
Motivation
Architectures

Networks
Communication

Parallel Numerical Algorithms
Chapter 1 – Parallel Computing

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 1 / 63



Motivation
Architectures

Networks
Communication

Outline

1 Motivation

2 Architectures
Taxonomy
Memory Organization

3 Networks
Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

4 Communication
Message Routing
Communication Concurrency
Collective Communication

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 2 / 63



Motivation
Architectures

Networks
Communication

Limits on Processor Speed

Computation speed is limited by physical laws

Speed of conventional processors is limited by

line delays: signal transmission time between gates
gate delays: settling time before state can be reliably read

Both can be improved by reducing device size, but this is in
turn ultimately limited by

heat dissipation
thermal noise (degradation of signal-to-noise ratio)
quantum uncertainty at small scales
granularity of matter at atomic scale

Heat dissipation is current binding constraint on processor
speed

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 63



Motivation
Architectures

Networks
Communication

Limits on Processor Speed

Computation speed is limited by physical laws
Speed of conventional processors is limited by

line delays: signal transmission time between gates
gate delays: settling time before state can be reliably read

Both can be improved by reducing device size, but this is in
turn ultimately limited by

heat dissipation
thermal noise (degradation of signal-to-noise ratio)
quantum uncertainty at small scales
granularity of matter at atomic scale

Heat dissipation is current binding constraint on processor
speed

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 63



Motivation
Architectures

Networks
Communication

Limits on Processor Speed

Computation speed is limited by physical laws
Speed of conventional processors is limited by

line delays: signal transmission time between gates

gate delays: settling time before state can be reliably read
Both can be improved by reducing device size, but this is in
turn ultimately limited by

heat dissipation
thermal noise (degradation of signal-to-noise ratio)
quantum uncertainty at small scales
granularity of matter at atomic scale

Heat dissipation is current binding constraint on processor
speed

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 63



Motivation
Architectures

Networks
Communication

Limits on Processor Speed

Computation speed is limited by physical laws
Speed of conventional processors is limited by

line delays: signal transmission time between gates
gate delays: settling time before state can be reliably read

Both can be improved by reducing device size, but this is in
turn ultimately limited by

heat dissipation
thermal noise (degradation of signal-to-noise ratio)
quantum uncertainty at small scales
granularity of matter at atomic scale

Heat dissipation is current binding constraint on processor
speed

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 63



Motivation
Architectures

Networks
Communication

Limits on Processor Speed

Computation speed is limited by physical laws
Speed of conventional processors is limited by

line delays: signal transmission time between gates
gate delays: settling time before state can be reliably read

Both can be improved by reducing device size, but this is in
turn ultimately limited by

heat dissipation
thermal noise (degradation of signal-to-noise ratio)
quantum uncertainty at small scales
granularity of matter at atomic scale

Heat dissipation is current binding constraint on processor
speed

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 63



Motivation
Architectures

Networks
Communication

Limits on Processor Speed

Computation speed is limited by physical laws
Speed of conventional processors is limited by

line delays: signal transmission time between gates
gate delays: settling time before state can be reliably read

Both can be improved by reducing device size, but this is in
turn ultimately limited by

heat dissipation

thermal noise (degradation of signal-to-noise ratio)
quantum uncertainty at small scales
granularity of matter at atomic scale

Heat dissipation is current binding constraint on processor
speed

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 63



Motivation
Architectures

Networks
Communication

Limits on Processor Speed

Computation speed is limited by physical laws
Speed of conventional processors is limited by

line delays: signal transmission time between gates
gate delays: settling time before state can be reliably read

Both can be improved by reducing device size, but this is in
turn ultimately limited by

heat dissipation
thermal noise (degradation of signal-to-noise ratio)

quantum uncertainty at small scales
granularity of matter at atomic scale

Heat dissipation is current binding constraint on processor
speed

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 63



Motivation
Architectures

Networks
Communication

Limits on Processor Speed

Computation speed is limited by physical laws
Speed of conventional processors is limited by

line delays: signal transmission time between gates
gate delays: settling time before state can be reliably read

Both can be improved by reducing device size, but this is in
turn ultimately limited by

heat dissipation
thermal noise (degradation of signal-to-noise ratio)
quantum uncertainty at small scales

granularity of matter at atomic scale

Heat dissipation is current binding constraint on processor
speed

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 63



Motivation
Architectures

Networks
Communication

Limits on Processor Speed

Computation speed is limited by physical laws
Speed of conventional processors is limited by

line delays: signal transmission time between gates
gate delays: settling time before state can be reliably read

Both can be improved by reducing device size, but this is in
turn ultimately limited by

heat dissipation
thermal noise (degradation of signal-to-noise ratio)
quantum uncertainty at small scales
granularity of matter at atomic scale

Heat dissipation is current binding constraint on processor
speed

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 63



Motivation
Architectures

Networks
Communication

Limits on Processor Speed

Computation speed is limited by physical laws
Speed of conventional processors is limited by

line delays: signal transmission time between gates
gate delays: settling time before state can be reliably read

Both can be improved by reducing device size, but this is in
turn ultimately limited by

heat dissipation
thermal noise (degradation of signal-to-noise ratio)
quantum uncertainty at small scales
granularity of matter at atomic scale

Heat dissipation is current binding constraint on processor
speed

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 63



Motivation
Architectures

Networks
Communication

Moore’s Law

Loosely: complexity (or capability) of microprocessors
doubles every two years

More precisely: number of transistors that can be fit into
given area of silicon doubles every two years
More precisely still: number of transistors per chip that
yields minimum cost per transistor increases by factor of
two every two years
Does not say that microprocessor performance or clock
speed doubles every two years
Nevertheless, clock speed did in fact double every two
years from roughly 1975 to 2005, but has now flattened at
about 3 GHz due to limitations on power (heat) dissipation

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 4 / 63



Motivation
Architectures

Networks
Communication

Moore’s Law

Loosely: complexity (or capability) of microprocessors
doubles every two years
More precisely: number of transistors that can be fit into
given area of silicon doubles every two years

More precisely still: number of transistors per chip that
yields minimum cost per transistor increases by factor of
two every two years
Does not say that microprocessor performance or clock
speed doubles every two years
Nevertheless, clock speed did in fact double every two
years from roughly 1975 to 2005, but has now flattened at
about 3 GHz due to limitations on power (heat) dissipation

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 4 / 63



Motivation
Architectures

Networks
Communication

Moore’s Law

Loosely: complexity (or capability) of microprocessors
doubles every two years
More precisely: number of transistors that can be fit into
given area of silicon doubles every two years
More precisely still: number of transistors per chip that
yields minimum cost per transistor increases by factor of
two every two years

Does not say that microprocessor performance or clock
speed doubles every two years
Nevertheless, clock speed did in fact double every two
years from roughly 1975 to 2005, but has now flattened at
about 3 GHz due to limitations on power (heat) dissipation

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 4 / 63



Motivation
Architectures

Networks
Communication

Moore’s Law

Loosely: complexity (or capability) of microprocessors
doubles every two years
More precisely: number of transistors that can be fit into
given area of silicon doubles every two years
More precisely still: number of transistors per chip that
yields minimum cost per transistor increases by factor of
two every two years
Does not say that microprocessor performance or clock
speed doubles every two years

Nevertheless, clock speed did in fact double every two
years from roughly 1975 to 2005, but has now flattened at
about 3 GHz due to limitations on power (heat) dissipation

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 4 / 63



Motivation
Architectures

Networks
Communication

Moore’s Law

Loosely: complexity (or capability) of microprocessors
doubles every two years
More precisely: number of transistors that can be fit into
given area of silicon doubles every two years
More precisely still: number of transistors per chip that
yields minimum cost per transistor increases by factor of
two every two years
Does not say that microprocessor performance or clock
speed doubles every two years
Nevertheless, clock speed did in fact double every two
years from roughly 1975 to 2005, but has now flattened at
about 3 GHz due to limitations on power (heat) dissipation

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 4 / 63



Motivation
Architectures

Networks
Communication

Moore’s Law

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 5 / 63



Motivation
Architectures

Networks
Communication

Moore’s Law, Architectures through 2020

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 6 / 63



Motivation
Architectures

Networks
Communication

The End of Dennard Scaling
Dennard scaling: power usage scales with area, so Moore’s law
enables higher frequency with little increase in power

current leakage caused Dennard scaling to cease in 2005

so can no longer increase frequency without increasing
power, must add cores or other functionality

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 7 / 63



Motivation
Architectures

Networks
Communication

The End of Dennard Scaling
Dennard scaling: power usage scales with area, so Moore’s law
enables higher frequency with little increase in power

current leakage caused Dennard scaling to cease in 2005
so can no longer increase frequency without increasing
power, must add cores or other functionality

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 7 / 63



Motivation
Architectures

Networks
Communication

Consequences of Moore’s Law

For given clock speed, increasing performance depends on
producing more results per cycle, which can be achieved by
exploiting various forms of parallelism

Pipelined functional units

Superscalar architecture (multiple instructions per cycle)
Out-of-order execution of instructions
SIMD instructions (multiple sets of operands per
instruction)
Memory hierarchy (larger caches and deeper hierarchy)
Multicore and multithreaded processors

Consequently, almost all processors today are parallel

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 63



Motivation
Architectures

Networks
Communication

Consequences of Moore’s Law

For given clock speed, increasing performance depends on
producing more results per cycle, which can be achieved by
exploiting various forms of parallelism

Pipelined functional units
Superscalar architecture (multiple instructions per cycle)

Out-of-order execution of instructions
SIMD instructions (multiple sets of operands per
instruction)
Memory hierarchy (larger caches and deeper hierarchy)
Multicore and multithreaded processors

Consequently, almost all processors today are parallel

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 63



Motivation
Architectures

Networks
Communication

Consequences of Moore’s Law

For given clock speed, increasing performance depends on
producing more results per cycle, which can be achieved by
exploiting various forms of parallelism

Pipelined functional units
Superscalar architecture (multiple instructions per cycle)
Out-of-order execution of instructions

SIMD instructions (multiple sets of operands per
instruction)
Memory hierarchy (larger caches and deeper hierarchy)
Multicore and multithreaded processors

