Parallel Numerical Algorithms Chapter 3 - Dense Linear Systems
 Section 3.1 - Vector and Matrix Products

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign
CS 554 / CSE 512

Outline

(1) BLAS
(2) Inner Product
(3) Outer Product

4 Matrix-Vector Product
(5) Matrix-Matrix Product

Basic Linear Algebra Subprograms

- Basic Linear Algebra Subprograms (BLAS) are building blocks for many other matrix computations
- BLAS encapsulate basic operations on vectors and matrices so they can be optimized for particular computer architecture while high-level routines that call them remain portable
- BLAS offer good opportunities for optimizing utilization of memory hierarchy
- Generic BLAS are available from netlib, and many computer vendors provide custom versions optimized for their particular systems

Examples of BLAS

Level	Work	Examples	Function
1	$\mathcal{O}(n)$	daxpy ddot dnrm2	Scalar \times vector + vector Inner product Euclidean vector norm
2	$\mathcal{O}\left(n^{2}\right)$	dgemv dtrsv dger	Matrix-vector product Triangular solve Outer-product
3	$\mathcal{O}\left(n^{3}\right)$	dgemm dtrsm dsyrk	Matrix-matrix product Multiple triangular solves Symmetric rank- k update
BLAS 1 effective sec/flop	$>$	$\underbrace{\gamma_{1}} \quad>$	

Inner Product

- Inner product of two n-vectors \boldsymbol{x} and \boldsymbol{y} given by

$$
\boldsymbol{x}^{T} \boldsymbol{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

- Computation of inner product requires n multiplications and $n-1$ additions

$$
M_{1}=\Theta(n), \quad Q_{1}=\Theta(n), \quad T_{1}=\Theta(\gamma n)
$$

- Effectively as hard as scalar reduction, can be done via binary or binomial tree summation

Parallel Algorithm

Partition

- For $i=1, \ldots, n$, fine-grain task i stores x_{i} and y_{i}, and computes their product $x_{i} y_{i}$

Communicate

- Sum reduction over n fine-grain tasks

Fine-Grain Parallel Algorithm

$z_{i}=x_{i} y_{i}$
\{ local scalar product \}
reduce z_{i} across all tasks $i=1, \ldots, n$
\{ sum reduction \}

Agglomeration and Mapping

Agglomerate

- Combine k components of both \boldsymbol{x} and \boldsymbol{y} to form each coarse-grain task, which computes inner product of these subvectors
- Communication becomes sum reduction over n / k coarse-grain tasks

Map

- Assign $(n / k) / p$ coarse-grain tasks to each of p processors, for total of n / p components of \boldsymbol{x} and \boldsymbol{y} per processor

Coarse-Grain Parallel Algorithm

$z_{i}=\boldsymbol{x}_{[i]}^{T} \boldsymbol{y}_{[i]}$
reduce z_{i} across all processors $i=1, \ldots, p$
\{ local inner product \}
\{sum reduction \}
$\left[x_{[i]}\right.$ - subvector of x assigned to processor $\left.i\right]$

Performance

The parallel costs $\left(L_{p}, W_{p}, F_{p}\right)$ for the inner product are given by

- Computational cost $F_{p}=\Theta(n / p)$ regardless of network
- The latency and bandwidth costs depend on network:
- 1-D mesh: $L_{p}, W_{p}=\Theta(p)$
- 2-D mesh: $L_{p}, W_{p}=\Theta(\sqrt{p})$
- hypercube: $L_{p}, W_{p}=\Theta(\log p)$
- For a hypercube or fully-connected network time is

$$
T_{p}=\alpha L_{p}+\beta W_{p}+\gamma F_{p}=\Theta(\alpha \log (p)+\gamma n / p)
$$

- Efficiency and scaling are the same as for binary tree sum

Inner product on 1-D Mesh

- For 1-D mesh, total time is $T_{p}=\Theta(\gamma n / p+\alpha p)$
- To determine strong scalability, we set constant efficiency and solve for p_{s}

$$
\text { const }=E_{p_{s}}=\frac{T_{1}}{p_{s} T_{p_{s}}}=\Theta\left(\frac{\gamma n}{\gamma n+\alpha p_{s}^{2}}\right)=\Theta\left(\frac{1}{1+(\alpha / \gamma) p_{s}^{2} / n}\right)
$$

which yields $p_{s}=\Theta(\sqrt{(\gamma / \alpha) n})$

- 1-D mesh weakly scalable to $p_{w}=\Theta((\gamma / \alpha) n)$ processors:

$$
E_{p_{w}}\left(p_{w} n\right)=\Theta\left(\frac{1}{1+(\alpha / \gamma) p_{w}^{2} /\left(p_{w} n\right)}\right)=\Theta\left(\frac{1}{1+(\alpha / \gamma) p_{w} / n}\right)
$$

