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Parallel Efficiency

Efficiency : effectiveness of parallel algorithm relative to its
serial counterpart (more precise definition later)

Factors determining efficiency of parallel algorithm
Load balance : distribution of work among processors
Concurrency : processors working simultaneously
Overhead : additional work not present in corresponding
serial computation

Efficiency is maximized when load imbalance is minimized,
concurrency is maximized, and overhead is minimized
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Parallel Efficiency

(a) (b) (c) (d)

(a) perfect load balance and concurrency
(b) good initial concurrency but poor load balance
(c) good load balance but poor concurrency
(d) good load balance and concurrency but additional overhead
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Algorithm Attributes

Memory (M ) — overall memory footprint of the algorithm in
words
Work (Q) — total number of operations (e.g., flops)
computed by algorithm, including loads and stores
Depth (D) — longest sequence (chain) of dependent work
operations
Time (T ) — elapsed wall-clock time (e.g., secs) from
beginning to end of computation, expressed using

α — time to transfer a 0-byte message
β — bandwidth cost (per-word)
γ — time to perform one local operation (unit work)

Note that effective γ is generally between the time to compute a
floating point operation and the time to load/store a word,
depending on local computation performed
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Scaling of Algorithm Attributes

Subscript indicates number of processors used (e.g., T1 is
serial execution time, Qp is work using p processors, etc.)

We assume the input size, an attribute of the problem
rather than the algorithm, is M1

Most algorithms we study will be memory efficient,
meaning Mp = M1 in which case we drop subscript and
write just M

If serial algorithm is optimal then Qp ≥ Q1

Parallel work overhead : Op := Qp −Q1
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Basic Definitions

Amount of data often determines amount of computation,
in which case we may write Q(M) to indicate dependence
of computational complexity on the input size

For example, when multiplying two full matrices of order n,
M = Θ(n2) and Q = Θ(n3), so Q(M) = Θ(M3/2)

In numerical algorithms, every data item is typically used in
at least one operation, so we generally assume that work
Q grows at least linearly with the input size M
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Execution Time and Cost

Execution time ≥ (total work)/(overall processor speed)

Serial execution time: T1 = γQ1

Parallel execution time: Tp ≥ γQp/p

T1
Tp

p1

We can quantify Tp in terms of the critical path cost (sum of
costs of longest chain of dependent subtasks)

Cost := (L,W,F ) := (#messages,#words,#flops)

max(αL, βW, γF ) ≤ Tp ≤ αL+ βW + γF
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Efficiency and Speedup

Speedup :

Sp :=
serial time

parallel time
=
T1
Tp

Efficiency :

Ep :=
speedup

number of processors
=
Sp
p
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Example: Summation

Problem: compute sum of n numbers

Using p processors, each processor first sums n/p
numbers

Subtotals are then summed in tree-like fashion to obtain
grand total

+ +

+

n/p log p

p
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Example: Summation

Generally, α� β � γ, which we use to simplify analysis
Serial

M1 = n

Q1 ≈ n
T1 ≈ γn

Parallel
Mp = n

Qp ≈ n
Tp ≈ α log(p) + γn/p

Sp =
T1
Tp
≈ γn

α log p+ γn/p
=

p

1 + (α/γ)(p/n) log p

Ep =
Sp
p
≈ 1

1 + (α/γ)(p/n) log p

To achieve a good speed-up want α/γ to be small and n� p
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Parallel Scalability

Scalability : relative effectiveness with which parallel
algorithm can utilize additional processors

A criterion: algorithm is scalable if its efficiency is bounded
away from zero as number of processors grows without
bound, or equivalently, Ep = Θ(1) as p→∞

Algorithm scalability in this sense is impractical unless we
permit the input size to grow or bound the number of
processors used
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Parallel Scalability

Why use more processors?
solve given problem in less time
solve larger problem in same time
obtain sufficient memory to solve given (or larger) problem
solve ever larger problems regardless of execution time

Larger problems require more memory M1 and work Q1, e.g.,
finer resolution or larger domain in atmospheric simulation
more particles in molecular or galactic simulations
additional physical effects or greater detail in modeling
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Problem Scaling

The relative parallel scaling of different algorithms for a problem
can be studied by fixing

input size: constant M1

input size per processor: constant M1/p

The relative parallel scaling of different parallelizations of an
algorithm can be studied by fixing

amount of work per processor: constant Q1/p

efficiency: constant Ep
time: constant Tp

In all cases, we seek to quantify the relationship between
parameters of the problem/algorithm with respect to the
performance (time/efficiency)
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Strong Scaling