Consequently, almost all processors today are parallel

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 63



Motivation
Architectures

Networks
Communication

Consequences of Moore’s Law

For given clock speed, increasing performance depends on
producing more results per cycle, which can be achieved by
exploiting various forms of parallelism

Pipelined functional units
Superscalar architecture (multiple instructions per cycle)
Out-of-order execution of instructions
SIMD instructions (multiple sets of operands per
instruction)

Memory hierarchy (larger caches and deeper hierarchy)
Multicore and multithreaded processors

Consequently, almost all processors today are parallel

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 63



Motivation
Architectures

Networks
Communication

Consequences of Moore’s Law

For given clock speed, increasing performance depends on
producing more results per cycle, which can be achieved by
exploiting various forms of parallelism

Pipelined functional units
Superscalar architecture (multiple instructions per cycle)
Out-of-order execution of instructions
SIMD instructions (multiple sets of operands per
instruction)
Memory hierarchy (larger caches and deeper hierarchy)

Multicore and multithreaded processors
Consequently, almost all processors today are parallel

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 63



Motivation
Architectures

Networks
Communication

Consequences of Moore’s Law

For given clock speed, increasing performance depends on
producing more results per cycle, which can be achieved by
exploiting various forms of parallelism

Pipelined functional units
Superscalar architecture (multiple instructions per cycle)
Out-of-order execution of instructions
SIMD instructions (multiple sets of operands per
instruction)
Memory hierarchy (larger caches and deeper hierarchy)
Multicore and multithreaded processors

Consequently, almost all processors today are parallel

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 63



Motivation
Architectures

Networks
Communication

Consequences of Moore’s Law

For given clock speed, increasing performance depends on
producing more results per cycle, which can be achieved by
exploiting various forms of parallelism

Pipelined functional units
Superscalar architecture (multiple instructions per cycle)
Out-of-order execution of instructions
SIMD instructions (multiple sets of operands per
instruction)
Memory hierarchy (larger caches and deeper hierarchy)
Multicore and multithreaded processors

Consequently, almost all processors today are parallel

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 63



Motivation
Architectures

Networks
Communication

Consequences of Moore’s Law

For given clock speed, increasing performance depends on
producing more results per cycle, which can be achieved by
exploiting various forms of parallelism

Pipelined functional units
Superscalar architecture (multiple instructions per cycle)
Out-of-order execution of instructions
SIMD instructions (multiple sets of operands per
instruction)
Memory hierarchy (larger caches and deeper hierarchy)
Multicore and multithreaded processors

Consequently, almost all processors today are parallel

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 63



Motivation
Architectures

Networks
Communication

High Performance Parallel Supercomputers

Processors in today’s cell phones and automobiles are
more powerful than supercomputers of twenty years ago

Nevertheless, to attain extreme levels of performance
(petaflops and beyond) necessary for large-scale
simulations in science and engineering, many processors
(often thousands to hundreds of thousands) must work
together in concert
This course is about how to design and analyze efficient
numerical algorithms for such architectures and
applications

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 9 / 63



Motivation
Architectures

Networks
Communication

High Performance Parallel Supercomputers

Processors in today’s cell phones and automobiles are
more powerful than supercomputers of twenty years ago
Nevertheless, to attain extreme levels of performance
(petaflops and beyond) necessary for large-scale
simulations in science and engineering, many processors
(often thousands to hundreds of thousands) must work
together in concert

This course is about how to design and analyze efficient
numerical algorithms for such architectures and
applications

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 9 / 63



Motivation
Architectures

Networks
Communication

High Performance Parallel Supercomputers

Processors in today’s cell phones and automobiles are
more powerful than supercomputers of twenty years ago
Nevertheless, to attain extreme levels of performance
(petaflops and beyond) necessary for large-scale
simulations in science and engineering, many processors
(often thousands to hundreds of thousands) must work
together in concert
This course is about how to design and analyze efficient
numerical algorithms for such architectures and
applications

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 9 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Flynn’s Taxonomy

Flynn’s taxonomy : classification of computer systems by
numbers of instruction streams and data streams:

SISD : single instruction stream, single data stream

conventional serial computers

SIMD : single instruction stream, multiple data streams

special purpose, “data parallel” computers

MISD : multiple instruction streams, single data stream

not particularly useful, except perhaps in “pipelining”

MIMD : multiple instruction streams, multiple data streams

general purpose parallel computers

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Flynn’s Taxonomy

Flynn’s taxonomy : classification of computer systems by
numbers of instruction streams and data streams:

SISD : single instruction stream, single data stream
conventional serial computers

SIMD : single instruction stream, multiple data streams

special purpose, “data parallel” computers

MISD : multiple instruction streams, single data stream

not particularly useful, except perhaps in “pipelining”

MIMD : multiple instruction streams, multiple data streams

general purpose parallel computers

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Flynn’s Taxonomy

Flynn’s taxonomy : classification of computer systems by
numbers of instruction streams and data streams:

SISD : single instruction stream, single data stream
conventional serial computers

SIMD : single instruction stream, multiple data streams

special purpose, “data parallel” computers

MISD : multiple instruction streams, single data stream

not particularly useful, except perhaps in “pipelining”

MIMD : multiple instruction streams, multiple data streams

general purpose parallel computers

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Flynn’s Taxonomy

Flynn’s taxonomy : classification of computer systems by
numbers of instruction streams and data streams:

SISD : single instruction stream, single data stream
conventional serial computers

SIMD : single instruction stream, multiple data streams
special purpose, “data parallel” computers

MISD : multiple instruction streams, single data stream

not particularly useful, except perhaps in “pipelining”

MIMD : multiple instruction streams, multiple data streams

general purpose parallel computers

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Flynn’s Taxonomy

Flynn’s taxonomy : classification of computer systems by
numbers of instruction streams and data streams:

SISD : single instruction stream, single data stream
conventional serial computers

SIMD : single instruction stream, multiple data streams
special purpose, “data parallel” computers

MISD : multiple instruction streams, single data stream

not particularly useful, except perhaps in “pipelining”

MIMD : multiple instruction streams, multiple data streams

general purpose parallel computers

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Flynn’s Taxonomy

Flynn’s taxonomy : classification of computer systems by
numbers of instruction streams and data streams:

SISD : single instruction stream, single data stream
conventional serial computers

SIMD : single instruction stream, multiple data streams
special purpose, “data parallel” computers

MISD : multiple instruction streams, single data stream
not particularly useful, except perhaps in “pipelining”

MIMD : multiple instruction streams, multiple data streams

general purpose parallel computers

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Flynn’s Taxonomy

Flynn’s taxonomy : classification of computer systems by
numbers of instruction streams and data streams:

SISD : single instruction stream, single data stream
conventional serial computers

SIMD : single instruction stream, multiple data streams
special purpose, “data parallel” computers

MISD : multiple instruction streams, single data stream
not particularly useful, except perhaps in “pipelining”

MIMD : multiple instruction streams, multiple data streams

general purpose parallel computers

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Flynn’s Taxonomy

Flynn’s taxonomy : classification of computer systems by
numbers of instruction streams and data streams:

SISD : single instruction stream, single data stream
conventional serial computers

SIMD : single instruction stream, multiple data streams
special purpose, “data parallel” computers

MISD : multiple instruction streams, single data stream
not particularly useful, except perhaps in “pipelining”

MIMD : multiple instruction streams, multiple data streams
general purpose parallel computers

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

SPMD Programming Style

SPMD (single program, multiple data): all processors execute
same program, but each operates on different portion of
problem data

Easier to program than true MIMD, but more flexible than
SIMD
Although most parallel computers today are MIMD
architecturally, they are usually programmed in SPMD style

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 11 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Architectural Issues

Major architectural issues for parallel computer systems include

processor coordination : synchronous or asynchronous?

memory organization : distributed or shared?

address space : local or global?

memory access : uniform or nonuniform?

granularity : coarse or fine?

scalability : additional processors used efficiently?

interconnection network : topology, switching, routing?

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Architectural Issues

Major architectural issues for parallel computer systems include

processor coordination : synchronous or asynchronous?

memory organization : distributed or shared?

address space : local or global?

memory access : uniform or nonuniform?

granularity : coarse or fine?

scalability : additional processors used efficiently?

interconnection network : topology, switching, routing?

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Architectural Issues

Major architectural issues for parallel computer systems include

processor coordination : synchronous or asynchronous?

memory organization : distributed or shared?

address space : local or global?

memory access : uniform or nonuniform?

granularity : coarse or fine?

scalability : additional processors used efficiently?

interconnection network : topology, switching, routing?

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Architectural Issues

Major architectural issues for parallel computer systems include

processor coordination : synchronous or asynchronous?

memory organization : distributed or shared?

address space : local or global?

memory access : uniform or nonuniform?

granularity : coarse or fine?

scalability : additional processors used efficiently?

interconnection network : topology, switching, routing?

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Architectural Issues

Major architectural issues for parallel computer systems include

processor coordination : synchronous or asynchronous?

memory organization : distributed or shared?

address space : local or global?

memory access : uniform or nonuniform?

granularity : coarse or fine?

scalability : additional processors used efficiently?

interconnection network : topology, switching, routing?

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Architectural Issues

Major architectural issues for parallel computer systems include

processor coordination : synchronous or asynchronous?

memory organization : distributed or shared?

address space : local or global?

memory access : uniform or nonuniform?

granularity : coarse or fine?

scalability : additional processors used efficiently?

interconnection network : topology, switching, routing?

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Architectural Issues

Major architectural issues for parallel computer systems include

processor coordination : synchronous or asynchronous?

memory organization : distributed or shared?

address space : local or global?

memory access : uniform or nonuniform?

granularity : coarse or fine?

scalability : additional processors used efficiently?

interconnection network : topology, switching, routing?