Inner product on 2-D Mesh

- For 2-D mesh, total time is $T_{p}=\Theta(\gamma n / p+\alpha \sqrt{p})$
- To determine strong scalability, we set constant efficiency and solve for p_{s}

$$
\text { const }=E_{p_{s}}=\frac{T_{1}}{p_{s} T_{p_{s}}}=\Theta\left(\frac{\gamma n}{\gamma n+\alpha p_{s}^{3 / 2}}\right)=\Theta\left(\frac{1}{1+(\alpha / \gamma) p_{s}^{3 / 2} / n}\right)
$$

which yields $p_{s}=\Theta\left((\gamma / \alpha)^{2 / 3} n^{2 / 3}\right)$

- 2-D mesh weakly scalable to $p_{w}=\Theta\left((\gamma / \alpha)^{2} n^{2}\right)$, since

$$
E_{p_{w}}\left(p_{w} n\right)=\Theta\left(\frac{1}{1+(\alpha / \gamma) p_{w}^{3 / 2} /\left(p_{w} n\right)}\right)=\Theta\left(\frac{1}{1+(\alpha / \gamma) \sqrt{p_{w}} / n}\right)
$$

Outer Product

- Outer product of two n-vectors \boldsymbol{x} and \boldsymbol{y} is $n \times n$ matrix $\boldsymbol{Z}=\boldsymbol{x} \boldsymbol{y}^{T}$ whose (i, j) entry $z_{i j}=x_{i} y_{j}$
- For example,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]^{T}=\left[\begin{array}{lll}
x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} \\
x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3} \\
x_{3} y_{1} & x_{3} y_{2} & x_{3} y_{3}
\end{array}\right]
$$

- Computation of outer product requires n^{2} multiplications,

$$
M_{1}=\Theta\left(n^{2}\right), \quad Q_{1}=\Theta\left(n^{2}\right), \quad T_{1}=\Theta\left(\gamma n^{2}\right)
$$

(in this case, we should treat M_{1} as output size or define the problem as in the BLAS: $\boldsymbol{Z}=\boldsymbol{Z}_{\text {input }}+\boldsymbol{x} \boldsymbol{y}^{T}$)

Parallel Algorithm

Partition

- For $i, j=1, \ldots, n$, fine-grain task (i, j) computes and stores $z_{i j}=x_{i} y_{j}$, yielding 2-D array of n^{2} fine-grain tasks
- Assuming no replication of data, at most $2 n$ fine-grain tasks store components of \boldsymbol{x} and \boldsymbol{y}, say either
- for some j, task (i, j) stores x_{i} and task (j, i) stores y_{i}, or
- task (i, i) stores both x_{i} and $y_{i}, i=1, \ldots, n$

Communicate

- For $i=1, \ldots, n$, task that stores x_{i} broadcasts it to all other tasks in i th task row
- For $j=1, \ldots, n$, task that stores y_{j} broadcasts it to all other tasks in j th task column

Fine-Grain Tasks and Communication

Fine-Grain Parallel Algorithm

broadcast x_{i} to tasks $(i, k), k=1, \ldots, n$
broadcast y_{j} to tasks $(k, j), k=1, \ldots, n$
$z_{i j}=x_{i} y_{j}$
\{ horizontal broadcast \}
\{ vertical broadcast \}
\{ local scalar product \}

Agglomeration

Agglomerate
With $n \times n$ array of fine-grain tasks, natural strategies are

- 2-D: Combine $k \times k$ subarray of fine-grain tasks to form each coarse-grain task, yielding $(n / k)^{2}$ coarse-grain tasks
- 1-D column: Combine n fine-grain tasks in each column into coarse-grain task, yielding n coarse-grain tasks
- 1-D row: Combine n fine-grain tasks in each row into coarse-grain task, yielding n coarse-grain tasks

2-D Agglomeration

- Each task that stores portion of \boldsymbol{x} must broadcast its subvector to all other tasks in its task row
- Each task that stores portion of \boldsymbol{y} must broadcast its subvector to all other tasks in its task column

2-D Agglomeration

1-D Agglomeration

- If either \boldsymbol{x} or \boldsymbol{y} stored in one task, then broadcast required to communicate needed values to all other tasks
- If either \boldsymbol{x} or \boldsymbol{y} distributed across tasks, then multinode broadcast required to communicate needed values to other tasks