Strong scaling – solving the same problem with a growing
number of processors (constant input size)

Ideal strong scaling to p processors requires Tp = T1/p

When problem is not embarrassingly parallel, the best we
can hope for is Tp ≈ T1/p (i.e., Ep ≈ 1) up to some p

We say an algorithm is strongly scalable to ps processors if

Eps = Θ(1)

i.e., we seek to asymptotically characterize the function
ps(Q1) such that Eps(Q1)(Q1) = const for any Q1
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Example: Summation

For summation example,

Ep =
1

1 + (α/γ)(p/n) log p

The binary tree summation algorithm is therefore strongly
scalable to ps = Θ((γ/α)n/ log((γ/α)n)) processors

The term α/γ is constant for a given architecture, but can
range from 103 to 106 on various machines

Ignoring the dependence on this constant, the algorithm is
strongly scalable to ps = Θ(n/ log(n)) processors
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Basic Bounds on Strong Scaling

Since all processors have work to do only if Qp/p ≥ 1 for
any p the speed-up is bounded by

Sp ≤
Q1

Qp/p
≤ Q1

It is possible but rare to achieve Sp > M1 by using
additional memory Mp > M1, as otherwise some
processors have no data to work on
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Amdahl’s Law

Amdahl’s law : if a fraction 1/s of the computation is done
sequentially, the achievable speed-up is at most s
Refers to most expensive unparallelized section of code
Recall that the depth (D) of an algorithm is the longest
chain of dependent operations, i.e., this chain of operations
is inherently sequential

Amdahl’s law implies that

Sp =
T1
Tp
≤ Q1γ

Dγ
=
Q1

D

in words, speedup ≤ work / depth

The law provides a basic strong scaling limit ps = O(Q/D),
although communication cost often gives a tighter bound
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Weak Scaling

We refer to weak scaling as solving a problem with a fixed input
size per processor (M1/p = const)

In literature, weak scaling often refers to fixed work per
processor Q1/p, which is the same only if Q1(M1)=Θ(M1)

This scaling mode (M1/p = const) is natural when
parallelism is being used to solve larger problems

An algorithm is weakly scalable to pw processors if

Epw(pwM0) = Θ(1) ⇒ Tpw(pwM0)

T1(M0)
= Θ

(
Q1(pwM0)

pwQ1(M0)

)
meaning when increasing p with constant M1/p = M0, the
time grows roughly as the work per processor until p > pw

If Q1(M) is linear with M then the right side is Θ(1)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 38



Efficiency
Scalability

Example

Definition
Problem Scaling
Isoefficiency

Example: Summation

If considering the binary tree summation where M1 = n and
Q1(M1) = M1, weak scalability to pw processors requires

Tpw(pwn)

T1(n)
= Θ(1)

Tpw(pwn)

T1(n)
≈ α log(pw) + γn

γn
= 1 + (α/γ) log(pw)/n

Therefore, the algorithm is weakly scalable up to
pw = Θ(2nγ/α). We can conclude the following about the
scalability of the binary tree algorithm with respect to n :

it is strongly scalable to ps = Θ(n/ log(n)) processors
it is weakly scalable to pw = Θ(2n) processors

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 20 / 38



Efficiency
Scalability

Example

Definition
Problem Scaling
Isoefficiency

Fixed Execution Time

Maintaining fixed execution time is applicable when
computation must be completed within strict time limit
(e.g., real-time constraints) or when user wishes to
maintain given turn-around time

Since Tp ≥ Q1/p, Q1/p must be constant or decreasing

If Q1 grows faster than linearly with input size M1, then M1

must grow sublinearly with p to maintain constant Tp

To achieve perfect execution time scalability, all cost
components (L,W,F ) of the algorithm must stay constant
when Qp and p grow by the same factor

Easier to achieve than strong scaling, but harder than
weak scaling, where Qp can increase as p and M1 grow
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Fixed Accuracy

For some problems, desired accuracy of solution
determines amount of memory and work required

It is pointless to increase input size beyond that necessary
to achieve desired accuracy

Choice of resolution can affect serial work Q1 in subtle and
complex ways

conditioning of problem
convergence rate for iterative method
length of time step for time-dependent problem
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Fixed Efficiency

