Outline

1. BLAS
2. Inner Product
3. Outer Product
4. Matrix-Vector Product
5. Matrix-Matrix Product
Basic Linear Algebra Subprograms (BLAS) are building blocks for many other matrix computations.

BLAS encapsulate basic operations on vectors and matrices so they can be optimized for particular computer architecture while high-level routines that call them remain portable.

BLAS offer good opportunities for optimizing utilization of memory hierarchy.

Generic BLAS are available from netlib, and many computer vendors provide custom versions optimized for their particular systems.
Examples of BLAS

<table>
<thead>
<tr>
<th>Level</th>
<th>Work</th>
<th>Examples</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$O(n)$</td>
<td>daxpy, ddot, dnrm2</td>
<td>Scalar \times vector $+$ vector, Inner product, Euclidean vector norm</td>
</tr>
<tr>
<td>2</td>
<td>$O(n^2)$</td>
<td>dgemv, dtrsv, dger</td>
<td>Matrix-vector product, Triangular solve, Outer-product</td>
</tr>
<tr>
<td>3</td>
<td>$O(n^3)$</td>
<td>dgemm, dtrsm, dsyrk</td>
<td>Matrix-matrix product, Multiple triangular solves, Symmetric rank-k update</td>
</tr>
</tbody>
</table>

$\gamma_1 > \gamma_2 \gg \gamma_3$

- BLAS 1 effective sec/flop
- BLAS 2 effective sec/flop
- BLAS 3 effective sec/flop
Inner Product

- Inner product of two n-vectors \mathbf{x} and \mathbf{y} given by

$$ \mathbf{x}^T \mathbf{y} = \sum_{i=1}^{n} x_i y_i $$

- Computation of inner product requires n multiplications and $n - 1$ additions

$$ M_1 = \Theta(n), \quad Q_1 = \Theta(n), \quad T_1 = \Theta(\gamma n) $$

- Effectively as hard as scalar reduction, can be done via binary or binomial tree summation
Parallel Algorithm

Partition
- For \(i = 1, \ldots, n \), fine-grain task \(i \) stores \(x_i \) and \(y_i \), and computes their product \(x_i y_i \)

Communicate
- Sum reduction over \(n \) fine-grain tasks
Fine-Grain Parallel Algorithm

\[z_i = x_i y_i \] \{ local scalar product \}

reduce \(z_i \) across all tasks \(i = 1, \ldots, n \) \{ sum reduction \}
Agglomeration and Mapping

Agglomerate

- Combine \(k \) components of both \(x \) and \(y \) to form each coarse-grain task, which computes inner product of these subvectors.

- Communication becomes sum reduction over \(n/k \) coarse-grain tasks.

Map

- Assign \((n/k)/p \) coarse-grain tasks to each of \(p \) processors, for total of \(n/p \) components of \(x \) and \(y \) per processor.
Coarse-Grain Parallel Algorithm

\[z_i = \mathbf{x}_i^T \mathbf{y}_i \] \{ local inner product \}

reduce \(z_i \) across all processors \(i = 1, \ldots, p \) \{ sum reduction \}

[\mathbf{x}_i \) – subvector of \(\mathbf{x} \) assigned to processor \(i \)]
The parallel costs \((L_p, W_p, F_p)\) for the inner product are given by

- **Computational cost** \(F_p = \Theta(n/p)\) regardless of network
- The latency and bandwidth costs depend on network:
 - 1-D mesh: \(L_p, W_p = \Theta(p)\)
 - 2-D mesh: \(L_p, W_p = \Theta(\sqrt{p})\)
 - hypercube: \(L_p, W_p = \Theta(\log p)\)

For a hypercube or fully-connected network time is

\[
T_p = \alpha L_p + \beta W_p + \gamma F_p = \Theta(\alpha \log(p) + \gamma n/p)
\]

- Efficiency and scaling are the same as for binary tree sum
Outer Product

- Outer product of two \(n \)-vectors \(x \) and \(y \) is \(n \times n \) matrix \(Z = xy^T \) whose \((i, j)\) entry \(z_{ij} = x_i y_j \)