1-D Column Agglomeration

Agglomeration Schemes
Scalability

1-D Row Agglomeration

Mapping

Map

- 2-D: Assign $(n / k)^{2} / p$ coarse-grain tasks to each of p processors using any desired mapping in each dimension, treating target network as 2-D mesh
- 1-D: Assign n / p coarse-grain tasks to each of p processors using any desired mapping, treating target network as 1-D mesh

2-D Agglomeration with Block Mapping

1-D Column Agglomeration with Block Mapping

1-D Row Agglomeration with Block Mapping

Coarse-Grain Parallel Algorithm

broadcast $\boldsymbol{x}_{[i]}$ to i th process row
broadcast $\boldsymbol{y}_{[j]}$ to j th process column
$\boldsymbol{Z}_{[i][j]}=\boldsymbol{x}_{[i]} \boldsymbol{y}_{[j]}^{T}$
\{ local outer product \}
[$\boldsymbol{Z}_{[i][j]}$ means submatrix of Z assigned to process (i, j) by mapping]

Performance

The parallel costs $\left(L_{p}, W_{p}, F_{p}\right)$ for the outer product are

- Computational cost $F_{p}=\Theta\left(n^{2} / p\right)$ regardless of network
- The latency and bandwidth costs can be derived from the cost of broadcast/allgather
- 1-D agglomeration: $L_{p}=\Theta(\log p), W_{p}=\Theta(n)$
- 2-D agglomeration: $L_{p}=\Theta(\log p), W_{p}=\Theta(n / \sqrt{p})$
- For 1-D agglomeration, execution time is

$$
T_{p}^{1-\mathrm{D}}=T_{p}^{\text {allgather }}(n)+\Theta\left(\gamma n^{2} / p\right)=\Theta\left(\alpha \log (p)+\beta n+\gamma n^{2} / p\right)
$$

- For 2-D agglomeration, execution time is

$$
T_{p}^{2-\mathrm{D}}=2 T_{\sqrt{p}}^{\mathrm{bcast}}(n / \sqrt{p})+\Theta\left(\gamma n^{2} / p\right)=\Theta\left(\alpha \log (p)+\beta n / \sqrt{p}+\gamma n^{2} / p\right)
$$

Outer Product Strong Scaling

- 1-D agglomeration is strongly scalable to

$$
p_{s}=\Theta\left(\min \left((\gamma / \alpha) n^{2} / \log \left((\gamma / \alpha) n^{2}\right),(\gamma / \beta) n\right)\right)
$$

processors, since

$$
E_{p_{s}}^{1-\mathrm{D}}=\Theta\left(1 /\left(1+(\alpha / \gamma) \log \left(p_{s}\right) p_{s} / n^{2}+(\beta / \gamma) p_{s} / n\right)\right)
$$

- 2-D agglomeration is strongly scalable to

$$
p_{s}=\Theta\left(\min \left((\gamma / \alpha) n^{2} / \log \left((\gamma / \alpha) n^{2}\right),(\gamma / \beta)^{2} n^{2}\right)\right)
$$

processors, since

$$
E_{p_{s}}^{2-\mathrm{D}}=\Theta\left(1 /\left(1+(\alpha / \gamma) \log \left(p_{s}\right) p_{s} / n^{2}+(\beta / \gamma) \sqrt{p_{s}} / n\right)\right)
$$

Outer Product Weak Scaling

- 1-D agglomeration is weakly scalable to

$$
p_{w}=\Theta\left(\min \left(2^{(\gamma / \alpha) n^{2}},(\gamma / \beta)^{2} n^{2}\right)\right)
$$

processors, since
$E_{p_{w}}^{1-\mathrm{D}}\left(\sqrt{p_{w}} n\right)=\Theta\left(1 /\left(1+(\alpha / \gamma) \log \left(p_{w}\right) / n^{2}+(\beta / \gamma) \sqrt{p_{w}} / n\right)\right)$

- 2-D agglomeration is weakly scalable to

$$
p_{w}=\Theta\left(2^{(\gamma / \alpha) n^{2}}\right)
$$

processors, since

$$
E_{p_{w}}^{2-D}\left(\sqrt{p_{w}} n\right)=\Theta\left(1 /\left(1+(\alpha / \gamma) \log \left(p_{w}\right) / n^{2}+(\beta / \gamma) / n\right)\right)
$$

Memory Requirements

- The memory requirements are dominated by storing Z, which in practice means the outer-product is a poor primitive (local flop-to-byte ratio of 1)
- If possible, Z should be operated on as it is computed, e.g. if we really need

$$
v_{i}=\sum_{j} f\left(x_{i} y_{j}\right) \quad \text { for some scalar function } f
$$