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed-Memory and Shared-Memory Systems

P0 P1 PN

M0 M1 MN

network

• • •

• • •

shared-memory multiprocessor

P0 P1 PN

network

• • •

M0 M1 MN• • •

distributed-memory multicomputer

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 13 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability easier harder
data mapping harder easier
data integrity easier harder
performance optimization easier harder
incremental parallelization harder easier
automatic parallelization harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability

easier harder
data mapping harder easier
data integrity easier harder
performance optimization easier harder
incremental parallelization harder easier
automatic parallelization harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability easier harder

data mapping harder easier
data integrity easier harder
performance optimization easier harder
incremental parallelization harder easier
automatic parallelization harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability easier harder
data mapping

harder easier
data integrity easier harder
performance optimization easier harder
incremental parallelization harder easier
automatic parallelization harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability easier harder
data mapping harder easier

data integrity easier harder
performance optimization easier harder
incremental parallelization harder easier
automatic parallelization harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability easier harder
data mapping harder easier
data integrity

easier harder
performance optimization easier harder
incremental parallelization harder easier
automatic parallelization harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability easier harder
data mapping harder easier
data integrity easier harder

performance optimization easier harder
incremental parallelization harder easier
automatic parallelization harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability easier harder
data mapping harder easier
data integrity easier harder
performance optimization

easier harder
incremental parallelization harder easier
automatic parallelization harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability easier harder
data mapping harder easier
data integrity easier harder
performance optimization easier harder

incremental parallelization harder easier
automatic parallelization harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability easier harder
data mapping harder easier
data integrity easier harder
performance optimization easier harder
incremental parallelization

harder easier
automatic parallelization harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability easier harder
data mapping harder easier
data integrity easier harder
performance optimization easier harder
incremental parallelization harder easier

automatic parallelization harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability easier harder
data mapping harder easier
data integrity easier harder
performance optimization easier harder
incremental parallelization harder easier
automatic parallelization

harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability easier harder
data mapping harder easier
data integrity easier harder
performance optimization easier harder
incremental parallelization harder easier
automatic parallelization harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 63



Motivation
Architectures

Networks
Communication

Taxonomy
Memory Organization

Distributed Memory vs. Shared Memory

distributed shared
memory memory

scalability easier harder
data mapping harder easier
data integrity easier harder
performance optimization easier harder
incremental parallelization harder easier
automatic parallelization harder easier

Hybrid systems are common, with memory shared locally
within SMP (symmetric multiprocessor) nodes but distributed
globally across nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 15 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Topologies

Access to remote data requires communication

Direct connections would require O(p2) wires and
communication ports, which is infeasible for large p

Limited connectivity necessitates routing data through
intermediate processors or switches

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 16 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Topologies

Access to remote data requires communication

Direct connections would require O(p2) wires and
communication ports, which is infeasible for large p

Limited connectivity necessitates routing data through
intermediate processors or switches

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 16 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Topologies

Access to remote data requires communication

Direct connections would require O(p2) wires and
communication ports, which is infeasible for large p

Limited connectivity necessitates routing data through
intermediate processors or switches

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 16 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Some Common Network Topologies

bus

star crossbar

1-D torus (ring) 2-D mesh 2-D torus

1-D mesh

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 17 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Some Common Network Topologies

butterfly

binary tree

0-cube

1-cube 2-cube 3-cube 4-cube

hypercubes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 18 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Terminology

Graph : pair (V,E), where V is set of vertices or nodes
connected by set E of edges

Complete graph : graph in which any two nodes are
connected by an edge
Path : sequence of contiguous edges in graph
Connected graph : graph in which any two nodes are
connected by a path
Cycle : path of length greater than one that connects a
node to itself
Tree : connected graph containing no cycles
Spanning tree : subgraph that includes all nodes of given
graph and is also a tree

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Terminology

Graph : pair (V,E), where V is set of vertices or nodes
connected by set E of edges
Complete graph : graph in which any two nodes are
connected by an edge

Path : sequence of contiguous edges in graph
Connected graph : graph in which any two nodes are
connected by a path
Cycle : path of length greater than one that connects a
node to itself
Tree : connected graph containing no cycles
Spanning tree : subgraph that includes all nodes of given
graph and is also a tree

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Terminology

Graph : pair (V,E), where V is set of vertices or nodes
connected by set E of edges
Complete graph : graph in which any two nodes are
connected by an edge
Path : sequence of contiguous edges in graph

Connected graph : graph in which any two nodes are
connected by a path
Cycle : path of length greater than one that connects a
node to itself
Tree : connected graph containing no cycles
Spanning tree : subgraph that includes all nodes of given
graph and is also a tree

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Terminology

Graph : pair (V,E), where V is set of vertices or nodes
connected by set E of edges
Complete graph : graph in which any two nodes are
connected by an edge
Path : sequence of contiguous edges in graph
Connected graph : graph in which any two nodes are
connected by a path

Cycle : path of length greater than one that connects a
node to itself
Tree : connected graph containing no cycles
Spanning tree : subgraph that includes all nodes of given
graph and is also a tree

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Terminology

Graph : pair (V,E), where V is set of vertices or nodes
connected by set E of edges
Complete graph : graph in which any two nodes are
connected by an edge
Path : sequence of contiguous edges in graph
Connected graph : graph in which any two nodes are
connected by a path
Cycle : path of length greater than one that connects a
node to itself

Tree : connected graph containing no cycles
Spanning tree : subgraph that includes all nodes of given
graph and is also a tree

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Terminology

Graph : pair (V,E), where V is set of vertices or nodes
connected by set E of edges
Complete graph : graph in which any two nodes are
connected by an edge
Path : sequence of contiguous edges in graph
Connected graph : graph in which any two nodes are
connected by a path
Cycle : path of length greater than one that connects a
node to itself
Tree : connected graph containing no cycles

Spanning tree : subgraph that includes all nodes of given
graph and is also a tree

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Terminology

Graph : pair (V,E), where V is set of vertices or nodes
connected by set E of edges
Complete graph : graph in which any two nodes are
connected by an edge
Path : sequence of contiguous edges in graph
Connected graph : graph in which any two nodes are
connected by a path
Cycle : path of length greater than one that connects a
node to itself
Tree : connected graph containing no cycles
Spanning tree : subgraph that includes all nodes of given
graph and is also a tree

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Models

Graph model of network: nodes are processors (or
switches or memory units), edges are communication links

Graph model of computation: nodes are tasks, edges are
data dependences between tasks

Mapping task graph of computation to network graph of
target computer is instance of graph embedding

Distance between two nodes: number of edges (hops ) in
shortest path between them

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 20 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Models

Graph model of network: nodes are processors (or
switches or memory units), edges are communication links

Graph model of computation: nodes are tasks, edges are
data dependences between tasks

Mapping task graph of computation to network graph of
target computer is instance of graph embedding

Distance between two nodes: number of edges (hops ) in
shortest path between them

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 20 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Models

Graph model of network: nodes are processors (or
switches or memory units), edges are communication links

Graph model of computation: nodes are tasks, edges are
data dependences between tasks

Mapping task graph of computation to network graph of
target computer is instance of graph embedding

Distance between two nodes: number of edges (hops ) in
shortest path between them

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 20 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Models

Graph model of network: nodes are processors (or
switches or memory units), edges are communication links

Graph model of computation: nodes are tasks, edges are
data dependences between tasks

Mapping task graph of computation to network graph of
target computer is instance of graph embedding

Distance between two nodes: number of edges (hops ) in
shortest path between them

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 20 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties
Some network properties affecting its physical realization and
potential performance

degree : maximum number of edges incident on any node;
determines number of communication ports per processor

diameter : maximum distance between any pair of nodes;
determines maximum communication delay between
processors
bisection bandwidth : (balanced min cut) smallest number
of edges whose removal splits graph into two subgraphs of
equal size; determines ability to support simultaneous
global communication
edge length : maximum physical length of any wire; may be
constant or variable as number of processors varies

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 21 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties
Some network properties affecting its physical realization and
potential performance

degree : maximum number of edges incident on any node;
determines number of communication ports per processor
diameter : maximum distance between any pair of nodes;
determines maximum communication delay between
processors

bisection bandwidth : (balanced min cut) smallest number
of edges whose removal splits graph into two subgraphs of
equal size; determines ability to support simultaneous
global communication
edge length : maximum physical length of any wire; may be
constant or variable as number of processors varies

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 21 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties
Some network properties affecting its physical realization and
potential performance

degree : maximum number of edges incident on any node;
determines number of communication ports per processor
diameter : maximum distance between any pair of nodes;
determines maximum communication delay between
processors
bisection bandwidth : (balanced min cut) smallest number
of edges whose removal splits graph into two subgraphs of
equal size; determines ability to support simultaneous
global communication

edge length : maximum physical length of any wire; may be
constant or variable as number of processors varies

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 21 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties
Some network properties affecting its physical realization and
potential performance

degree : maximum number of edges incident on any node;
determines number of communication ports per processor
diameter : maximum distance between any pair of nodes;
determines maximum communication delay between
processors
bisection bandwidth : (balanced min cut) smallest number
of edges whose removal splits graph into two subgraphs of
equal size; determines ability to support simultaneous
global communication
edge length : maximum physical length of any wire; may be
constant or variable as number of processors varies

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 21 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.

bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.
bus/star k + 1 k 2 1 var

crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.
bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var

1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.
bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const

2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.
bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const

3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.
bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const

n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.
bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var

1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.
bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const

2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.
bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const

3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.
bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const

n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.
bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var

binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.
bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var

hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.
bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var

butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Network Properties

Network Nodes Deg. Diam. Bisect. W. Edge L.
bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Embedding

Graph embedding : ϕ : Vs → Vt maps nodes in source graph
Gs = (Vs, Es) to nodes in target graph Gt = (Vt, Et). Edges in
Gs are mapped to paths in Gt.

load : maximum number of nodes in Vs mapped to same
node in Vt

congestion : maximum number of edges in Es mapped to
paths containing same edge in Et

dilation : maximum distance between any two nodes
ϕ(u), ϕ(v) ∈ Vt such that (u, v) ∈ Es

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 23 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Embedding

Graph embedding : ϕ : Vs → Vt maps nodes in source graph
Gs = (Vs, Es) to nodes in target graph Gt = (Vt, Et). Edges in
Gs are mapped to paths in Gt.

load : maximum number of nodes in Vs mapped to same
node in Vt

congestion : maximum number of edges in Es mapped to
paths containing same edge in Et

dilation : maximum distance between any two nodes
ϕ(u), ϕ(v) ∈ Vt such that (u, v) ∈ Es