- For example,

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix}
^T
= \begin{bmatrix}
x_1 y_1 & x_1 y_2 & x_1 y_3 \\
x_2 y_1 & x_2 y_2 & x_2 y_3 \\
x_3 y_1 & x_3 y_2 & x_3 y_3
\end{bmatrix}
\]

- Computation of outer product requires \(n^2 \) multiplications,

\[
M_1 = \Theta(n^2), \quad Q_1 = \Theta(n^2), \quad T_1 = \Theta(\gamma n^2)
\]

(in this case, we should treat \(M_1 \) as output size or define the problem as in the BLAS: \(Z = Z_{\text{input}} + xy^T \))
Parallel Algorithm

Partition

- For \(i, j = 1, \ldots, n \), fine-grain task \((i, j)\) computes and stores \(z_{ij} = x_i y_j \), yielding 2-D array of \(n^2 \) fine-grain tasks.

- Assuming no replication of data, at most \(2n \) fine-grain tasks store components of \(x \) and \(y \), say either:
 - for some \(j \), task \((i, j)\) stores \(x_i \) and task \((j, i)\) stores \(y_i \), or
 - task \((i, i)\) stores both \(x_i \) and \(y_i \), \(i = 1, \ldots, n \).

Communicate

- For \(i = 1, \ldots, n \), task that stores \(x_i \) broadcasts it to all other tasks in \(i \)th task row.

- For \(j = 1, \ldots, n \), task that stores \(y_j \) broadcasts it to all other tasks in \(j \)th task column.
Fine-Grain Tasks and Communication
Fine-Grain Parallel Algorithm

broadcast x_i to tasks $(i, k), k = 1, \ldots, n$ \{ horizontal broadcast \}

broadcast y_j to tasks $(k, j), k = 1, \ldots, n$ \{ vertical broadcast \}

$z_{ij} = x_i y_j$ \{ local scalar product \}
Agglomeration

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- **2-D**: Combine $k \times k$ subarray of fine-grain tasks to form each coarse-grain task, yielding $(n/k)^2$ coarse-grain tasks
- **1-D column**: Combine n fine-grain tasks in each column into coarse-grain task, yielding n coarse-grain tasks
- **1-D row**: Combine n fine-grain tasks in each row into coarse-grain task, yielding n coarse-grain tasks
2-D Agglomeration

- Each task that stores portion of \(x \) must broadcast its subvector to all other tasks in its task row
- Each task that stores portion of \(y \) must broadcast its subvector to all other tasks in its task column
2-D Agglomeration

\[
\begin{align*}
\mathbf{x}_1\mathbf{y}_1 & \rightarrow \mathbf{x}_1\mathbf{y}_2 \\
\mathbf{x}_2\mathbf{y}_1 & \rightarrow \mathbf{x}_2\mathbf{y}_2 \\
\mathbf{x}_3\mathbf{y}_1 & \rightarrow \mathbf{x}_3\mathbf{y}_2 \\
\mathbf{x}_4\mathbf{y}_1 & \rightarrow \mathbf{x}_4\mathbf{y}_2 \\
\mathbf{x}_5\mathbf{y}_1 & \rightarrow \mathbf{x}_5\mathbf{y}_2 \\
\mathbf{x}_6\mathbf{y}_1 & \rightarrow \mathbf{x}_6\mathbf{y}_2
\end{align*}
\]
1-D Agglomeration

- If either x or y stored in one task, then broadcast required to communicate needed values to all other tasks.
- If either x or y distributed across tasks, then multinode broadcast required to communicate needed values to other tasks.
1-D Column Agglomeration