- If Z does not need to be stored, vector storage dominates
- Without further modification, 1-D algorithm requires $M_{p}=\Theta(n p)$ overall storage for vector
- Without further modification, 2-D algorithm requires $M_{p}=\Theta(n \sqrt{p})$ overall storage for vector

Matrix-Vector Product

- Consider matrix-vector product

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}
$$

where \boldsymbol{A} is $n \times n$ matrix and \boldsymbol{x} and \boldsymbol{y} are n-vectors

- Components of vector \boldsymbol{y} are given by inner products:

$$
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \ldots, n
$$

- The sequential memory, work, and time are

$$
M_{1}=\Theta\left(n^{2}\right), \quad Q_{1}=\Theta\left(n^{2}\right), \quad T_{1}=\Theta\left(\gamma n^{2}\right)
$$

Parallel Algorithm

Partition

- For $i, j=1, \ldots, n$, fine-grain task (i, j) stores $a_{i j}$ and computes $a_{i j} x_{j}$, yielding 2-D array of n^{2} fine-grain tasks
- Assuming no replication of data, at most $2 n$ fine-grain tasks store components of \boldsymbol{x} and \boldsymbol{y}, say either
- for some j, task (j, i) stores x_{i} and task (i, j) stores y_{i}, or
- task (i, i) stores both x_{i} and $y_{i}, i=1, \ldots, n$

Communicate

- For $j=1, \ldots, n$, task that stores x_{j} broadcasts it to all other tasks in j th task column
- For $i=1, \ldots, n$, sum reduction over i th task row gives y_{i}

Fine-Grain Tasks and Communication

Fine-Grain Parallel Algorithm

broadcast x_{j} to tasks $(k, j), k=1, \ldots, n$
$y_{i}=a_{i j} x_{j}$
reduce y_{i} across tasks $(i, k), k=1, \ldots, n$
\{ vertical broadcast \}
\{ local scalar product \}
\{ horizontal sum reduction \}

Agglomeration

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- 2-D: Combine $k \times k$ subarray of fine-grain tasks to form each coarse-grain task, yielding $(n / k)^{2}$ coarse-grain tasks
- 1-D column: Combine n fine-grain tasks in each column into coarse-grain task, yielding n coarse-grain tasks
- 1-D row: Combine n fine-grain tasks in each row into coarse-grain task, yielding n coarse-grain tasks

2-D Agglomeration

- Subvector of x broadcast along each task column
- Each task computes local matrix-vector product of submatrix of \boldsymbol{A} with subvector of \boldsymbol{x}
- Sum reduction along each task row produces subvector of result \boldsymbol{y}

2-D Agglomeration

1-D Agglomeration

1-D column agglomeration

- Each task computes product of its component of \boldsymbol{x} times its column of matrix, with no communication required
- Sum reduction across tasks then produces y

1-D row agglomeration

- If \boldsymbol{x} stored in one task, then broadcast required to communicate needed values to all other tasks
- If x distributed across tasks, then multinode broadcast required to communicate needed values to other tasks
- Each task computes inner product of its row of \boldsymbol{A} with entire vector \boldsymbol{x} to produce its component of \boldsymbol{y}

1-D Column Agglomeration

\rightarrow

1-D Row Agglomeration

1-D Agglomeration

Column and row algorithms are dual to each other

- Column algorithm begins with communication-free local vector scaling (daxpy) computations combined across processors by a reduction
- Row algorithm begins with broadcast followed by communication-free local inner-product (ddot) computations

Mapping

Map

- 2-D: Assign $(n / k)^{2} / p$ coarse-grain tasks to each of p processes using any desired mapping in each dimension, treating target network as 2-D mesh
- 1-D: Assign n / p coarse-grain tasks to each of p processes using any desired mapping, treating target network as 1-D mesh

2-D Agglomeration with Block Mapping

1-D Column Agglomeration with Block Mapping

1-D Row Agglomeration with Block Mapping

Coarse-Grain Parallel Algorithm

broadcast $\boldsymbol{x}_{[j]}$ to j th process column
$\boldsymbol{y}_{[i]}=\boldsymbol{A}_{[i][j]} \boldsymbol{x}_{[j]}$
reduce $\boldsymbol{y}_{[i]}$ across i th process row
\{ vertical broadcast \}
\{ local matrix-vector product \}
\{ horizontal sum reduction \}

Performance

The parallel costs $\left(L_{p}, W_{p}, F_{p}\right)$ for the matrix-vector product are