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 23 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Embedding

Graph embedding : ϕ : Vs → Vt maps nodes in source graph
Gs = (Vs, Es) to nodes in target graph Gt = (Vt, Et). Edges in
Gs are mapped to paths in Gt.

load : maximum number of nodes in Vs mapped to same
node in Vt

congestion : maximum number of edges in Es mapped to
paths containing same edge in Et

dilation : maximum distance between any two nodes
ϕ(u), ϕ(v) ∈ Vt such that (u, v) ∈ Es

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 23 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Embedding

Graph embedding : ϕ : Vs → Vt maps nodes in source graph
Gs = (Vs, Es) to nodes in target graph Gt = (Vt, Et). Edges in
Gs are mapped to paths in Gt.

load : maximum number of nodes in Vs mapped to same
node in Vt

congestion : maximum number of edges in Es mapped to
paths containing same edge in Et

dilation : maximum distance between any two nodes
ϕ(u), ϕ(v) ∈ Vt such that (u, v) ∈ Es

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 23 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Embedding

Uniform load helps balance work across processors

Minimizing congestion optimizes use of available
bandwidth of network links

Minimizing dilation keeps nearest-neighbor
communications in source graph as short as possible in
target graph

Perfect embedding has load, congestion, and dilation 1, but
not always possible

Optimal embedding difficult to determine (NP-complete, in
general), so heuristics used to determine good embedding

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 24 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Embedding

Uniform load helps balance work across processors

Minimizing congestion optimizes use of available
bandwidth of network links

Minimizing dilation keeps nearest-neighbor
communications in source graph as short as possible in
target graph

Perfect embedding has load, congestion, and dilation 1, but
not always possible

Optimal embedding difficult to determine (NP-complete, in
general), so heuristics used to determine good embedding

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 24 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Embedding

Uniform load helps balance work across processors

Minimizing congestion optimizes use of available
bandwidth of network links

Minimizing dilation keeps nearest-neighbor
communications in source graph as short as possible in
target graph

Perfect embedding has load, congestion, and dilation 1, but
not always possible

Optimal embedding difficult to determine (NP-complete, in
general), so heuristics used to determine good embedding

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 24 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Embedding

Uniform load helps balance work across processors

Minimizing congestion optimizes use of available
bandwidth of network links

Minimizing dilation keeps nearest-neighbor
communications in source graph as short as possible in
target graph

Perfect embedding has load, congestion, and dilation 1, but
not always possible

Optimal embedding difficult to determine (NP-complete, in
general), so heuristics used to determine good embedding

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 24 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Graph Embedding

Uniform load helps balance work across processors

Minimizing congestion optimizes use of available
bandwidth of network links

Minimizing dilation keeps nearest-neighbor
communications in source graph as short as possible in
target graph

Perfect embedding has load, congestion, and dilation 1, but
not always possible

Optimal embedding difficult to determine (NP-complete, in
general), so heuristics used to determine good embedding

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 24 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Examples: Graph Embedding

For some important cases, good or optimal embeddings are
known, for example

000

010

001

101100

011

110 111

ring in 2-D mesh binary tree in 2-D mesh ring in hypercube

dilation 1 dilation ⌈(k − 1)/2⌉ dilation 1

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 25 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Gray Code
Gray code : ordering of integers 0 to 2k − 1 such that
consecutive members differ in exactly one bit position

Example: binary reflected Gray code of length 16

0000 = 0

0001 = 1

0011 = 3

0010 = 2

0110 = 6

0111 = 7

0101 = 5

0100 = 4

1100 = 12

1101 = 13

1111 = 15

1110 = 14

1010 = 10

1011 = 11

1001 = 9

1000 = 8

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 26 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Gray Code
Gray code : ordering of integers 0 to 2k − 1 such that
consecutive members differ in exactly one bit position

Example: binary reflected Gray code of length 16

0000 = 0

0001 = 1

0011 = 3

0010 = 2

0110 = 6

0111 = 7

0101 = 5

0100 = 4

1100 = 12

1101 = 13

1111 = 15

1110 = 14

1010 = 10

1011 = 11

1001 = 9

1000 = 8

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 26 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Gray Code
Gray code : ordering of integers 0 to 2k − 1 such that
consecutive members differ in exactly one bit position

Example: binary reflected Gray code of length 16

0000 = 0

0001 = 1

0011 = 3

0010 = 2

0110 = 6

0111 = 7

0101 = 5

0100 = 4

1100 = 12

1101 = 13

1111 = 15

1110 = 14

1010 = 10

1011 = 11

1001 = 9

1000 = 8

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 26 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Gray Code
Gray code : ordering of integers 0 to 2k − 1 such that
consecutive members differ in exactly one bit position

Example: binary reflected Gray code of length 16

0000 = 0

0001 = 1

0011 = 3

0010 = 2

0110 = 6

0111 = 7

0101 = 5

0100 = 4

1100 = 12

1101 = 13

1111 = 15

1110 = 14

1010 = 10

1011 = 11

1001 = 9

1000 = 8

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 26 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Gray Code
Gray code : ordering of integers 0 to 2k − 1 such that
consecutive members differ in exactly one bit position

Example: binary reflected Gray code of length 16

0000 = 0

0001 = 1

0011 = 3

0010 = 2

0110 = 6

0111 = 7

0101 = 5

0100 = 4

1100 = 12

1101 = 13

1111 = 15

1110 = 14

1010 = 10

1011 = 11

1001 = 9

1000 = 8

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 26 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Hypercubes

Hypercube of dimension k, or k-cube, is graph with 2k

nodes numbered 0, . . . , 2k − 1, and edges between all pairs
of nodes whose binary numbers differ in one bit position

Hypercube of dimension k can be created recursively by
replicating hypercube of dimension k − 1 and connecting
their corresponding nodes

Visiting nodes of hypercube in Gray code order gives
Hamiltonian cycle, embedding ring in hypercube

For mesh or torus of higher dimension, concatenating Gray
codes for each dimension gives embedding in hypercube

Hypercubes provide an effective paradigm for low-diameter
target network in designing parallel algorithms

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 27 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Hypercubes

Hypercube of dimension k, or k-cube, is graph with 2k

nodes numbered 0, . . . , 2k − 1, and edges between all pairs
of nodes whose binary numbers differ in one bit position

Hypercube of dimension k can be created recursively by
replicating hypercube of dimension k − 1 and connecting
their corresponding nodes

Visiting nodes of hypercube in Gray code order gives
Hamiltonian cycle, embedding ring in hypercube

For mesh or torus of higher dimension, concatenating Gray
codes for each dimension gives embedding in hypercube

Hypercubes provide an effective paradigm for low-diameter
target network in designing parallel algorithms

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 27 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Hypercubes

Hypercube of dimension k, or k-cube, is graph with 2k

nodes numbered 0, . . . , 2k − 1, and edges between all pairs
of nodes whose binary numbers differ in one bit position

Hypercube of dimension k can be created recursively by
replicating hypercube of dimension k − 1 and connecting
their corresponding nodes

Visiting nodes of hypercube in Gray code order gives
Hamiltonian cycle, embedding ring in hypercube

For mesh or torus of higher dimension, concatenating Gray
codes for each dimension gives embedding in hypercube

Hypercubes provide an effective paradigm for low-diameter
target network in designing parallel algorithms

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 27 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Hypercubes

Hypercube of dimension k, or k-cube, is graph with 2k

nodes numbered 0, . . . , 2k − 1, and edges between all pairs
of nodes whose binary numbers differ in one bit position

Hypercube of dimension k can be created recursively by
replicating hypercube of dimension k − 1 and connecting
their corresponding nodes

Visiting nodes of hypercube in Gray code order gives
Hamiltonian cycle, embedding ring in hypercube

For mesh or torus of higher dimension, concatenating Gray
codes for each dimension gives embedding in hypercube

Hypercubes provide an effective paradigm for low-diameter
target network in designing parallel algorithms

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 27 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Hypercubes

Hypercube of dimension k, or k-cube, is graph with 2k

nodes numbered 0, . . . , 2k − 1, and edges between all pairs
of nodes whose binary numbers differ in one bit position

Hypercube of dimension k can be created recursively by
replicating hypercube of dimension k − 1 and connecting
their corresponding nodes

Visiting nodes of hypercube in Gray code order gives
Hamiltonian cycle, embedding ring in hypercube

For mesh or torus of higher dimension, concatenating Gray
codes for each dimension gives embedding in hypercube

Hypercubes provide an effective paradigm for low-diameter
target network in designing parallel algorithms

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 27 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Optimality in Network Topology Design

Hypercubes are near-optimal networks, in the sense that
they can execute any communication pattern with
O(log(p)) slowdown via randomizing the data layout

A more refined notion of optimality considers the physical
space necessary to build the network

Fat trees (switched binary trees) which assign each link
more bandwidth to higher-level switches are optimal in this
sense within polylogarithmic factors

When increasing processors, bisection bandwidth scales
with O(p2/3) as opposed to O(1) for binary trees

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 28 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Optimality in Network Topology Design

Hypercubes are near-optimal networks, in the sense that
they can execute any communication pattern with
O(log(p)) slowdown via randomizing the data layout

A more refined notion of optimality considers the physical
space necessary to build the network

Fat trees (switched binary trees) which assign each link
more bandwidth to higher-level switches are optimal in this
sense within polylogarithmic factors

When increasing processors, bisection bandwidth scales
with O(p2/3) as opposed to O(1) for binary trees

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 28 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Optimality in Network Topology Design

Hypercubes are near-optimal networks, in the sense that
they can execute any communication pattern with
O(log(p)) slowdown via randomizing the data layout

A more refined notion of optimality considers the physical
space necessary to build the network

Fat trees (switched binary trees) which assign each link
more bandwidth to higher-level switches are optimal in this
sense within polylogarithmic factors

When increasing processors, bisection bandwidth scales
with O(p2/3) as opposed to O(1) for binary trees

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 28 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Optimality in Network Topology Design

Hypercubes are near-optimal networks, in the sense that
they can execute any communication pattern with
O(log(p)) slowdown via randomizing the data layout

A more refined notion of optimality considers the physical
space necessary to build the network