\[
\begin{array}{ccccccc}
\dot{x}_1 y_1 & x_1 y_2 & x_1 y_3 & x_1 y_4 & x_1 y_5 & x_1 y_6 \\
\dot{x}_2 y_1 & \dot{x}_2 y_2 & \dot{x}_2 y_3 & \dot{x}_2 y_4 & \dot{x}_2 y_5 & \dot{x}_2 y_6 \\
\dot{x}_3 y_1 & \dot{x}_3 y_2 & \dot{x}_3 y_3 & \dot{x}_3 y_4 & \dot{x}_3 y_5 & \dot{x}_3 y_6 \\
\dot{x}_4 y_1 & \dot{x}_4 y_2 & \dot{x}_4 y_3 & \dot{x}_4 y_4 & \dot{x}_4 y_5 & \dot{x}_4 y_6 \\
\dot{x}_5 y_1 & \dot{x}_5 y_2 & \dot{x}_5 y_3 & \dot{x}_5 y_4 & \dot{x}_5 y_5 & \dot{x}_5 y_6 \\
\dot{x}_6 y_1 & \dot{x}_6 y_2 & \dot{x}_6 y_3 & \dot{x}_6 y_4 & \dot{x}_6 y_5 & \dot{x}_6 y_6 \\
\end{array}
\]
1-D Row Agglomeration
Mapping

Map

- **2-D:** Assign \((n/k)^2/p\) coarse-grain tasks to each of \(p\) processors using any desired mapping in each dimension, treating target network as 2-D mesh.

- **1-D:** Assign \(n/p\) coarse-grain tasks to each of \(p\) processors using any desired mapping, treating target network as 1-D mesh.
2-D Agglomeration with Block Mapping
1-D Column Agglomeration with Block Mapping
1-D Row Agglomeration with Block Mapping
Coarse-Grain Parallel Algorithm

broadcast $\mathbf{x}[i]$ to ith process row \{ horizontal broadcast \}

broadcast $\mathbf{y}[j]$ to jth process column \{ vertical broadcast \}

$Z[i][j] = x[i] y^T[j]$ \{ local outer product \}

$[Z[i][j]]$ means submatrix of Z assigned to process (i, j) by mapping
Performance

The parallel costs $\left(L_p, W_p, F_p\right)$ for the outer product are

- Computational cost $F_p = \Theta(n^2/p)$ regardless of network
- The latency and bandwidth costs can be derived from the cost of broadcast/allgather
 - 1-D agglomeration: $L_p = \Theta(\log p), W_p = \Theta(n)$
 - 2-D agglomeration: $L_p = \Theta(\log p), W_p = \Theta(n/\sqrt{p})$
- For 1-D agglomeration, execution time is
 \[T_{1-D}^p = T_{\text{allgather}}^p(n) + \Theta(\gamma n^2/p) = \Theta(\alpha \log(p) + \beta n + \gamma n^2/p) \]
- For 2-D agglomeration, execution time is
 \[T_{2-D}^p = 2T_{\text{bcast}}^{\sqrt{p}}(n/\sqrt{p}) + \Theta(\gamma n^2/p) = \Theta(\alpha \log(p) + \beta n/\sqrt{p} + \gamma n^2/p) \]
1-D agglomeration is strongly scalable to

\[p_s = \Theta(\min((\gamma/\alpha)n^2/\log((\gamma/\alpha)n^2), (\gamma/\beta)n)) \]

processors, since

\[E_{p_s}^{1-D} = \Theta(1/(1 + (\alpha/\gamma) \log(p_s)p_s/n^2 + (\beta/\gamma)p_s/n)) \]

2-D agglomeration is strongly scalable to

\[p_s = \Theta(\min((\gamma/\alpha)n^2/\log((\gamma/\alpha)n^2), (\gamma/\beta)^2n^2)) \]

processors, since

\[E_{p_s}^{2-D} = \Theta(1/(1 + (\alpha/\gamma) \log(p_s)p_s/n^2 + (\beta/\gamma)\sqrt{p_s}/n)) \]
1-D agglomeration is weakly scalable to

\[p_w = \Theta\left(\min\left(2^{(\gamma/\alpha)n^2}, (\gamma/\beta)^2n^2\right)\right) \]

processors, since

\[E_{p_w}^{1-D}(\sqrt{p_w}n) = \Theta\left(1/\left(1 + (\alpha/\gamma) \log(p_w)/n^2 + (\beta/\gamma)\sqrt{p_w}/n\right)\right) \]