- Computational cost $F_{p}=\Theta\left(n^{2} / p\right)$ regardless of network
- Communication costs can be derived from the cost of collectives
- 1-D agglomeration: $L_{p}=\Theta(\log p), W_{p}=\Theta(n)$
- 2-D agglomeration: $L_{p}=\Theta(\log p), W_{p}=\Theta(n / \sqrt{p})$
- For 1-D row agglomeration, perform allgather,

$$
T_{p}^{1-\mathrm{D}}=T_{p}^{\text {allgather }}(n)+\Theta\left(\gamma n^{2} / p\right)=\Theta\left(\alpha \log (p)+\beta n+\gamma n^{2} / p\right)
$$

- For 2-D agglomeration, perform broadcast and reduction,

$$
\begin{aligned}
T_{p}^{2-\mathrm{D}} & =T_{\sqrt{p}}^{\mathrm{bcast}}(n / \sqrt{p})+T_{\sqrt{p}}^{\text {reduce }}(n / \sqrt{p})+\Theta\left(\gamma n^{2} / p\right) \\
& =\Theta\left(\alpha \log (p)+\beta n / \sqrt{p}+\gamma n^{2} / p\right)
\end{aligned}
$$

Matrix-Matrix Product

- Consider matrix-matrix product

$$
C=A B
$$

where $\boldsymbol{A}, \boldsymbol{B}$, and result \boldsymbol{C} are $n \times n$ matrices

- Entries of matrix C are given by

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}, \quad i, j=1, \ldots, n
$$

- Each of n^{2} entries of C requires n multiply-add operations, so model serial time as

$$
T_{1}=\gamma n^{3}
$$

Matrix-Matrix Product

- Matrix-matrix product can be viewed as
- n^{2} inner products, or
- sum of n outer products, or
- n matrix-vector products
and each viewpoint yields different algorithm
- One way to derive parallel algorithms for matrix-matrix product is to apply parallel algorithms already developed for inner product, outer product, or matrix-vector product
- However, considering the problem as a whole yields the best algorithms

Parallel Algorithm

Partition

- For $i, j, k=1, \ldots, n$, fine-grain task (i, j, k) computes product $a_{i k} b_{k j}$, yielding 3-D array of n^{3} fine-grain tasks
- Assuming no replication of data, at most $3 n^{2}$ fine-grain tasks store entries of $\boldsymbol{A}, \boldsymbol{B}$,
 or \boldsymbol{C}, say task (i, j, j) stores $a_{i j}$, task (i, j, i) stores $b_{i j}$, and task (i, j, k) stores $c_{i j}$ for $i, j=1, \ldots, n$ and some fixed k
- We refer to subsets of tasks along i, j, and k dimensions as rows, columns, and layers, respectively, so k th column of \boldsymbol{A} and k th row of \boldsymbol{B} are stored in k th layer of tasks

Parallel Algorithm

Communicate

- Broadcast entries of j th column of \boldsymbol{A} horizontally along each task row in j th layer
- Broadcast entries of i th row of \boldsymbol{B} vertically along each task column in i th layer
- For $i, j=1, \ldots, n$, result $c_{i j}$ is given by sum reduction over tasks $(i, j, k), k=1, \ldots, n$

Fine-Grain Algorithm

broadcast $a_{i k}$ to tasks $(i, q, k), q=1, \ldots, n$
broadcast $b_{k j}$ to tasks $(q, j, k), q=1, \ldots, n$
$c_{i j}=a_{i k} b_{k j}$
reduce $c_{i j}$ across tasks $(i, j, q), q=1, \ldots, n$
\{ horizontal broadcast \}
\{ vertical broadcast \}
\{ local scalar product \}
\{ lateral sum reduction \}

Agglomeration

Agglomerate
With $n \times n \times n$ array of fine-grain tasks, natural strategies are

- 3-D: Combine $q \times q \times q$ subarray of fine-grain tasks
- 2-D: Combine $q \times q \times n$ subarray of fine-grain tasks, eliminating sum reductions
- 1-D column: Combine $n \times 1 \times n$ subarray of fine-grain tasks, eliminating vertical broadcasts and sum reductions
- 1-D row: Combine $1 \times n \times n$ subarray of fine-grain tasks, eliminating horizontal broadcasts and sum reductions

Mapping

Map

Corresponding mapping strategies are

- 3-D: Assign $(n / q)^{3} / p$ coarse-grain tasks to each of p processors using any desired mapping in each dimension, treating target network as 3-D mesh
- 2-D: Assign $(n / q)^{2} / p$ coarse-grain tasks to each of p processors using any desired mapping in each dimension, treating target network as 2-D mesh
- 1-D: Assign n / p coarse-grain tasks to each of p processors using any desired mapping, treating target network as 1-D mesh