Fat trees (switched binary trees) which assign each link
more bandwidth to higher-level switches are optimal in this
sense within polylogarithmic factors

When increasing processors, bisection bandwidth scales
with O(p2/3) as opposed to O(1) for binary trees

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 28 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Low diameter networks
The Cray Dragonfly network has diameter 3

define densely connected groups (cliques) of nodes
a single pair of nodes connects each pair of groups

Given a target diameter r, the Moore bound provides a
lower-bound on the degree d

p ≤ 1 + d

r−1∑
i=1

(d− 1)i
(

asymptotically, p = O(dr)

)
Slim Fly nearly attains this bound for diameter 2

Slim Fly arranges processors into two 2D grids, with each
processor connecting to some nodes in its columns and
some nodes in the other grid

The Slim Fly network yields degree of roughly
√
p

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 29 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Low diameter networks
The Cray Dragonfly network has diameter 3

define densely connected groups (cliques) of nodes

a single pair of nodes connects each pair of groups

Given a target diameter r, the Moore bound provides a
lower-bound on the degree d

p ≤ 1 + d

r−1∑
i=1

(d− 1)i
(

asymptotically, p = O(dr)

)
Slim Fly nearly attains this bound for diameter 2

Slim Fly arranges processors into two 2D grids, with each
processor connecting to some nodes in its columns and
some nodes in the other grid

The Slim Fly network yields degree of roughly
√
p

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 29 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Low diameter networks
The Cray Dragonfly network has diameter 3

define densely connected groups (cliques) of nodes
a single pair of nodes connects each pair of groups

Given a target diameter r, the Moore bound provides a
lower-bound on the degree d

p ≤ 1 + d

r−1∑
i=1

(d− 1)i
(

asymptotically, p = O(dr)

)
Slim Fly nearly attains this bound for diameter 2

Slim Fly arranges processors into two 2D grids, with each
processor connecting to some nodes in its columns and
some nodes in the other grid

The Slim Fly network yields degree of roughly
√
p

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 29 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Low diameter networks
The Cray Dragonfly network has diameter 3

define densely connected groups (cliques) of nodes
a single pair of nodes connects each pair of groups

Given a target diameter r, the Moore bound provides a
lower-bound on the degree d

p ≤ 1 + d

r−1∑
i=1

(d− 1)i
(

asymptotically, p = O(dr)

)

Slim Fly nearly attains this bound for diameter 2

Slim Fly arranges processors into two 2D grids, with each
processor connecting to some nodes in its columns and
some nodes in the other grid

The Slim Fly network yields degree of roughly
√
p

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 29 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Low diameter networks
The Cray Dragonfly network has diameter 3

define densely connected groups (cliques) of nodes
a single pair of nodes connects each pair of groups

Given a target diameter r, the Moore bound provides a
lower-bound on the degree d

p ≤ 1 + d

r−1∑
i=1

(d− 1)i
(

asymptotically, p = O(dr)

)
Slim Fly nearly attains this bound for diameter 2

Slim Fly arranges processors into two 2D grids, with each
processor connecting to some nodes in its columns and
some nodes in the other grid

The Slim Fly network yields degree of roughly
√
p

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 29 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Low diameter networks
The Cray Dragonfly network has diameter 3

define densely connected groups (cliques) of nodes
a single pair of nodes connects each pair of groups

Given a target diameter r, the Moore bound provides a
lower-bound on the degree d

p ≤ 1 + d

r−1∑
i=1

(d− 1)i
(

asymptotically, p = O(dr)

)
Slim Fly nearly attains this bound for diameter 2

Slim Fly arranges processors into two 2D grids, with each
processor connecting to some nodes in its columns and
some nodes in the other grid

The Slim Fly network yields degree of roughly
√
p

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 29 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Low diameter networks
The Cray Dragonfly network has diameter 3

define densely connected groups (cliques) of nodes
a single pair of nodes connects each pair of groups

Given a target diameter r, the Moore bound provides a
lower-bound on the degree d

p ≤ 1 + d

r−1∑
i=1

(d− 1)i
(

asymptotically, p = O(dr)

)
Slim Fly nearly attains this bound for diameter 2

Slim Fly arranges processors into two 2D grids, with each
processor connecting to some nodes in its columns and
some nodes in the other grid

The Slim Fly network yields degree of roughly
√
p

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 29 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Topology-Awareness in Algorithms

Topology-aware algorithms aim to execute effectively on
specific network topologies

If mapped ideally to a network topology, applications and
algorithms often see significant performance gains

However, real applications are executed on a subset of
nodes of a distributed machine, which may not have the
same connectivity structure as the overall machine

Moreover, network-topology-specific optimziations are
typically not performance-portable

Nevertheless, topologies provide a convenient visual
model for design of parallel algorithms

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 30 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Topology-Awareness in Algorithms

Topology-aware algorithms aim to execute effectively on
specific network topologies

If mapped ideally to a network topology, applications and
algorithms often see significant performance gains

However, real applications are executed on a subset of
nodes of a distributed machine, which may not have the
same connectivity structure as the overall machine

Moreover, network-topology-specific optimziations are
typically not performance-portable

Nevertheless, topologies provide a convenient visual
model for design of parallel algorithms

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 30 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Topology-Awareness in Algorithms

Topology-aware algorithms aim to execute effectively on
specific network topologies

If mapped ideally to a network topology, applications and
algorithms often see significant performance gains

However, real applications are executed on a subset of
nodes of a distributed machine, which may not have the
same connectivity structure as the overall machine

Moreover, network-topology-specific optimziations are
typically not performance-portable

Nevertheless, topologies provide a convenient visual
model for design of parallel algorithms

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 30 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Topology-Awareness in Algorithms

Topology-aware algorithms aim to execute effectively on
specific network topologies

If mapped ideally to a network topology, applications and
algorithms often see significant performance gains

However, real applications are executed on a subset of
nodes of a distributed machine, which may not have the
same connectivity structure as the overall machine

Moreover, network-topology-specific optimziations are
typically not performance-portable

Nevertheless, topologies provide a convenient visual
model for design of parallel algorithms

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 30 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Topology-Awareness in Algorithms

Topology-aware algorithms aim to execute effectively on
specific network topologies

If mapped ideally to a network topology, applications and
algorithms often see significant performance gains

However, real applications are executed on a subset of
nodes of a distributed machine, which may not have the
same connectivity structure as the overall machine

Moreover, network-topology-specific optimziations are
typically not performance-portable

Nevertheless, topologies provide a convenient visual
model for design of parallel algorithms

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 30 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Topology-Obliviousness in Algorithms

An algorithm designed for a sparsely-connected network is
typically as efficient on more densly-connected ones

An algorithm designed for a densly-connected network
typically incurs a bounded amount of overhead on more
sparsely-connected ones

Ideally, parallel algorithms should be topology-oblivious,
i.e. perform well on any reasonable network topology

A good parallel algorithm design methodology is to

1 try to obtain cost-optimality for a fully-connected network

2 organize it so it achieves the same cost on some network
topology that is as sparsely-connected as possible

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 31 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Topology-Obliviousness in Algorithms

An algorithm designed for a sparsely-connected network is
typically as efficient on more densly-connected ones

An algorithm designed for a densly-connected network
typically incurs a bounded amount of overhead on more
sparsely-connected ones

Ideally, parallel algorithms should be topology-oblivious,
i.e. perform well on any reasonable network topology

A good parallel algorithm design methodology is to

1 try to obtain cost-optimality for a fully-connected network

2 organize it so it achieves the same cost on some network
topology that is as sparsely-connected as possible

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 31 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Topology-Obliviousness in Algorithms

An algorithm designed for a sparsely-connected network is
typically as efficient on more densly-connected ones

An algorithm designed for a densly-connected network
typically incurs a bounded amount of overhead on more
sparsely-connected ones

Ideally, parallel algorithms should be topology-oblivious,
i.e. perform well on any reasonable network topology

A good parallel algorithm design methodology is to

1 try to obtain cost-optimality for a fully-connected network

2 organize it so it achieves the same cost on some network
topology that is as sparsely-connected as possible

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 31 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Topology-Obliviousness in Algorithms

An algorithm designed for a sparsely-connected network is
typically as efficient on more densly-connected ones

An algorithm designed for a densly-connected network
typically incurs a bounded amount of overhead on more
sparsely-connected ones

Ideally, parallel algorithms should be topology-oblivious,
i.e. perform well on any reasonable network topology

A good parallel algorithm design methodology is to

1 try to obtain cost-optimality for a fully-connected network

2 organize it so it achieves the same cost on some network
topology that is as sparsely-connected as possible

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 31 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Topology-Obliviousness in Algorithms

An algorithm designed for a sparsely-connected network is
typically as efficient on more densly-connected ones

An algorithm designed for a densly-connected network
typically incurs a bounded amount of overhead on more
sparsely-connected ones

Ideally, parallel algorithms should be topology-oblivious,
i.e. perform well on any reasonable network topology

A good parallel algorithm design methodology is to

1 try to obtain cost-optimality for a fully-connected network

2 organize it so it achieves the same cost on some network
topology that is as sparsely-connected as possible

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 31 / 63



Motivation
Architectures

Networks
Communication

Network Topologies
Graph Embedding
Topology-Awareness in Algorithms

Topology-Obliviousness in Algorithms

An algorithm designed for a sparsely-connected network is
typically as efficient on more densly-connected ones

An algorithm designed for a densly-connected network
typically incurs a bounded amount of overhead on more
sparsely-connected ones

Ideally, parallel algorithms should be topology-oblivious,
i.e. perform well on any reasonable network topology

A good parallel algorithm design methodology is to

1 try to obtain cost-optimality for a fully-connected network

2 organize it so it achieves the same cost on some network
topology that is as sparsely-connected as possible

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 31 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Message Passing

Simple model for time required to send message (move data)
between adjacent nodes:

Tmsg = α+ β s

α = startup time = latency (i.e., time to send message of
length zero)

β = incremental transfer time per word (1/β = bandwidth
in words per unit time)
s = length of message in words

For real parallel systems α ≫ β, so we often simplify α+ β ≈ α

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 32 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Message Passing

Simple model for time required to send message (move data)
between adjacent nodes:

Tmsg = α+ β s

α = startup time = latency (i.e., time to send message of
length zero)
β = incremental transfer time per word (1/β = bandwidth
in words per unit time)

s = length of message in words

For real parallel systems α ≫ β, so we often simplify α+ β ≈ α

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 32 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Message Passing

Simple model for time required to send message (move data)
between adjacent nodes:

Tmsg = α+ β s

α = startup time = latency (i.e., time to send message of
length zero)
β = incremental transfer time per word (1/β = bandwidth
in words per unit time)
s = length of message in words

For real parallel systems α ≫ β, so we often simplify α+ β ≈ α

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 32 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Message Passing

Simple model for time required to send message (move data)
between adjacent nodes:

Tmsg = α+ β s

α = startup time = latency (i.e., time to send message of
length zero)
β = incremental transfer time per word (1/β = bandwidth
in words per unit time)
s = length of message in words

For real parallel systems α ≫ β, so we often simplify α+ β ≈ α

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 32 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Message Passing

Simple model for time required to send message (move data)
between adjacent nodes:

Tmsg = α+ β s

α = startup time = latency (i.e., time to send message of
length zero)
β = incremental transfer time per word (1/β = bandwidth
in words per unit time)
s = length of message in words

For real parallel systems α ≫ β, so we often simplify α+ β ≈ α

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 32 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Algorithmic Communication Cost

Let p processors send a message of size s in a ring
ps is the communication volume (total amount of data sent)

However, the execution time depends on whether we send
the messages concurrently or in sequence
The communication time models execution time in terms of
per-message costs

if the messages are sent simultaneously,

Tsim−ring(s) = Tmsg(s) = α+ s · β

if the messages are sent in sequence,

Tseq−ring(s, p) = p · Tmsg(s) = p · (α+ s · β)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 33 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Algorithmic Communication Cost

Let p processors send a message of size s in a ring
ps is the communication volume (total amount of data sent)
However, the execution time depends on whether we send
the messages concurrently or in sequence

The communication time models execution time in terms of
per-message costs

if the messages are sent simultaneously,

Tsim−ring(s) = Tmsg(s) = α+ s · β

if the messages are sent in sequence,

Tseq−ring(s, p) = p · Tmsg(s) = p · (α+ s · β)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 33 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Algorithmic Communication Cost

Let p processors send a message of size s in a ring
ps is the communication volume (total amount of data sent)
However, the execution time depends on whether we send
the messages concurrently or in sequence
The communication time models execution time in terms of
per-message costs

if the messages are sent simultaneously,

Tsim−ring(s) = Tmsg(s) = α+ s · β

if the messages are sent in sequence,

Tseq−ring(s, p) = p · Tmsg(s) = p · (α+ s · β)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 33 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Algorithmic Communication Cost

Let p processors send a message of size s in a ring
ps is the communication volume (total amount of data sent)
However, the execution time depends on whether we send
the messages concurrently or in sequence
The communication time models execution time in terms of
per-message costs

if the messages are sent simultaneously,

Tsim−ring(s) = Tmsg(s) = α+ s · β

if the messages are sent in sequence,

Tseq−ring(s, p) = p · Tmsg(s) = p · (α+ s · β)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 33 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Algorithmic Communication Cost

Let p processors send a message of size s in a ring
ps is the communication volume (total amount of data sent)
However, the execution time depends on whether we send
the messages concurrently or in sequence
The communication time models execution time in terms of
per-message costs

if the messages are sent simultaneously,

Tsim−ring(s) = Tmsg(s) = α+ s · β

if the messages are sent in sequence,

Tseq−ring(s, p) = p · Tmsg(s) = p · (α+ s · β)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 33 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Message Routing

Messages sent between nodes that are not directly connected
must be routed through intermediate nodes

Message routing algorithms can be
minimal or nonminimal, depending on whether shortest
path is always taken

static or dynamic, depending on whether same path is
always taken
deterministic or randomized, depending on whether path is
chosen systematically or randomly
circuit switched or packet switched, depending on whether
entire message goes along reserved path or is transferred
in segments that may not all take same path

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 34 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Message Routing

Messages sent between nodes that are not directly connected
must be routed through intermediate nodes

Message routing algorithms can be
minimal or nonminimal, depending on whether shortest
path is always taken
static or dynamic, depending on whether same path is
always taken

deterministic or randomized, depending on whether path is
chosen systematically or randomly
circuit switched or packet switched, depending on whether
entire message goes along reserved path or is transferred
in segments that may not all take same path

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 34 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Message Routing

Messages sent between nodes that are not directly connected
must be routed through intermediate nodes

Message routing algorithms can be
minimal or nonminimal, depending on whether shortest
path is always taken
static or dynamic, depending on whether same path is
always taken
deterministic or randomized, depending on whether path is
chosen systematically or randomly

circuit switched or packet switched, depending on whether
entire message goes along reserved path or is transferred
in segments that may not all take same path

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 34 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Message Routing

Messages sent between nodes that are not directly connected
must be routed through intermediate nodes

Message routing algorithms can be
minimal or nonminimal, depending on whether shortest
path is always taken
static or dynamic, depending on whether same path is
always taken
deterministic or randomized, depending on whether path is
chosen systematically or randomly
circuit switched or packet switched, depending on whether
entire message goes along reserved path or is transferred
in segments that may not all take same path

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 34 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Message Routing

Most regular network topologies admit simple routing schemes
that are static, deterministic, and minimal

000

010

001

101100

011

110 111

2-D mesh hypercube

source

source

dest

dest

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 35 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Store-and-Forward vs. Cut-Through Routing
Store-and-forward routing: entire message is received and
stored at each node before being forwarded to next node on
path, so

Troute = (α+ βs)D, where D = distance in hops

Cut-through (or wormhole ) routing: message broken into
segments that are pipelined through network, with each
segment forwarded as soon as it is received, so

Troute = α+ βs + thD, where th = incremental time per hop

Generally th ≤ α, so we can treat both as network latency,

Troute = αD + βs

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 36 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Store-and-Forward vs. Cut-Through Routing
Store-and-forward routing: entire message is received and
stored at each node before being forwarded to next node on
path, so

Troute = (α+ βs)D, where D = distance in hops

Cut-through (or wormhole ) routing: message broken into
segments that are pipelined through network, with each
segment forwarded as soon as it is received, so

Troute = α+ βs + thD, where th = incremental time per hop

Generally th ≤ α, so we can treat both as network latency,

Troute = αD + βs

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 36 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Store-and-Forward vs. Cut-Through Routing
Store-and-forward routing: entire message is received and
stored at each node before being forwarded to next node on
path, so

Troute = (α+ βs)D, where D = distance in hops

Cut-through (or wormhole ) routing: message broken into
segments that are pipelined through network, with each
segment forwarded as soon as it is received, so

Troute = α+ βs + thD, where th = incremental time per hop

Generally th ≤ α, so we can treat both as network latency,

Troute = αD + βs

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 36 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Store-and-Forward vs. Worlmhole Routing

store-and-forward cut-through

P0

P1

P2

P3

P0

P1

P2

P3

Cut-through (wormhole) routing greatly reduces distance effect,
but aggregrate bandwidth may still be significant constraint

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 37 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Communication Concurrency

For given communication system, it may or may not be possible
for each node to

send message while receiving another simultaneously on
same communication link

send message on one link while receiving simultaneously
on different link
send or receive, or both, simultaneously on multiple links

We will generally assume a processor can send or receive only
one message at a time (but can send one and receive one
simultaneously).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 38 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Communication Concurrency

For given communication system, it may or may not be possible
for each node to

send message while receiving another simultaneously on
same communication link
send message on one link while receiving simultaneously
on different link

send or receive, or both, simultaneously on multiple links

We will generally assume a processor can send or receive only
one message at a time (but can send one and receive one
simultaneously).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 38 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Communication Concurrency

For given communication system, it may or may not be possible
for each node to

send message while receiving another simultaneously on
same communication link
send message on one link while receiving simultaneously
on different link
send or receive, or both, simultaneously on multiple links

We will generally assume a processor can send or receive only
one message at a time (but can send one and receive one
simultaneously).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 38 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Communication Concurrency

For given communication system, it may or may not be possible
for each node to

send message while receiving another simultaneously on
same communication link
send message on one link while receiving simultaneously
on different link
send or receive, or both, simultaneously on multiple links

We will generally assume a processor can send or receive only
one message at a time (but can send one and receive one
simultaneously).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 38 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Communication Concurrency

For given communication system, it may or may not be possible
for each node to

send message while receiving another simultaneously on
same communication link
send message on one link while receiving simultaneously
on different link
send or receive, or both, simultaneously on multiple links

We will generally assume a processor can send or receive only
one message at a time (but can send one and receive one
simultaneously).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 38 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Collective Communication

Collective communication : multiple nodes communicating
simultaneously in systematic pattern, which we can classify as

One-to-All: Broadcast, Scatter

All-to-One: Reduce, Gather
All-to-One + One-to-All: Allreduce (Reduce+Broadcast),
Allgather (Gather+Broadcast), Reduce-Scatter
(Reduce+Scatter), Scan
All-to-All: All-to-all

The distinction between the last two types is made due to their
different cost characteristics

MPI (Message-Passing Interface) provides all of these as well
as variable size versions (e.g. (All)Gatherv, All-to-allv).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 39 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Collective Communication

Collective communication : multiple nodes communicating
simultaneously in systematic pattern, which we can classify as

One-to-All: Broadcast, Scatter
All-to-One: Reduce, Gather

All-to-One + One-to-All: Allreduce (Reduce+Broadcast),
Allgather (Gather+Broadcast), Reduce-Scatter
(Reduce+Scatter), Scan
All-to-All: All-to-all

The distinction between the last two types is made due to their
different cost characteristics

MPI (Message-Passing Interface) provides all of these as well
as variable size versions (e.g. (All)Gatherv, All-to-allv).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 39 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Collective Communication

Collective communication : multiple nodes communicating
simultaneously in systematic pattern, which we can classify as

One-to-All: Broadcast, Scatter
All-to-One: Reduce, Gather
All-to-One + One-to-All: Allreduce (Reduce+Broadcast),
Allgather (Gather+Broadcast), Reduce-Scatter
(Reduce+Scatter), Scan