2-D agglomeration is weakly scalable to

\[p_w = \Theta\left(2^{(\gamma/\alpha)n^2}\right) \]

processors, since

\[E_{p_w}^{2-D}(\sqrt{p_w}n) = \Theta\left(1/\left(1 + (\alpha/\gamma) \log(p_w)/n^2 + (\beta/\gamma)/n\right)\right) \]
Memory Requirements

- The memory requirements are dominated by storing Z, which in practice means the outer-product is a poor primitive (local flop-to-byte ratio of 1).
- If possible, Z should be operated on as it is computed, e.g. if we really need
 \[v_i = \sum_j f(x_i y_j) \quad \text{for some scalar function } f \]
- If Z does not need to be stored, vector storage dominates.
- Without further modification, 1-D algorithm requires
 \[M_p = \Theta(np) \quad \text{overall storage for vector} \]
- Without further modification, 2-D algorithm requires
 \[M_p = \Theta(n\sqrt{p}) \quad \text{overall storage for vector} \]
Matrix-Vector Product

- Consider matrix-vector product

\[y = Ax \]

where \(A \) is \(n \times n \) matrix and \(x \) and \(y \) are \(n \)-vectors

- Components of vector \(y \) are given by inner products:

\[y_i = \sum_{j=1}^{n} a_{ij} x_j, \quad i = 1, \ldots, n \]

- The sequential memory, work, and time are

\[M_1 = \Theta(n^2), \quad Q_1 = \Theta(n^2), \quad T_1 = \Theta(\gamma n^2) \]
Parallel Algorithm

Partition

- For \(i, j = 1, \ldots, n \), fine-grain task \((i, j)\) stores \(a_{ij}\) and computes \(a_{ij}x_j\), yielding 2-D array of \(n^2\) fine-grain tasks.
- Assuming no replication of data, at most \(2n\) fine-grain tasks store components of \(x\) and \(y\), say either:
 - for some \(j\), task \((j, i)\) stores \(x_i\) and task \((i, j)\) stores \(y_i\), or
 - task \((i, i)\) stores both \(x_i\) and \(y_i\), \(i = 1, \ldots, n\).

Communicate

- For \(j = 1, \ldots, n\), task that stores \(x_j\) broadcasts it to all other tasks in \(j\)th task column.
- For \(i = 1, \ldots, n\), sum reduction over \(i\)th task row gives \(y_i\).
Fine-Grain Tasks and Communication
Fine-Grain Parallel Algorithm

broadcast x_j to tasks $(k, j), \ k = 1, \ldots, n$ \hspace{1cm} \{ vertical broadcast \}

$y_i = a_{ij}x_j$ \hspace{1cm} \{ local scalar product \}

reduce y_i across tasks $(i, k), \ k = 1, \ldots, n$ \hspace{1cm} \{ horizontal sum reduction \}
Agglomeration

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- **2-D**: Combine $k \times k$ subarray of fine-grain tasks to form each coarse-grain task, yielding $(n/k)^2$ coarse-grain tasks
- **1-D column**: Combine n fine-grain tasks in each column into coarse-grain task, yielding n coarse-grain tasks
- **1-D row**: Combine n fine-grain tasks in each row into coarse-grain task, yielding n coarse-grain tasks
2-D Agglomeration

- Subvector of \(x \) broadcast along each task column
- Each task computes local matrix-vector product of submatrix of \(A \) with subvector of \(x \)
- Sum reduction along each task row produces subvector of result \(y \)
2-D Agglomeration

\[
\begin{align*}
& a_{11}x_1 \\ & a_{12}x_2 \\ & y_1 \\
& a_{21}x_1 \\ & a_{22}x_2 \\ & y_2 \\
& a_{31}x_1 \\ & a_{32}x_2 \\ & y_3 \\
& a_{41}x_1 \\ & a_{42}x_2 \\ & y_4 \\
& a_{51}x_1 \\ & a_{52}x_2 \\ & y_5 \\
& a_{61}x_1 \\ & a_{62}x_2 \\ & y_6
\end{align*}
\]
1-D Agglomeration