Agglomeration with Block Mapping

Coarse-Grain 3-D Parallel Algorithm

broadcast $\boldsymbol{A}_{[i][k]}$ to i th processor row
broadcast $\boldsymbol{B}_{[k][j]}$ to j th processor column
$\boldsymbol{C}_{[i][j]}=\boldsymbol{A}_{[i][k]} \boldsymbol{B}_{[k][j]}$
reduce $C_{[i][j]}$ across processor layers
\{ horizontal broadcast \}
\{ vertical broadcast \}
\{ local matrix product \}
\{ lateral sum reduction \}

Agglomeration with Block Mapping

1-D column:

$$
\left.\left[\begin{array}{ll}
A_{11} \\
A_{21}
\end{array}\left[\begin{array}{l}
A_{12} \\
A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} \\
B_{21}
\end{array}\right] \begin{array}{l}
B_{12} \\
B_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} \\
A_{21} B_{11}+A_{22} B_{21}
\end{array}\right] \begin{array}{l}
A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{12}+A_{22} B_{22}
\end{array}\right]
$$

1-D row:

Coarse-Grain 2-D Parallel Algorithm

allgather $\boldsymbol{A}_{[i][j]}$ in i th processor row allgather $\boldsymbol{B}_{[i][j]}$ in j th processor column $\boldsymbol{C}_{[i][j]}=\mathbf{0}$
for $k=1, \ldots, \sqrt{p}$

$$
\boldsymbol{C}_{[i][j]}=\boldsymbol{C}_{[i][j]}^{\prime}+\boldsymbol{A}_{[i][k]} \boldsymbol{B}_{[k][j]}
$$

end
\{ horizontal broadcast \}
\{ vertical broadcast \}
\{ sum local products \}

SUMMA Algorithm

- Algorithm just described requires excessive memory, since each process accumulates \sqrt{p} blocks of both \boldsymbol{A} and \boldsymbol{B}
- One way to reduce memory requirements is to
- broadcast blocks of \boldsymbol{A} successively across processor rows
- broadcast blocks of B successively across processor cols
$C_{[i][j]}=\mathbf{0}$
for $k=1, \ldots, \sqrt{p}$
broadcast $\boldsymbol{A}_{[i][k]}$ in i th processor row broadcast $\boldsymbol{B}_{[k][j]}$ in j th processor column $\boldsymbol{C}_{[i][j]}=\boldsymbol{C}_{[i][j]}+\boldsymbol{A}_{[i][k]} \boldsymbol{B}_{[k][j]}$
\{ horizontal broadcast \}
\{ vertical broadcast \}
\{ sum local products \}
end

Agglomeration Schemes
Scalability

SUMMA Algorithm

Cannon Algorithm

- Another approach, due to Cannon (1969), is to circulate blocks of \boldsymbol{B} vertically and blocks of \boldsymbol{A} horizontally in ring fashion
- Blocks of both matrices must be initially aligned using circular shifts so that correct blocks meet as needed
- Requires less memory than SUMMA and replaces line broadcasts with shifts, lowering the number of messages

Cannon Algorithm

Fox Algorithm

- It is possible to mix techniques from SUMMA and Cannon's algorithm:
- circulate blocks of B in ring fashion vertically along processor columns step by step so that each block of \boldsymbol{B} comes in conjunction with appropriate block of \boldsymbol{A} broadcast at that same step
- This algorithm is due to Fox et al.
- Shifts, especially in Cannon's algorithm, are harder to generalize to nonsquare processor grids than collectives in algorithms like SUMMA

Execution Time for 3-D Agglomeration

- For 3-D agglomeration, computing each of p blocks $C_{[i][j]}$ requires matrix-matrix product of two $(n / \sqrt[3]{p}) \times(n / \sqrt[3]{p})$ blocks, so

$$
F_{p}=(n / \sqrt[3]{p})^{3}=n^{3} / p
$$

- On 3-D mesh, each broadcast or reduction takes time

$$
T_{p^{1 / 3}}^{\mathrm{bcast}}\left(\left(n / p^{1 / 3}\right)^{2}\right)=O\left(\alpha \log p+\beta n^{2} / p^{2 / 3}\right)
$$

- Total time is therefore

$$
T_{p}=O\left(\alpha \log p+\beta n^{2} / p^{2 / 3}+\gamma n^{3} / p\right)
$$

- However, overall memory footprint is

$$
M_{p}=\Theta\left(p\left(n / p^{1 / 3}\right)^{2}\right)=\Theta\left(p^{1 / 3} n^{2}\right)
$$

Strong Scalability of 3-D Agglomeration

- The 3-D agglomeration efficiency is given by

$$
E_{p}(n)=\frac{p T_{1}(n)}{T_{p}(n)}=O\left(1 /\left(1+(\alpha / \gamma) p \log p / n^{3}+(\beta / \gamma) p^{1 / 3} / n\right)\right)
$$

