Parallel Numerical Algorithms
Chapter 6 – Structured and Low Rank Matrices
Section 6.3 – Numerical Optimization

Michael T. Heath and Edgar Solomonik
Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512
Outline

1. General Nonlinear Optimization
 - Nonlinear Equations
 - Optimization

2. Matrix Completion
 - Alternating Least Squares
 - Coordinate Descent
 - Gradient Descent
Potential sources of parallelism in solving nonlinear equation \(f(x) = 0 \) include:

- Evaluation of function \(f \) and its derivatives in parallel
- Parallel implementation of linear algebra computations (e.g., solving linear system in Newton-like methods)
- Simultaneous exploration of different regions via multiple starting points (e.g., if many solutions are sought or convergence is difficult to achieve)
Sources of parallelism in optimization problems include

- Evaluation of objective and constraint functions and their derivatives in parallel
- Parallel implementation of linear algebra computations (e.g., solving linear system in Newton-like methods)
- Simultaneous exploration of different regions via multiple starting points (e.g., if global optimum is sought or convergence is difficult to achieve)
- Multi-directional searches in direct search methods
- Decomposition methods for structured problems, such as linear, quadratic, or separable programming
Nonlinear Optimization Methods

- Goal is to minimize objective function $f(x)$
- Gradient-based (first-order) methods compute
 $$x^{(s+1)} = x^{(s)} - \alpha \nabla f(x^{(s)})$$
- Newton’s method (second-order) computes
 $$x^{(s+1)} = x^{(s)} - H_f(x^{(s)})^{-1} \nabla f(x^{(s)})$$
- Alternating methods fix a subset of variables x_1 at a time and minimize (via one of above two methods)
 $$g^{(s)}(x_2) = f \left(\begin{bmatrix} x_1^{(s)} \\ x_2 \end{bmatrix} \right)$$
- Subgradient methods such as stochastic gradient descent, assume $f(x^{(s)}) = \sum_{i=1}^{n} f_i(x^{(s)})$ and compute
 $$x^{(s+1)} = x^{(s)} - \eta \nabla f_i(x^{(s)}) \quad \text{for} \quad i \in \{1, \ldots, n\}$$
Parallelism in Nonlinear Optimization

- In gradient-based methods, parallelism is generally found within calculation of $\nabla f(\mathbf{x}^{(s)})$, line optimization (if any) to compute α, and the vector sum $\mathbf{x}^{(s)} - \alpha \nabla f(\mathbf{x}^{(s)})$

- Newton’s method main source of parallelism is linear solve

- Alternating methods often fix \mathbf{x}_1 so that $g^{(s)}(\mathbf{x}_2)$ may be decomposed into multiple independent problems

$$g^{(s)}(\mathbf{w}) = g^{(s)}_1(\mathbf{w}_1) + \cdots + g^{(s)}_k(\mathbf{w}_k)$$

- Subgradient methods exploit the fact that subgradients may be independent, since $\nabla f_i(\mathbf{x}^{(s)})$ is generally mostly zero and depends on subset of elements in $\mathbf{x}^{(s)}$

- Approximate/randomized nature of subgradient methods can permit chaotic/asynchronous optimization
Given a subset of entries

$$\Omega \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$$

of the entries of matrix $A \in \mathbb{R}^{m \times n}$, seek rank-$k$ approximation

$$\arg\min_{W \in \mathbb{R}^{m \times k}, H \in \mathbb{R}^{n \times k}} \sum_{(i,j) \in \Omega} \left(a_{ij} - \sum_l w_{il} h_{jl} \right)^2 + \lambda (\|W\|_F^2 + \|H\|_F^2)$$

- Problems of these type studied in sparse approximation
- Ω may be randomly selected sample subset
- Methods for this problem are typical of numerical optimization and machine learning
Alternating Least Squares

Alternating least squares (ALS) fixes W and solves for H then vice versa until convergence