1-D column agglomeration

- Each task computes product of its component of \(x \) times its column of matrix, with no communication required
- Sum reduction across tasks then produces \(y \)

1-D row agglomeration

- If \(x \) stored in one task, then broadcast required to communicate needed values to all other tasks
- If \(x \) distributed across tasks, then multinode broadcast required to communicate needed values to other tasks
- Each task computes inner product of its row of \(A \) with entire vector \(x \) to produce its component of \(y \)
1-D Column Agglomeration

<table>
<thead>
<tr>
<th>Column</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a_{11}x_1 + y_1$</td>
</tr>
<tr>
<td>2</td>
<td>$a_{21}x_1 + y_2$</td>
</tr>
<tr>
<td>3</td>
<td>$a_{31}x_1 + y_3$</td>
</tr>
<tr>
<td>4</td>
<td>$a_{41}x_1 + y_4$</td>
</tr>
<tr>
<td>5</td>
<td>$a_{51}x_1 + y_5$</td>
</tr>
<tr>
<td>6</td>
<td>$a_{61}x_1 + y_6$</td>
</tr>
<tr>
<td>2</td>
<td>$a_{12}x_2$</td>
</tr>
<tr>
<td>3</td>
<td>$a_{22}x_2 + y_2$</td>
</tr>
<tr>
<td>4</td>
<td>$a_{32}x_2 + y_3$</td>
</tr>
<tr>
<td>5</td>
<td>$a_{42}x_2 + y_4$</td>
</tr>
<tr>
<td>6</td>
<td>$a_{52}x_2 + y_5$</td>
</tr>
<tr>
<td>3</td>
<td>$a_{13}x_3$</td>
</tr>
<tr>
<td>4</td>
<td>$a_{23}x_3 + y_3$</td>
</tr>
<tr>
<td>5</td>
<td>$a_{33}x_3 + y_4$</td>
</tr>
<tr>
<td>6</td>
<td>$a_{43}x_3 + y_5$</td>
</tr>
<tr>
<td>4</td>
<td>$a_{14}x_4$</td>
</tr>
<tr>
<td>5</td>
<td>$a_{24}x_4 + y_4$</td>
</tr>
<tr>
<td>6</td>
<td>$a_{34}x_4 + y_5$</td>
</tr>
<tr>
<td>5</td>
<td>$a_{15}x_5$</td>
</tr>
<tr>
<td>6</td>
<td>$a_{25}x_5 + y_5$</td>
</tr>
<tr>
<td>6</td>
<td>$a_{35}x_5 + y_6$</td>
</tr>
<tr>
<td>5</td>
<td>$a_{16}x_6$</td>
</tr>
<tr>
<td>6</td>
<td>$a_{26}x_6 + y_6$</td>
</tr>
</tbody>
</table>

Diagram showing the connections between columns and the equations for each column.
1-D Row Agglomeration

\[a_{11}x_1 \quad a_{12}x_2 \quad a_{13}x_3 \quad a_{14}x_4 \quad a_{15}x_5 \quad a_{16}x_6 \]

\[a_{21}x_1 \quad a_{22}x_2 \quad a_{23}x_3 \quad a_{24}x_4 \quad a_{25}x_5 \quad a_{26}x_6 \]

\[a_{31}x_1 \quad a_{32}x_2 \quad a_{33}x_3 \quad a_{34}x_4 \quad a_{35}x_5 \quad a_{36}x_6 \]

\[a_{41}x_1 \quad a_{42}x_2 \quad a_{43}x_3 \quad a_{44}x_4 \quad a_{45}x_5 \quad a_{46}x_6 \]

\[a_{51}x_1 \quad a_{52}x_2 \quad a_{53}x_3 \quad a_{54}x_4 \quad a_{55}x_5 \quad a_{56}x_6 \]

\[a_{61}x_1 \quad a_{62}x_2 \quad a_{63}x_3 \quad a_{64}x_4 \quad a_{65}x_5 \quad a_{66}x_6 \]
1-D Agglomeration