- For strong scaling to p_{s} processors we need $E_{p_{s}}(n)=\Theta(1)$, so 3-D agglomeration strong scales to

$$
p_{s}=O\left(\min \left((\gamma / \alpha) n^{3} / \log (n),(\gamma / \beta) n^{3}\right)\right) \quad \text { processors }
$$

Weak Scalability of 3-D Agglomeration

- For weak scaling (with constant input size / processor) to p_{w} processor, we need $E_{p_{w}}\left(n \sqrt{p_{w}}\right)=\Theta(1)$, which holds
- However, note that the algorithm is not memory-efficient as $M_{p}=\Theta\left(p^{1 / 3} n^{2}\right)$, and if keeping memory footprint per processor constant, we must grow n with $p^{1 / 3}$
- Scaling with constant memory footprint processor ($M_{p} / p=\mathrm{const}$) is possible to p_{m} processors where $E_{p_{m}}\left(n p_{m}^{1 / 3}\right)=\Theta(1)$, which holds for

$$
p_{m}=\Theta\left(2^{(\gamma / \alpha) n^{3}}\right) \text { processors }
$$

- The isoefficiency function is $\tilde{Q}(p)=\Theta(p \log (p))$

Execution Time for 2-D Agglomeration

- For 2-D agglomeration (SUMMA), computation of each block $C_{[i][j]}$ requires \sqrt{p} matrix-matrix products of $(n / \sqrt{p}) \times(n / \sqrt{p})$ blocks, so

$$
F_{p}=\sqrt{p}(n / \sqrt{p})^{3}=n^{3} / p
$$

- For broadcast among rows and columns of processor grid, communication time is

$$
2 \sqrt{p} T_{\sqrt{p}}^{\mathrm{bcast}}\left(n^{2} / p\right)=\Theta\left(\alpha \sqrt{p} \log (p)+\beta n^{2} / \sqrt{p}\right)
$$

- Total time is therefore

$$
T_{p}=O\left(\alpha \sqrt{p} \log (p)+\beta n^{2} / \sqrt{p}+\gamma n^{3} / p\right)
$$

- The algorithm is memory-efficient, $M_{p}=\Theta\left(n^{2}\right)$

Strong Scalability of 2-D Agglomeration

- The 2-D agglomeration efficiency is given by

$$
E_{p}(n)=\frac{p T_{1}(n)}{T_{p}(n)}=O\left(1 /\left(1+(\alpha / \gamma) p^{3 / 2} \log p / n^{3}+(\beta / \gamma) \sqrt{p} / n\right)\right)
$$

- For strong scaling to p_{s} processors we need
$E_{p_{s}}(n)=\Theta(1)$, so 2-D agglomeration strong scales to

$$
p_{s}=O\left(\min \left((\gamma / \alpha) n^{2} / \log (n)^{2 / 3},(\gamma / \beta) n^{2}\right)\right) \text { processors }
$$

- For weak scaling to p_{w} processors with n^{2} / p matrix elements per processor, we need $E_{p_{w}}\left(\sqrt{p_{w}} n\right)=\Theta(1)$, so 2-D agglomeration (SUMMA) weak scales to

$$
p_{w}=O\left(2^{(\gamma / \alpha) n^{3}}\right) \text { processors }
$$

- Cannon's algorithm achieves unconditional weak scalability

Scalability for 1-D Agglomeration

- For 1-D agglomeration on 1-D mesh, total time is

$$
T_{p}=O\left(\alpha \log (p)+\beta n^{2}+\gamma n^{3} / p\right)
$$

- The corresponding efficiency is

$$
E_{p}=O\left(1 /\left(1+(\alpha / \beta) p \log (p) n^{3}+(\beta / \gamma) p / n\right)\right.
$$

- Strong scalability is possible to at most $p_{s}=O((\gamma / \beta) n)$ processors
- Weak scalability is possible to at most $p_{w}=O(\sqrt{(\gamma / \beta) n})$ processors

Rectangular Matrix Multiplication

(a) One large dimension

(b) Two large dimensions

(c) Three large dimensions

If \boldsymbol{C} is $m \times n, \boldsymbol{A}$ is $m \times k$, and \boldsymbol{B} is $k \times n$, choosing a 3D grid that optimizes volume-to-surface-area ratio yields bandwidth cost...

$$
W_{p}(m, n, k)=O\left(\min _{p_{1} p_{2} p_{3}=p}\left[\frac{m k}{p_{1} p_{2}}+\frac{k n}{p_{1} p_{3}}+\frac{m n}{p_{2} p_{3}}\right]\right)
$$

