \Theta(n^2)$

Parallel Algorithm Agglomeration Schemes Scalability

Strong Scalability of 2-D Agglomeration

• The 2-D agglomeration efficiency is given by

$$E_p(n) = \frac{pT_1(n)}{T_p(n)} = O(1/(1 + (\alpha/\gamma)p^{3/2}\log p/n^3 + (\beta/\gamma)\sqrt{p}/n))$$

• For strong scaling to p_s processors we need $E_{p_s}(n) = \Theta(1)$, so 2-D agglomeration strong scales to

 $p_s = O(\min((\gamma/\alpha)n^2/\log(n)^{2/3}, (\gamma/\beta)n^2))$ processors

• For weak scaling to p_w processors with n^2/p matrix elements per processor, we need $E_{p_w}(\sqrt{p_w}n) = \Theta(1)$, so 2-D agglomeration (SUMMA) weak scales to

$$p_w = O(2^{(\gamma/\alpha)n^3})$$
 processors

Cannon's algorithm achieves unconditional weak scalability

Parallel Algorithm Agglomeration Schemes Scalability

Scalability for 1-D Agglomeration

For 1-D agglomeration on 1-D mesh, total time is

$$T_p = O(\alpha \log(p) + \beta n^2 + \gamma n^3/p)$$

• The corresponding efficiency is

 $E_p = O(1/(1 + (\alpha/\beta)p\log(p)n^3 + (\beta/\gamma)p/n))$

- Strong scalability is possible to at most $p_s = O((\gamma/\beta)n)$ processors
- Weak scalability is possible to at most $p_w = O(\sqrt{(\gamma/\beta)n})$ processors

BLAS Inner Product

Outer Product

Matrix-Vector Product Matrix-Matrix Product Parallel Algorithm Agglomeration Sch Scalability

Rectangular Matrix Multiplication

If C is $m \times n$, A is $m \times k$, and B is $k \times n$, choosing a 3D grid that optimizes volume-to-surface-area ratio yields bandwidth cost...

$$W_p(m, n, k) = O\left(\min_{p_1 p_2 p_3 = p} \left[\frac{mk}{p_1 p_2} + \frac{kn}{p_1 p_3} + \frac{mn}{p_2 p_3}\right]\right)$$

 BLAS

 Inner Product

 Outer Product

 Agglomera

 Matrix-Vector Product

 Scalability

 Matrix-Matrix Product

Parallel Algorithm Agglomeration Schemes Scalability

Communication vs. Memory Tradeoff

- Communication cost for 2-D algorithms for matrix-matrix product is optimal, assuming no replication of storage
- If explicit replication of storage is allowed, then lower communication volume is possible via 3-D algorithm
- Generally, we assign $n/p_1 \times n/p_2 \times n/p_3$ computation subvolume to each processor
- The largest face of the subvolume gives communication cost, the smallest face gives minimal memory usage
 - can keep smallest face local while successively computing slices of subvolume

Parallel Algorithm Agglomeration Schemes Scalability

Leveraging Additional Memory in Matrix Multiplication

• Provided \bar{M} total available memory, 2-D and 3-D algorithms achieve bandwidth cost

$$W_p(n,\bar{M}) = \begin{cases} \infty & : \bar{M} < n^2 \\ n^2/\sqrt{p} & : \bar{M} = \Theta(n^2) \\ n^2/p^{2/3} & : \bar{M} = \Theta(n^2 p^{1/3}) \end{cases}$$

• For general \bar{M} , possible to pick processor grid to achieve

$$W_p(n,\bar{M}) = O(n^3/(\sqrt{p}\bar{M}^{1/2}) + n^2/p^{2/3})$$

• and an overall execution time of

$$T_p(n,\bar{M}) = O(\alpha(\log p + n^3\sqrt{p}/\bar{M}^{3/2}) + \beta W_p(n,\bar{M}) + \gamma n^3/p)$$

Parallel Algorithm Agglomeration Schemes Scalability

Strong Scaling using All Available Memory

• The efficiency of the algorithm for a given amount of total memory \bar{M}_p is

$$E_p(n, \bar{M}_p) = O(1/(1 + (\alpha/\gamma)(p \log p/n^3 + p^{3/2}/\bar{M}_p^{3/2}) + (\beta/\gamma)(\sqrt{p}/\bar{M}_p^{1/2} + p^{1/3}/n)))$$

• For strong scaling assuming $\bar{M}_p = p\bar{M}_1$, we need

$$E_{p_s}(n, p_s \bar{M}_1) = p_s T_1(n, \bar{M}_1) / T_{p_s}(n, p_s \bar{M}_1) = \Theta(1)$$

In this case, we obtain

$$p_s = \Theta(\min((\alpha/\gamma)n^3/\log(n), (\beta/\gamma)n^3))$$

as good as the 3-D algorithm, but more memory-efficient

Parallel Algorithm Agglomeration Schemes Scalability

References

- R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar, A three-dimensional approach to parallel matrix multiplication, *IBM J. Res. Dev.*, 39:575-582, 1995
- J. Berntsen, Communication efficient matrix multiplication on hypercubes, *Parallel Comput.* 12:335-342, 1989
- J. Demmel, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and O. Spillinger, Communication-optimal parallel recursive rectangular matrix multiplication, IPDPS, 2013
- J. W. Demmel, M. T. Heath, and H. A. van der Vorst, Parallel numerical linear algebra, *Acta Numerica* 2:111-197, 1993

Parallel Algorithm Agglomeration Schemes Scalability

References

- R. Dias da Cunha, A benchmark study based on the parallel computation of the vector outer-product A = uv^T operation, *Concurrency: Practice and Experience* 9:803-819, 1997
- G. C. Fox, S. W. Otto, and A. J. G. Hey, Matrix algorithms on a hypercube I: matrix multiplication, *Parallel Comput.* 4:17-31, 1987
- D. Irony, S. Toledo, and A. Tiskin, Communication lower bounds for distributed-memory matrix multiplication, *J. Parallel Distrib. Comput.* 64:1017-1026, 2004.
- S. L. Johnsson, Communication efficient basic linear algebra computations on hypercube architectures, *J. Parallel Distrib. Comput.* 4(2):133-172, 1987

Parallel Algorithm Agglomeration Schemes Scalability

References

- S. L. Johnsson, Minimizing the communication time for matrix multiplication on multiprocessors, *Parallel Comput.* 19:1235-1257, 1993
- B. Lipshitz, Communication-avoiding parallel recursive algorithms for matrix multiplication, Tech. Rept. UCB/EECS-2013-100, University of California at Berkeley, May 2013.
- O. McBryan and E. F. Van de Velde, Matrix and vector operations on hypercube parallel processors, *Parallel Comput.* 5:117-126, 1987
- R. A. Van De Geijn and J. Watts, SUMMA: Scalable universal matrix multiplication algorithm, *Concurrency: Practice and Experience* 9(4):255-274, 1997