Column and row algorithms are dual to each other

- Column algorithm begins with communication-free local vector scaling (\texttt{daxpy}) computations combined across processors by a reduction
- Row algorithm begins with broadcast followed by communication-free local inner-product (\texttt{ddot}) computations
Map

- 2-D: Assign \((\frac{n}{k})^2 / p\) coarse-grain tasks to each of \(p\) processes using any desired mapping in each dimension, treating target network as 2-D mesh

- 1-D: Assign \(\frac{n}{p}\) coarse-grain tasks to each of \(p\) processes using any desired mapping, treating target network as 1-D mesh
2-D Agglomeration with Block Mapping
1-D Column Agglomeration with Block Mapping
1-D Row Agglomeration with Block Mapping
Coarse-Grain Parallel Algorithm

broadcast $\mathbf{x}[j]$ to jth process column

$y[i] = A[i][j] \mathbf{x}[j]$

reduce $y[i]$ across ith process row

\{ vertical broadcast \}
\{ local matrix-vector product \}
\{ horizontal sum reduction \}
Performance

The parallel costs \((L_p, W_p, F_p)\) for the matrix-vector product are:

- Computational cost \(F_p = \Theta(n^2/p)\) regardless of network.
- Communication costs can be derived from the cost of collectives:
 - 1-D agglomeration: \(L_p = \Theta(\log p), W_p = \Theta(n)\)
 - 2-D agglomeration: \(L_p = \Theta(\log p), W_p = \Theta(n/\sqrt{p})\)

For 1-D row agglomeration, perform allgather,

\[
T_p^{1-D} = T_p^{\text{allgather}}(n) + \Theta(\gamma n^2/p) = \Theta(\alpha \log(p) + \beta n + \gamma n^2/p)
\]

For 2-D agglomeration, perform broadcast and reduction,

\[
T_p^{2-D} = T_p^{\text{bcast}}(n/\sqrt{p}) + T_p^{\text{reduce}}(n/\sqrt{p}) + \Theta(\gamma n^2/p)
= \Theta(\alpha \log(p) + \beta n/\sqrt{p} + \gamma n^2/p)
\]
Matrix-Matrix Product

- Consider matrix-matrix product
 \[C = AB \]
 where \(A, B, \) and result \(C \) are \(n \times n \) matrices
- Entries of matrix \(C \) are given by
 \[c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \quad i, j = 1, \ldots, n \]
- Each of \(n^2 \) entries of \(C \) requires \(n \) multiply-add operations, so model serial time as
 \[T_1 = \gamma n^3 \]
Matrix-Matrix Product

- Matrix-matrix product can be viewed as
 - n^2 inner products, or
 - sum of n outer products, or
 - n matrix-vector products

and each viewpoint yields different algorithm

- One way to derive parallel algorithms for matrix-matrix product is to apply parallel algorithms already developed for inner product, outer product, or matrix-vector product

- However, considering the problem as a whole yields the best algorithms
Parallel Algorithm

Partition

- For $i, j, k = 1, \ldots, n$, fine-grain task (i, j, k) computes product $a_{ik} b_{kj}$, yielding 3-D array of n^3 fine-grain tasks

- Assuming no replication of data, at most $3n^2$ fine-grain tasks store entries of A, B, or C, say task (i, j, j) stores a_{ij}, task (i, j, i) stores b_{ij}, and task (i, j, k) stores c_{ij} for $i, j = 1, \ldots, n$ and some fixed k

- We refer to subsets of tasks along i, j, and k dimensions as rows, columns, and layers, respectively, so kth column of A and kth row of B are stored in kth layer of tasks
Parallel Algorithm