Communication vs. Memory Tradeoff

- Communication cost for 2-D algorithms for matrix-matrix product is optimal, assuming no replication of storage
- If explicit replication of storage is allowed, then lower communication volume is possible via 3-D algorithm
- Generally, we assign $n / p_{1} \times n / p_{2} \times n / p_{3}$ computation subvolume to each processor
- The largest face of the subvolume gives communication cost, the smallest face gives minimal memory usage
- can keep smallest face local while successively computing slices of subvolume

Leveraging Additional Memory in Matrix Multiplication

- Provided \bar{M} total available memory, 2-D and 3-D algorithms achieve bandwidth cost

$$
W_{p}(n, \bar{M})= \begin{cases}\infty & : \bar{M}<n^{2} \\ n^{2} / \sqrt{p} & : \bar{M}=\Theta\left(n^{2}\right) \\ n^{2} / p^{2 / 3} & : \bar{M}=\Theta\left(n^{2} p^{1 / 3}\right)\end{cases}
$$

- For general \bar{M}, possible to pick processor grid to achieve

$$
W_{p}(n, \bar{M})=O\left(n^{3} /\left(\sqrt{p} \bar{M}^{1 / 2}\right)+n^{2} / p^{2 / 3}\right)
$$

- and an overall execution time of

$$
T_{p}(n, \bar{M})=O\left(\alpha\left(\log p+n^{3} \sqrt{p} / \bar{M}^{3 / 2}\right)+\beta W_{p}(n, \bar{M})+\gamma n^{3} / p\right)
$$

Strong Scaling using All Available Memory

- The efficiency of the algorithm for a given amount of total memory \bar{M}_{p} is

$$
\begin{gathered}
E_{p}\left(n, \bar{M}_{p}\right)=O\left(1 /\left(1+(\alpha / \gamma)\left(p \log p / n^{3}+p^{3 / 2} / \bar{M}_{p}^{3 / 2}\right)\right.\right. \\
\left.\left.+(\beta / \gamma)\left(\sqrt{p} / \bar{M}_{p}^{1 / 2}+p^{1 / 3} / n\right)\right)\right)
\end{gathered}
$$

- For strong scaling assuming $\bar{M}_{p}=p \bar{M}_{1}$, we need

$$
E_{p_{s}}\left(n, p_{s} \bar{M}_{1}\right)=p_{s} T_{1}\left(n, \bar{M}_{1}\right) / T_{p_{s}}\left(n, p_{s} \bar{M}_{1}\right)=\Theta(1)
$$

- In this case, we obtain

$$
p_{s}=\Theta\left(\min \left((\alpha / \gamma) n^{3} / \log (n),(\beta / \gamma) n^{3}\right)\right)
$$

as good as the 3-D algorithm, but more memory-efficient

References

- R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar, A three-dimensional approach to parallel matrix multiplication, IBM J. Res. Dev., 39:575-582, 1995
- J. Berntsen, Communication efficient matrix multiplication on hypercubes, Parallel Comput. 12:335-342, 1989
- J. Demmel, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and O. Spillinger, Communication-optimal parallel recursive rectangular matrix multiplication, IPDPS, 2013
- J. W. Demmel, M. T. Heath, and H. A. van der Vorst, Parallel numerical linear algebra, Acta Numerica 2:111-197, 1993

References

- R. Dias da Cunha, A benchmark study based on the parallel computation of the vector outer-product $A=u v^{T}$ operation, Concurrency: Practice and Experience 9:803-819, 1997
- G. C. Fox, S. W. Otto, and A. J. G. Hey, Matrix algorithms on a hypercube I: matrix multiplication, Parallel Comput. 4:17-31, 1987
- D. Irony, S. Toledo, and A. Tiskin, Communication lower bounds for distributed-memory matrix multiplication, J. Parallel Distrib. Comput. 64:1017-1026, 2004.
- S. L. Johnsson, Communication efficient basic linear algebra computations on hypercube architectures, J. Parallel Distrib. Comput. 4(2):133-172, 1987

References

- S. L. Johnsson, Minimizing the communication time for matrix multiplication on multiprocessors, Parallel Comput. 19:1235-1257, 1993
- B. Lipshitz, Communication-avoiding parallel recursive algorithms for matrix multiplication, Tech. Rept. UCB/EECS-2013-100, University of California at Berkeley, May 2013.
- O. McBryan and E. F. Van de Velde, Matrix and vector operations on hypercube parallel processors, Parallel Comput. 5:117-126, 1987
- R. A. Van De Geijn and J. Watts, SUMMA: Scalable universal matrix multiplication algorithm, Concurrency: Practice and Experience 9(4):255-274, 1997