Previous scaling invariants determined rate of growth in
problem size, and then we analyzed resulting efficiency to
determine scalability

An alterntative approach is to use efficiency itself as
scaling invariant, i.e., we determine minimum growth rate
in work required to maintain constant efficiency

If this is possible, then algorithm is scalable, but it may still
be impractical if required growth rate in work is excessive,
leading to unacceptably large execution time

Thus, resulting growth rate in work determines degree to
which algorithm is scalable
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Isoefficiency Function

Isoefficiency function Q̃(p) is the amount of work required to
maintain given constant efficiency Ep

The scaling with input size associated with the
isoefficiency function, M̃(p) is defined by solving for M1 in
Q1(M1) = Q̃(p), i.e., M̃(p) = Q−11 (Q̃(p))

So more precisely, we want to find Q̃(p) = Q1(M̃(p)) so

Ep(M̃(p)) = const. for increasing p

In practice we are only concerned with the asymptotic
scaling of Q̃(p)
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Example: Isoefficiency

To get the isoefficiency function for the binary tree sum:
1 Find M̃(p) so Ep(M̃(p)) = Θ(1), which for the binary tree is

Ep(M̃(p)) ≈ 1

1 + (α/γ)(p/M̃(p)) log p
= Θ(1)

(α/γ)(p/M̃(p)) log p = Θ(1)

M̃(p) = Θ((α/γ)p log(p))

2 Determine Q̃(p) = Q1(M̃(p)), which for the binary tree is
just Q̃(p) = M̃(p)

So, for the binary tree, constant efficiency is maintained so long
as the work scales as Q1 = n = Θ(p log(p)).
However, in this scaling mode, the time Tp and memory
footprint per processor M̃(p)/p grow with log p
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Isoefficiency and Scalability

If we scale with constant efficiency, Tp = Θ(Q̃(p)/p) stays
constant if isoefficiency function is Q̃(p) = Θ(p), but
otherwise Tp grows with p

Growth rate of Tp or M̃(p)/p may not be acceptable

Isoefficiency function of Θ(p) is desirable, but for many
problems is not attainable

More achievable isoefficiency function is Θ(p log p) or
Θ(p
√
p), for which Tp grows relatively slowly, like log p or√

p, respectively, which may be acceptable

Algorithm with isoefficiency function Θ(p2) or higher has
poor scalability, since Tp grows at least linearly with p
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Example: Atmospheric Flow Model

Lets now analyze a simplified version of the previously
mentioned iterative method for the atmospheric flow model

3-D nx × ny × nz grid with nz � nx, ny

5-point stencil on x, y (horizontal) planes

implicit solves along z (vertical) fibers
Assuming we can solve for each z-fiber with Θ(nz) work,

sequential work is Q1 = Θ(nxnynz) per iteration

depth D = Θ(nz) per iteration assuming each implicit solve
is nonparallelizable
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1-D Agglomeration Strategy

Partition : assign one grid point per fine-grain task

Communicate : near-neighbor communication for 5-point
horizontal stencil, all-to-all vertical communication for
vertical solve

Agglomerate : First, consider 1-D agglomeration along one
horizontal dimension of 3-D grid, with subgrid of size
nx × (ny/p)× nz assigned to each coarse-grain task
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Cost Analysis: 3-D Grid, 1-D Agglomeration

We would like to find the costs (L,W,F ) that will model the
execution time as T ≈ αL+ βW + γF

Since the parallel algorithm subdivides the mesh in a load
balanced way and works in a fully concurrent manner,

F = Qp/p = Q1/p = Θ(nxnynz/p)

Each task exchanges 2nxnz grid points with each of its two
neighbors, so

W = 2nxnz and L = 2

Thus

Tp = α2 + β2nxnz + Θ(γnxnynz/p) = α2 + β2nxnz + T1/p
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Efficiency Analysis: 3-D Grid, 1-D Agglomeration

Efficiency :

Ep =
Sp
p

=
T1
pTp

=
T1

p(α2 + β2nxnz + T1/p)

=
1

1 + α2p/T1 + β2nxnzp/T1
=

1

1 + α
γ

2p
nxnynz

+ β
γ
2p
ny

Strong Scaling :
1-D agglomeration is strongly scalable (Eps = Θ(1)) to

ps = Θ(min[(γ/α)nxnynz, (γ/β)ny])

processors, for a given machine configuration ps = Θ(ny)