Communicate

- Broadcast entries of \(j \)th column of \(A \) horizontally along each task row in \(j \)th layer.
- Broadcast entries of \(i \)th row of \(B \) vertically along each task column in \(i \)th layer.
- For \(i, j = 1, \ldots, n \), result \(c_{ij} \) is given by sum reduction over tasks \((i, j, k), k = 1, \ldots, n \)
Fine-Grain Algorithm

broadcast a_{ik} to tasks (i, q, k), $q = 1, \ldots, n$ \{ horizontal broadcast \}

broadcast b_{kj} to tasks (q, j, k), $q = 1, \ldots, n$ \{ vertical broadcast \}

$c_{ij} = a_{ik} b_{kj}$ \{ local scalar product \}

reduce c_{ij} across tasks (i, j, q), $q = 1, \ldots, n$ \{ lateral sum reduction \}
Agglomeration

Agglomerate

With $n \times n \times n$ array of fine-grain tasks, natural strategies are

- **3-D**: Combine $q \times q \times q$ subarray of fine-grain tasks
- **2-D**: Combine $q \times q \times n$ subarray of fine-grain tasks, eliminating sum reductions
- **1-D column**: Combine $n \times 1 \times n$ subarray of fine-grain tasks, eliminating vertical broadcasts and sum reductions
- **1-D row**: Combine $1 \times n \times n$ subarray of fine-grain tasks, eliminating horizontal broadcasts and sum reductions
Map

Corresponding mapping strategies are

- **3-D**: Assign \((n/q)^3/p\) coarse-grain tasks to each of \(p\) processors using any desired mapping in each dimension, treating target network as 3-D mesh.

- **2-D**: Assign \((n/q)^2/p\) coarse-grain tasks to each of \(p\) processors using any desired mapping in each dimension, treating target network as 2-D mesh.

- **1-D**: Assign \(n/p\) coarse-grain tasks to each of \(p\) processors using any desired mapping, treating target network as 1-D mesh.
Agglomeration with Block Mapping

1-D row

1-D col

2-D

3-D
Coarse-Grain 3-D Parallel Algorithm

\[
\begin{align*}
\text{broadcast } A[i][k] \text{ to } i\text{th processor row} & \quad \{ \text{horizontal broadcast} \} \\
\text{broadcast } B[k][j] \text{ to } j\text{th processor column} & \quad \{ \text{vertical broadcast} \} \\
C[i][j] &= A[i][k] \times B[k][j] & \quad \{ \text{local matrix product} \} \\
\text{reduce } C[i][j] \text{ across processor layers} & \quad \{ \text{lateral sum reduction} \}
\end{align*}
\]
Agglomeration with Block Mapping

2-D:

\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix} =
\begin{bmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{bmatrix}
\]

1-D column:

\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix} =
\begin{bmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{bmatrix}
\]

1-D row:

\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix} =
\begin{bmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{bmatrix}
\]
Coarse-Grain 2-D Parallel Algorithm

\[
\text{allgather } A[i][j] \text{ in } i\text{th processor row} \quad \{ \text{horizontal broadcast} \} \\
\text{allgather } B[i][j] \text{ in } j\text{th processor column} \quad \{ \text{vertical broadcast} \} \\
C[i][j] = 0 \\
\text{for } k = 1, \ldots, \sqrt{p} \\
C[i][j] = C[i][j] + A[i][k] B[k][j] \quad \{ \text{sum local products} \} \\
\text{end}
\]
SUMMA Algorithm

- Algorithm just described requires excessive memory, since each process accumulates \sqrt{p} blocks of both A and B

- One way to reduce memory requirements is to
 - broadcast blocks of A successively across processor rows
 - broadcast blocks of B successively across processor cols

$$C[i][j] = 0$$

for $k = 1, \ldots, \sqrt{p}$

- broadcast $A[i][k]$ in ith processor row \{ horizontal broadcast \}
- broadcast $B[k][j]$ in jth processor column \{ vertical broadcast \}

$$C[i][j] = C[i][j] + A[i][k]B[k][j]$$

end
SUMMA Algorithm
Another approach, due to Cannon (1969), is to circulate blocks of B vertically and blocks of A horizontally in ring fashion.

Blocks of both matrices must be initially aligned using circular shifts so that correct blocks meet as needed.