All-to-All: All-to-all
The distinction between the last two types is made due to their
different cost characteristics

MPI (Message-Passing Interface) provides all of these as well
as variable size versions (e.g. (All)Gatherv, All-to-allv).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 39 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Collective Communication

Collective communication : multiple nodes communicating
simultaneously in systematic pattern, which we can classify as

One-to-All: Broadcast, Scatter
All-to-One: Reduce, Gather
All-to-One + One-to-All: Allreduce (Reduce+Broadcast),
Allgather (Gather+Broadcast), Reduce-Scatter
(Reduce+Scatter), Scan
All-to-All: All-to-all

The distinction between the last two types is made due to their
different cost characteristics

MPI (Message-Passing Interface) provides all of these as well
as variable size versions (e.g. (All)Gatherv, All-to-allv).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 39 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Collective Communication

Collective communication : multiple nodes communicating
simultaneously in systematic pattern, which we can classify as

One-to-All: Broadcast, Scatter
All-to-One: Reduce, Gather
All-to-One + One-to-All: Allreduce (Reduce+Broadcast),
Allgather (Gather+Broadcast), Reduce-Scatter
(Reduce+Scatter), Scan
All-to-All: All-to-all

The distinction between the last two types is made due to their
different cost characteristics

MPI (Message-Passing Interface) provides all of these as well
as variable size versions (e.g. (All)Gatherv, All-to-allv).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 39 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Collective Communication

Collective communication : multiple nodes communicating
simultaneously in systematic pattern, which we can classify as

One-to-All: Broadcast, Scatter
All-to-One: Reduce, Gather
All-to-One + One-to-All: Allreduce (Reduce+Broadcast),
Allgather (Gather+Broadcast), Reduce-Scatter
(Reduce+Scatter), Scan
All-to-All: All-to-all

The distinction between the last two types is made due to their
different cost characteristics

MPI (Message-Passing Interface) provides all of these as well
as variable size versions (e.g. (All)Gatherv, All-to-allv).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 39 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Collective Communication

Collective communication : multiple nodes communicating
simultaneously in systematic pattern, which we can classify as

One-to-All: Broadcast, Scatter
All-to-One: Reduce, Gather
All-to-One + One-to-All: Allreduce (Reduce+Broadcast),
Allgather (Gather+Broadcast), Reduce-Scatter
(Reduce+Scatter), Scan
All-to-All: All-to-all

The distinction between the last two types is made due to their
different cost characteristics

MPI (Message-Passing Interface) provides all of these as well
as variable size versions (e.g. (All)Gatherv, All-to-allv).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 39 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Collective Communication

A0 A1 A2 A3 A4 A5 scatter

gather

A0
A1
A2
A3
A4
A5

A0 A1 A2 A3 A4 A5
B0 B1 B2 B3 B4 B5
C0 C1 C2 C3 C4 C5
D0 D1 D2 D3 D4 D5
E0 E1 E2 E3 E4 E5
F0 F1 F2 F3 F4 F5

A0 B0 C0 D0 E0 F0
A1 B1 C1 D1 E1 F1
A2 B2 C2 D2 E2 F2
A3 B3 C3 D3 E3 F3
A4 B4 C4 D4 E4 F4
A5 B5 C5 D5 E5 F5

complete
exchange

A0
B0
C0
D0
E0
F0

allgather

A0 B0 C0 D0 E0 F0
A0 B0 C0 D0 E0 F0
A0 B0 C0 D0 E0 F0
A0 B0 C0 D0 E0 F0
A0 B0 C0 D0 E0 F0
A0 B0 C0 D0 E0 F0

A0

data

broadcast

pr
oc
es
se
s A0
A0
A0
A0
A0
A0

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 40 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Broadcast

Broadcast : source node sends same message of size s to
each of p− 1 other nodes

Binary or binomial trees are often used for one-to-all collectives
like broadcast, but any spanning tree will do

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 41 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Broadcast

1

2

3

3 3

3

2-D mesh hypercube

1
3

2

4

2
3 3 3

4 4 4 4

4 4 4

2

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 42 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Broadcast

Cost of broadcast depends on network, for example
1-D mesh: T = (p− 1) (α+ βs)

2-D mesh: T = 2(
√
p− 1) (α+ βs)

hypercube: T = log p (α+ βs)

For long messages, bandwidth utilization may be enhanced by
breaking message into segments and either

pipeline segments along single spanning tree, or
send each segment along different spanning tree having
same root

For example, hypercube with 2k nodes has k edge-disjoint
spanning trees for any given root node

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 43 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Broadcast

Cost of broadcast depends on network, for example
1-D mesh: T = (p− 1) (α+ βs)

2-D mesh: T = 2(
√
p− 1) (α+ βs)

hypercube: T = log p (α+ βs)

For long messages, bandwidth utilization may be enhanced by
breaking message into segments and either

pipeline segments along single spanning tree, or
send each segment along different spanning tree having
same root

For example, hypercube with 2k nodes has k edge-disjoint
spanning trees for any given root node

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 43 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Broadcast

Cost of broadcast depends on network, for example
1-D mesh: T = (p− 1) (α+ βs)

2-D mesh: T = 2(
√
p− 1) (α+ βs)

hypercube: T = log p (α+ βs)

For long messages, bandwidth utilization may be enhanced by
breaking message into segments and either

pipeline segments along single spanning tree, or
send each segment along different spanning tree having
same root

For example, hypercube with 2k nodes has k edge-disjoint
spanning trees for any given root node

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 43 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Broadcast

Cost of broadcast depends on network, for example
1-D mesh: T = (p− 1) (α+ βs)

2-D mesh: T = 2(
√
p− 1) (α+ βs)

hypercube: T = log p (α+ βs)

For long messages, bandwidth utilization may be enhanced by
breaking message into segments and either

pipeline segments along single spanning tree, or
send each segment along different spanning tree having
same root

For example, hypercube with 2k nodes has k edge-disjoint
spanning trees for any given root node

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 43 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Broadcast

Cost of broadcast depends on network, for example
1-D mesh: T = (p− 1) (α+ βs)

2-D mesh: T = 2(
√
p− 1) (α+ βs)

hypercube: T = log p (α+ βs)

For long messages, bandwidth utilization may be enhanced by
breaking message into segments and either

pipeline segments along single spanning tree, or
send each segment along different spanning tree having
same root

For example, hypercube with 2k nodes has k edge-disjoint
spanning trees for any given root node

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 43 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Butterfly Protocols

All collective-communication can be done near-optimally with
butterfly protocols, which use all links of a hypercube network

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 44 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Butterfly Protocols

All collective-communication can be done near-optimally with
butterfly protocols, which use all links of a hypercube network

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 45 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Butterfly Allgather (Recursive Doubling)

Allgather : each of p nodes sends message to all other nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 46 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Cost of Butterfly Allgather

The butterfly has log2(p) levels. The size of the message
doubles at each level until all s elements are gathered, so the
total cost is

Tallgather(s, p) =

{
0 : p = 1

Tallgather(s/2, p/2) + α+ β(s/2) : p > 1

≈ α log2(p) +

log2(p)∑
i=1

βs/2i

≈ α log2(p) + βs

The geometric summation in the cost analysis is typical for
butterfly protocols for one-to-all and all-to-one collectives

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 47 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Butterfly Scatter

Scatter : source node sends message of size s/p to each of
p− 1 other nodes

Note that the messages are forwarded down a binomial and not
a binary spanning tree of nodes.

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 48 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Butterfly Scatter

Scatter : source node sends message of size s/p to each of
p− 1 other nodes

Note that the messages are forwarded down a binomial and not
a binary spanning tree of nodes.

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 48 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Butterfly Broadcast

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 49 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Butterfly Broadcast

Tbroadcast = Tscatter + Tallgather = 2Tallgather

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 50 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Reduction

Reduction : data from all p nodes are combined by applying
specified associative operation ⊕ (e.g., sum, product, max, min,
logical OR, logical AND) to produce overall result

Generally, we can turn any broadcast algorithm into a reduction
algorithm by reversing the flow of information, so we see

Broadcast done effectively by Scatter + Allgather

Reduction done effectively by Reduce-Scatter + Gather

Allreduce done effectively by Reduce-Scatter + Allgather

These one-to-all + all-to-one collectives have butterfly protocols
with equivalent cost.

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 51 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Reduction

Reduction : data from all p nodes are combined by applying
specified associative operation ⊕ (e.g., sum, product, max, min,
logical OR, logical AND) to produce overall result

Generally, we can turn any broadcast algorithm into a reduction
algorithm by reversing the flow of information, so we see

Broadcast done effectively by Scatter + Allgather

Reduction done effectively by Reduce-Scatter + Gather

Allreduce done effectively by Reduce-Scatter + Allgather
These one-to-all + all-to-one collectives have butterfly protocols
with equivalent cost.

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 51 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Reduction

Reduction : data from all p nodes are combined by applying
specified associative operation ⊕ (e.g., sum, product, max, min,
logical OR, logical AND) to produce overall result

Generally, we can turn any broadcast algorithm into a reduction
algorithm by reversing the flow of information, so we see

Broadcast done effectively by Scatter + Allgather

Reduction done effectively by Reduce-Scatter + Gather

Allreduce done effectively by Reduce-Scatter + Allgather
These one-to-all + all-to-one collectives have butterfly protocols
with equivalent cost.

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 51 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Reduction

Reduction : data from all p nodes are combined by applying
specified associative operation ⊕ (e.g., sum, product, max, min,
logical OR, logical AND) to produce overall result

Generally, we can turn any broadcast algorithm into a reduction
algorithm by reversing the flow of information, so we see

Broadcast done effectively by Scatter + Allgather

Reduction done effectively by Reduce-Scatter + Gather

Allreduce done effectively by Reduce-Scatter + Allgather

These one-to-all + all-to-one collectives have butterfly protocols
with equivalent cost.

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 51 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Reduction

Reduction : data from all p nodes are combined by applying
specified associative operation ⊕ (e.g., sum, product, max, min,
logical OR, logical AND) to produce overall result

Generally, we can turn any broadcast algorithm into a reduction
algorithm by reversing the flow of information, so we see

Broadcast done effectively by Scatter + Allgather

Reduction done effectively by Reduce-Scatter + Gather

Allreduce done effectively by Reduce-Scatter + Allgather

These one-to-all + all-to-one collectives have butterfly protocols
with equivalent cost.