Amdahl’s law gives us a lower bound,
Sps ≤ Q1/D = Θ(nxnynz/nz) = Θ(nxny), so we observe
that 1-D agglomeration may not be optimal
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Weak Scalability: 3-D Grid, 1-D Agglomeration

We have Ep(nx, ny, nz) = 1/(1 + α
γ

2p
nxnynz

+ β
γ
2p
ny

)

Weak Scaling :
To reason about weak scaling, we need a notion of
increasing input size for this problem

can increase nx, ny, nz proportionally
can increase nx, ny while keeping nz constant

Assuming the latter, the weak scalability is characterized
by constant

Epw(p1/2w nx, p
1/2
w ny, nz) = 1/

(
1 +

α

γ

2

nxnynz
+
β

γ

2
√
pw

ny

)
As pw grows, the last term in the denominator grows, so
1-D agglomeration is weakly scalable to

pw = Θ(((γ/β)ny)
2) processors
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Isoefficiency: 3-D Grid, 1-D Agglomeration

Isoefficiency gives a relative growth rate ñ(p) = nx(p) = ny(p)
needed to maintain constant efficiency, i.e.,

Ep(ñ(p), ñ(p), nz) = 1/

(
1 +

α

γ

2p

ñ(p)2nz
+
β

γ

2p

ñ(p)

)
= Θ(1)

The last term in the denominator implies we need ñ(p) = Θ(p)

The isoefficiency function is then Q̃(p) = Θ(p2)

Memory footprint grows in the same fashion M̃(p) = Θ(p2)

Further, we would have Tp = Θ(pT1)

Both the memory footprint per processor and the execution
time must grow linearly with the number of processors to
maintain constant efficiency
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Cost Analysis: 3-D Grid, 2-D Agglomeration

Next consider 2-D agglomeration along both horizontal
dimensions of 3-D grid, with subgrid of size
(nx/
√
p)× (ny/

√
p)× nz assigned to each coarse-grain

task

For simplicity, we assume nx = ny = n, which is consistent
with the scaling of input size of interest

Each task exchanges a total of
2nxnz/

√
p+ 2nynz/

√
p = 4nnz/

√
p points with its four

neighbors, so

Tp = α4 + β4nnz/
√
p+ γn2nz/p
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Efficiency Analysis: 3-D Grid, 2-D Agglomeration

2-D agglomeration gives Ep(n, nz) = 1/
(

1 + α
γ

4p
n2nz

+ β
γ
4
√
p

n

)
Setting Eps(n, nz) = Θ(1) shows strong scalability to

ps = Θ(min[(γ/α)n2nz, (γ/β)2n2]) processors

Meaning 2-D agglomeration will strong scale until each
processor owns a constant-sized subgrid of vertical fibers
(where the constant depends on relative values of α, β, γ)
Observing Ep(n

√
p, nz) = Θ(1) for any p, shows the

algorithm is weakly scalable to an arbitrary number of
processors!
Since efficiency is maintained unconditionally when work
increases at the same rate as the number of processors,
the isoefficiency function is Q̃(p) = Θ(p)
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Network Topology Mapping: 3-D Grid

We consider mapping 1-D and 2-D agglomeration onto ideal
choices of mesh networks

1-D mesh, 1-D agglomeration
For 1-D agglomeration, we can map blocks of
agglomerated tasks onto each processor
Only neighboring processors communicate, so there is no
network contention
Any network that can embed a 1-D mesh is as good

2-D mesh, 2-D agglomeration
For 2-D agglomeration, we can map 2-D blocks of
agglomerated tasks onto each processor
Again only neighboring processors communicate, so there
is no network contention
Any network that can embed a 2-D mesh is as good
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Network Topology Mapping with Contention

The effect of network contention is evident when trying to map
2-D agglomeration onto a 1-D mesh

1 Map block-columns of agglomerated tasks to each
processor, effectively yielding 1-D agglomeration, and
avoiding network contention

2 Map a 2-D block of agglomerated tasks to each processor
One dimension can be mapped continuously, preserving
near-neighbor communication
The other dimension would correspond to communication
between processors

√
p hops away from each other,

yielding Θ(
√
p) slow-down due to network contention

Our execution time then becomes

Tp ≈ α2
√
p+ β2nnz + γn2nz/p

same bandwith cost as 1-D agglomeration, but more msgs
Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 36 / 38
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