Requires less memory than SUMMA and replaces line broadcasts with shifts, lowering the number of messages.
Cannon Algorithm

Starting position

Stagger left

Stagger up
$B[i,j] := B[i+1,j]$

Shift right

Shift down
$B[i,j] := B[i-1,j]$
Fox Algorithm

- It is possible to mix techniques from SUMMA and Cannon’s algorithm:
 - circulate blocks of B in ring fashion vertically along processor columns step by step so that each block of B comes in conjunction with appropriate block of A broadcast at that same step

- This algorithm is due to Fox et al.

- Shifts, especially in Cannon’s algorithm, are harder to generalize to nonsquare processor grids than collectives in algorithms like SUMMA
Execution Time for 3-D Agglomeration

- For 3-D agglomeration, computing each of p blocks $C_{[i][j]}$ requires matrix-matrix product of two $(n/\sqrt[3]{p}) \times (n/\sqrt[3]{p})$ blocks, so

\[F_p = (n/\sqrt[3]{p})^3 = n^3/p \]

- On 3-D mesh, each broadcast or reduction takes time

\[T_{p^{1/3}}^{\text{bcast}} ((n/p^{1/3})^2) = O(\alpha \log p + \beta n^2/p^{2/3}) \]

- Total time is therefore

\[T_p = O(\alpha \log p + \beta n^2/p^{2/3} + \gamma n^3/p) \]

- However, overall memory footprint is

\[M_p = \Theta(p(n/p^{1/3})^2) = \Theta(p^{1/3}n^2) \]
For 2-D agglomeration (SUMMA), computation of each block $C_{i,j}$ requires \sqrt{p} matrix-matrix products of $(n/\sqrt{p}) \times (n/\sqrt{p})$ blocks, so

$$F_p = \sqrt{p} (n/\sqrt{p})^3 = n^3/p$$

For broadcast among rows and columns of processor grid, communication time is

$$2\sqrt{p} T_{\text{bcast}}^{\sqrt{p}} (n^2/p) = \Theta(\alpha \sqrt{p} \log(p) + \beta n^2 / \sqrt{p})$$

Total time is therefore

$$T_p = O(\alpha \sqrt{p} \log(p) + \beta n^2 / \sqrt{p} + \gamma n^3 / p)$$

The algorithm is memory-efficient, $M_p = \Theta(n^2)$
Rectangular Matrix Multiplication

If C is $m \times n$, A is $m \times k$, and B is $k \times n$, choosing a 3D grid that optimizes volume-to-surface-area ratio yields bandwidth cost...

$$W_p(m, n, k) = O\left(\min_{p_1 p_2 p_3 = p} \left[\frac{mk}{p_1 p_2} + \frac{kn}{p_1 p_3} + \frac{mn}{p_2 p_3} \right] \right)$$
Communication vs. Memory Tradeoff

- Communication cost for 2-D algorithms for matrix-matrix product is optimal, assuming no replication of storage.
- If explicit replication of storage is allowed, then lower communication volume is possible via 3-D algorithm.
- Generally, we assign \(\frac{n}{p_1} \times \frac{n}{p_2} \times \frac{n}{p_3} \) computation subvolume to each processor.
- The largest face of the subvolume gives communication cost, the smallest face gives minimal memory usage.
 - can keep smallest face local while successively computing slices of subvolume.
Leveraging Additional Memory in Matrix Multiplication

- Provided \bar{M} total available memory, 2-D and 3-D algorithms achieve bandwidth cost

$$W_p(n, \bar{M}) = \begin{cases} \infty & : \bar{M} < n^2 \\ n^2/\sqrt{p} & : \bar{M} = \Theta(n^2) \\ n^2/p^{2/3} & : \bar{M} = \Theta(n^2 p^{1/3}) \end{cases}$$

- For general \bar{M}, possible to pick processor grid to achieve

$$W_p(n, \bar{M}) = O(n^3/(\sqrt{p}\bar{M}^{1/2}) + n^2/p^{2/3})$$

- and an overall execution time of

$$T_p(n, \bar{M}) = O(\alpha(\log p + n^3\sqrt{p}/\bar{M}^{3/2}) + \beta W_p(n, \bar{M}) + \gamma n^3/p)$$
References

References

References