- Each step improves approximation, convergence to a minimum expected given satisfactory starting guess
- We have a quadratic optimization problem

$$\arg\min_{W \in \mathbb{R}^{m \times k}} \sum_{(i,j) \in \Omega} \left(a_{ij} - \sum_l w_{il} h_{jl} \right)^2 + \lambda \| W \|_F^2$$

- The optimization problem is independent for rows of W
- Letting $w_i = w_{i*}$, $h_i = h_{i*}$, $\Omega_i = \{ j : (i,j) \in \Omega \}$, seek

$$\arg\min_{w_i \in \mathbb{R}^k} \sum_{j \in \Omega_i} \left(a_{ij} - w_i h_j^T \right)^2 + \lambda \| w_i \|_2^2$$
ALS: Quadratic Optimization

Seek minimizer w_i for quadratic vector equation

$$f(w_i) = \sum_{j \in \Omega_i} \left(a_{ij} - w_i h_j^T \right)^2 + \lambda \|w_i\|^2$$

- Differentiating with respect to w_i gives

$$\frac{\partial f(w_i)}{\partial w_i} = 2 \sum_{j \in \Omega_i} h_j^T \left(w_i h_j^T - a_{ij} \right) + 2\lambda w_i = 0$$

- Rotating $w_i h_j^T = h_j w_i^T$ and defining $G^{(i)} = \sum_{j \in \Omega_i} h_j^T h_j$,

$$(G^{(i)} + \lambda I) w_i^T = \sum_{j \in \Omega_i} h_j^T a_{ij}$$

which is a $k \times k$ symmetric linear system of equations
ALS: Iteration Cost

For updating each w_i, ALS is dominated in cost by two steps:

1. $G^{(i)} = \sum_{j \in \Omega_i} h_j^T h_j$
 - dense matrix-matrix product
 - $O(|\Omega_i|k^2)$ work
 - logarithmic depth

2. Solve linear system with $G^{(i)} + \lambda I$
 - dense symmetric $k \times k$ linear solve
 - $O(k^3)$ work
 - typically $O(k)$ depth

Can do these for all m rows of W independently
Let each task optimize a row w_i of W

- Need to compute $G^{(i)}$ for each task
- Specific subset of rows of H needed for each $G^{(i)}$
- Task execution is embarrassingly parallel if all of H stored on each processor
Memory-Constrained Parallel ALS

May not have enough memory to replicate H on all processors

- Communication required and pattern is data-dependent
- Could rotate rows of H along a ring of processors
- Each processor computes contributions to the $G^{(i)}$ it owns
- Requires $\Theta(p)$ latency cost for each iteration of ALS
Updating a Single Variable

Rather than whole rows w_i solve for elements of W, recall

$$\arg\min_{W \in \mathbb{R}^{m \times k}} \sum_{(i,j) \in \Omega} \left(a_{ij} - \sum_l w_{il} h_{jl} \right)^2 + \lambda \|W\|_F^2$$

- **Coordinate descent** finds the best replacement μ for w_{it}

$$\mu = \arg\min_{\mu} \sum_{j \in \Omega_i} \left(a_{ij} - \mu h_{jt} - \sum_{l \neq t} w_{il} h_{jl} \right)^2 + \lambda \mu^2$$

- The solution is given by

$$\mu = \frac{\sum_{j \in \Omega_i} h_{jt} \left(a_{ij} - \sum_{l \neq t} w_{il} h_{jl} \right)}{\lambda + \sum_{j \in \Omega_i} h_{jt}^2}$$
For \(\forall (i, j) \in \Omega \) compute elements \(r_{ij} \) of

\[
R = A - WH^T
\]

so that we can optimize via

\[
\mu = \frac{\sum_{j \in \Omega_i} h_{jt} \left(a_{ij} - \sum_{l \neq t} w_{it} h_{jl} \right)}{\lambda + \sum_{j \in \Omega_i} h_{jt}^2} = \frac{\sum_{j \in \Omega_i} h_{jt} \left(r_{ij} + w_{it} h_{jt} \right)}{\lambda + \sum_{j \in \Omega_i} h_{jt}^2}
\]

after which we can update \(R \) via

\[
 r_{ij} \leftarrow r_{ij} - (\mu - w_{it}) h_{jt} \quad \forall j \in \Omega_i
\]

both using \(O(|\Omega_i|) \) operations
Cyclic Coordinate Descent (CCD)

- Updating w_i costs $O(|\Omega_i|k)$ operations with coordinate descent rather than $O(|\Omega_i|k^2 + k^3)$ operations with ALS.