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 51 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Reduction

Reduction : data from all p nodes are combined by applying
specified associative operation ⊕ (e.g., sum, product, max, min,
logical OR, logical AND) to produce overall result

Generally, we can turn any broadcast algorithm into a reduction
algorithm by reversing the flow of information, so we see

Broadcast done effectively by Scatter + Allgather

Reduction done effectively by Reduce-Scatter + Gather

Allreduce done effectively by Reduce-Scatter + Allgather
These one-to-all + all-to-one collectives have butterfly protocols
with equivalent cost.

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 51 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Butterfly Reduce-Scatter (Recursive Halving)

Reduce-scatter : a reduction with the result distributed over all p
nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 52 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Butterfly Allreduce

Allreduce : a reduction with the result replicated on all p nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 53 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Butterfly Allreduce

Tallreduce = Treduce−scatter + Tallgather

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 54 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Butterfly Allreduce: note recursive structure of butterfly

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 55 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Scan or Prefix

Scan or prefix : given data values x0, x1, . . . , xp−1, one per
node, along with associative operation ⊕, compute sequence of
partial results y0, y1, . . . , yp−1, where

yk = x0 ⊕ x1 ⊕ · · · ⊕ xk,

and yk is to reside on node k, k = 0, . . . p− 1

Scan can be implemented via a butterfly protocol similar to
Allreduce, except intermediate results must be stored while
doing recursive halving to be recombined when doing recursive
doubling

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 56 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Scan or Prefix

Scan or prefix : given data values x0, x1, . . . , xp−1, one per
node, along with associative operation ⊕, compute sequence of
partial results y0, y1, . . . , yp−1, where

yk = x0 ⊕ x1 ⊕ · · · ⊕ xk,

and yk is to reside on node k, k = 0, . . . p− 1

Scan can be implemented via a butterfly protocol similar to
Allreduce, except intermediate results must be stored while
doing recursive halving to be recombined when doing recursive
doubling

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 56 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Butterfly All-to-All

The size of the message stays the same at each level, so

Tall−to−all(s, P ) = = α log2(P ) + βs log2(P )/2

Its possible to do All-to-All in less bandwidth cost (as low as βs
by sending directly to targets) at the cost of more messages (as
high as αP if sending directly)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 57 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Butterfly All-to-All

The size of the message stays the same at each level, so

Tall−to−all(s, P ) = = α log2(P ) + βs log2(P )/2

Its possible to do All-to-All in less bandwidth cost (as low as βs
by sending directly to targets) at the cost of more messages (as
high as αP if sending directly)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 57 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Collectives on Mesh and Torus Networks
Butterfly protocols cannot be mapped to tori without dilation

bandwidth-efficient collectives can be achieved by instead
pipelining along spanning trees

if height of spanning tree is H (e.g. H ≈ 2
√
p for 2D mesh),

then cost of one-to-all and all-to-one collectives is

Tone-to-all(s, p,H) = Θ(αH + βs)

hypercube (general) cost is recovered with H = log2(p)

use of more than one disjoint spanning trees (rectangular
collectives) is beneficial if processors can send and receive
messages along multiple links concurrently
all-to-all cost generally depends on the bisection
bandwidth of the network (proportional to p(d−1)/d for
d-dimensional torus/mesh)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 58 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Collectives on Mesh and Torus Networks
Butterfly protocols cannot be mapped to tori without dilation

bandwidth-efficient collectives can be achieved by instead
pipelining along spanning trees
if height of spanning tree is H (e.g. H ≈ 2

√
p for 2D mesh),

then cost of one-to-all and all-to-one collectives is

Tone-to-all(s, p,H) = Θ(αH + βs)

hypercube (general) cost is recovered with H = log2(p)

use of more than one disjoint spanning trees (rectangular
collectives) is beneficial if processors can send and receive
messages along multiple links concurrently
all-to-all cost generally depends on the bisection
bandwidth of the network (proportional to p(d−1)/d for
d-dimensional torus/mesh)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 58 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Collectives on Mesh and Torus Networks
Butterfly protocols cannot be mapped to tori without dilation

bandwidth-efficient collectives can be achieved by instead
pipelining along spanning trees
if height of spanning tree is H (e.g. H ≈ 2

√
p for 2D mesh),

then cost of one-to-all and all-to-one collectives is

Tone-to-all(s, p,H) = Θ(αH + βs)

hypercube (general) cost is recovered with H = log2(p)

use of more than one disjoint spanning trees (rectangular
collectives) is beneficial if processors can send and receive
messages along multiple links concurrently
all-to-all cost generally depends on the bisection
bandwidth of the network (proportional to p(d−1)/d for
d-dimensional torus/mesh)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 58 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Collectives on Mesh and Torus Networks
Butterfly protocols cannot be mapped to tori without dilation

bandwidth-efficient collectives can be achieved by instead
pipelining along spanning trees
if height of spanning tree is H (e.g. H ≈ 2

√
p for 2D mesh),

then cost of one-to-all and all-to-one collectives is

Tone-to-all(s, p,H) = Θ(αH + βs)

hypercube (general) cost is recovered with H = log2(p)

use of more than one disjoint spanning trees (rectangular
collectives) is beneficial if processors can send and receive
messages along multiple links concurrently

all-to-all cost generally depends on the bisection
bandwidth of the network (proportional to p(d−1)/d for
d-dimensional torus/mesh)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 58 / 63



Motivation
Architectures

Networks
Communication

Message Routing
Communication Concurrency
Collective Communication

Collectives on Mesh and Torus Networks
Butterfly protocols cannot be mapped to tori without dilation

bandwidth-efficient collectives can be achieved by instead
pipelining along spanning trees
if height of spanning tree is H (e.g. H ≈ 2

√
p for 2D mesh),

then cost of one-to-all and all-to-one collectives is

Tone-to-all(s, p,H) = Θ(αH + βs)

hypercube (general) cost is recovered with H = log2(p)

use of more than one disjoint spanning trees (rectangular
collectives) is beneficial if processors can send and receive
messages along multiple links concurrently
all-to-all cost generally depends on the bisection
bandwidth of the network (proportional to p(d−1)/d for
d-dimensional torus/mesh)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 58 / 63



Motivation
Architectures

Networks
Communication

References – Moore’s Law

M. T. Heath, A tale of two laws, International Journal of
High Performance Computing Applications, 29(3):320-330,
2015

C. A. Mack, Fifty years of Moore’s law, IEEE Transactions
on Semiconductor Manufacturing, 24(2):202-207, 2011

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 59 / 63



Motivation
Architectures

Networks
Communication

References – Parallel Computing

G. S. Almasi and A. Gottlieb, Highly Parallel Computing, 2nd ed.,
Benjamin/Cummings, 1994

J. Dongarra, et al., eds., Sourcebook of Parallel Computing,
Morgan Kaufmann, 2003

A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to
Parallel Computing, 2nd. ed., Addison-Wesley, 2003

G. Hager and G. Wellein, Introduction to High Performance
Computing for Scientists and Engineers, Chapman & Hall, 2011

K. Hwang and Z. Xu, Scalable Parallel Computing, McGraw-Hill,
1998

A. Y. Zomaya, ed., Parallel and Distributed Computing
Handbook, McGraw-Hill, 1996

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 60 / 63



Motivation
Architectures

Networks
Communication

References – Parallel Architectures
W. C. Athas and C. L. Seitz, Multicomputers:
message-passing concurrent computers, IEEE Computer
21(8):9-24, 1988

D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer
Architecture, Morgan Kaufmann, 1998

M. Dubois, M. Annavaram, and P. Stenström, Parallel
Computer Organization and Design, Cambridge University
Press, 2012

R. Duncan, A survey of parallel computer architectures,
IEEE Computer 23(2):5-16, 1990

F. T. Leighton, Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, Hypercubes, Morgan
Kaufmann, 1992

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 61 / 63



Motivation
Architectures

Networks
Communication

References – Interconnection Networks
L. N. Bhuyan, Q. Yang, and D. P. Agarwal, Performance of
multiprocessor interconnection networks, IEEE Computer
22(2):25-37, 1989

W. J. Dally and B. P. Towles, Principles and Practices of
Interconnection Networks, Morgan Kaufmann, 2004

T. Y. Feng, A survey of interconnection networks, IEEE
Computer 14(12):12-27, 1981

I. D. Scherson and A. S. Youssef, eds., Interconnection Networks
for High-Performance Parallel Computers, IEEE Computer
Society Press, 1994

H. J. Siegel, Interconnection Networks for Large-Scale Parallel
Processing, D. C. Heath, 1985

C.-L. Wu and T.-Y. Feng, eds., Interconnection Networks for
Parallel and Distributed Processing, IEEE Computer Society
Press, 1984

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 62 / 63



Motivation
Architectures

Networks
Communication

References – Hypercubes
D. P. Bertsekas et al., Optimal communication algorithms for
hypercubes, J. Parallel Distrib. Comput. 11:263-275, 1991

S. L. Johnsson and C.-T. Ho, Optimum broadcasting and
personalized communication in hypercubes, IEEE Trans.
Comput. 38:1249-1268, 1989

O. McBryan and E. F. Van de Velde, Hypercube algorithms and
implementations, SIAM J. Sci. Stat. Comput. 8:s227-s287, 1987

S. Ranka, Y. Won, and S. Sahni, Programming a hypercube
multicomputer, IEEE Software 69-77, September 1988

Y. Saad and M. H. Schultz, Topological properties of
hypercubes, IEEE Trans. Comput. 37:867-872, 1988

Y. Saad and M. H. Schultz, Data communication in hypercubes,
J. Parallel Distrib. Comput. 6:115-135, 1989

C. L. Seitz, The cosmic cube, Comm. ACM 28:22-33, 1985

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 63 / 63


	Motivation
	Architectures
	Taxonomy
	Memory Organization

	Networks
	Network Topologies
	Graph Embedding
	Topology-Awareness in Algorithms

	Communication
	Message Routing
	Communication Concurrency
	Collective Communication

	