- By solving for all of w_i at once, ALS obtains a more accurate solution than coordinate descent.

Coordinate descent with different update orderings:

- **Cyclic coordinate descent (CCD)** updates all columns of W then all columns of H (ALS-like ordering).

- **CCD++** alternates between columns of W and H.

- All entries within a column can be updated concurrently.
Parallel CCD++

Yu, Hsieh, Si, and Dhillon 2013 propose using a row-blocked layout of H and W

- They keep track of a corresponding m/p and n/p rows and columns of A and R on each processor (using twice the minimal amount of memory)

- Every column update in CCD++ is then fully parallelized, but an allgather of each column is required to update R

- The complexity of updating all of W and all of H is then

$$T_p(m, n, k) = \Theta(kT_p^{\text{allgather}}(m + n) + \gamma Q_1(m, n, k)/p)$$

$$= O(\alpha k \log p + \beta (m + n) k + \gamma |\Omega| k/p)$$
Gradient-Based Update

ALS minimizes w_i, gradient descent methods only improve it

- Recall that we seek to minimize

$$f(w_i) = \sum_{j \in \Omega_i} \left(a_{ij} - w_i h_j^T\right)^2 + \lambda \|w_i\|^2$$

and use the partial derivative

$$\frac{\partial f(w_i)}{\partial w_i} = 2 \sum_{j \in \Omega_i} h_j^T(w_i h_j^T - a_{ij}) + 2\lambda w_i = 2 \left(\lambda w_i - \sum_{j \in \Omega_i} r_{ij} h_j\right)$$

- Gradient descent method updates

$$w_i = w_i - \eta \frac{\partial f(w_i)}{\partial w_i}$$

where parameter η is our step-size
Stochastic Gradient Descent (SGD)

Stochastic gradient descent (SGD) performs fine-grained updates based on a component of the gradient.

Again the full gradient is

$$\frac{\partial f(w_i)}{\partial w_i} = 2 \left(\lambda w_i - \sum_{j \in \Omega_i} r_{ij} h_j \right) = 2 \sum_{j \in \Omega_i} \lambda w_i / |\Omega_i| - r_{ij} h_j$$

SGD selects random \((i, j) \in \Omega\) and updates \(w_i\) using \(h_j\)

$$w_i \leftarrow w_i - \eta \left(\lambda w_i / |\Omega_i| - r_{ij} h_j \right)$$

SGD then updates \(r_{ij} = a_{ij} - w_i^T h_j\)

Each update costs \(O(k)\) operations.
Asynchronous SGD

Parallelizing SGD is easy aside from ensuring concurrent updates do not conflict

- Asynchronous shared-memory implementations of SGD are popular and achieve high performance
- For sufficiently small step-size, inconsistencies among updates (e.g. duplication) are not problematic statistically
- Asynchronicity can slow down convergence
Blocked SGD

Distributed blocking SGD introduces further considerations

- Associate a task with updates on a block
- Can define $p \times p$ grid of blocks of dimension $m/p \times n/p$
- Diagonal/superdiagonals/subdiagonals of blocks updated independently, so p tasks can execute concurrently
- Assuming $\Theta(|\Omega|/p^2)$ updates are performed on each block, the execution time for $|\Omega|$ updates is

$$T_p(m, n, k) = \Theta(\alpha p \log p + \beta \min(m, n)k + \gamma|\Omega|k/p)$$

References

References – Parallel Optimization