Parallel Numerical Algorithms Chapter 3 - Dense Linear Systems Section 3.3 - Triangular Linear Systems

Michael T. Heath and Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Outline

(9) Triangular Systems
(2) 1D Algorithms
(3) Wavefront Algorithms
(4) 2 D Algorithms and TRSM

Triangular Matrices

- Matrix \boldsymbol{L} is lower triangular if all entries above its main diagonal are zero, $\ell_{i j}=0$ for $i<j$
- Matrix \boldsymbol{U} is upper triangular if all entries below its main diagonal are zero, $u_{i j}=0$ for $i>j$
- Triangular matrices are important because triangular linear systems are easily solved by successive substitution
- Most direct methods for solving general linear systems first reduce matrix to triangular form and then solve resulting equivalent triangular system(s)
- Triangular systems are also frequently used as preconditioners in iterative methods for solving linear systems

Forward Substitution

For lower triangular system $\boldsymbol{L} \boldsymbol{x}=\boldsymbol{b}$, solution can be obtained by forward substitution

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=1, \ldots, n
$$

for $j=1$ to n
$x_{j}=b_{j} / \ell_{j j}$
\{ compute soln component \}
for $i=j+1$ to n $b_{i}=b_{i}-\ell_{i j} x_{j}$
end
end

Back Substitution

For upper triangular system $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{b}$, solution can be obtained by back substitution

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n, \ldots, 1
$$

for $j=n$ to 1
$x_{j}=b_{j} / u_{j j}$
for $i=1$ to $j-1$
$b_{i}=b_{i}-u_{i j} x_{j}$
end
end

Solving Triangular Systems

- Forward or back substitution requires about $n^{2} / 2$ multiplications and similar number of additions, so serial exeuction time is

$$
T_{1}=\Theta\left(\gamma n^{2}\right)
$$

- We will consider only lower triangular systems, as analogous algorithms for upper triangular systems are similar
- The depth of triangular solve is $D=\Theta(n)$, so the maximum speed-up is $T_{1} / D=\Theta(n)$

Loop Orderings for Forward Substitution

for $j=1$ to n
$x_{j}=b_{j} / \ell_{j j}$
for $i=j+1$ to n $b_{i}=b_{i}-\ell_{i j} x_{j}$
end
end

- right-looking
- immediate-update
- data-driven
- fan-out
for $i=1$ to n
for $j=1$ to $i-1$
$b_{i}=b_{i}-\ell_{i j} x_{j}$
end
$x_{i}=b_{i} / \ell_{i i}$
end
- left-looking
- delayed-update
- demand-driven
- fan-in

Parallel Algorithm

Partition

- For $i=2, \ldots, n, j=1, \ldots, i-1$, fine-grain task (i, j) stores $\ell_{i j}$ and computes product $\ell_{i j} x_{j}$
- For $i=1, \ldots, n$, fine-grain task (i, i) stores $\ell_{i i}$ and b_{i}, collects sum $t_{i}=\sum_{j=1}^{i-1} \ell_{i j} x_{j}$, and computes and stores $x_{i}=\left(b_{i}-t_{i}\right) / \ell_{i i}$
yielding 2-D triangular array of $n(n+1) / 2$ fine-grain tasks

Communicate

- For $j=1, \ldots, n-1$, task (j, j) broadcasts x_{j} to tasks (i, j), $i=j+1, \ldots, n$
- For $i=2, \ldots, n$, sum reduction of products $\ell_{i j} x_{j}$ across tasks $(i, j), j=1, \ldots, i$, with task (i, i) as root

2D Algorithms and TRSM

Fine-Grain Tasks and Communication

Fine-Grain Parallel Algorithm

if $i=j$ then
$t=0$
if $i>1$ then
recv sum reduction of t across tasks $(i, k), k=1, \ldots, i$
end
$x_{i}=\left(b_{i}-t\right) / \ell_{i i}$
broadcast x_{i} to tasks $(k, i), k=i+1, \ldots, n$
else
recv broadcast of x_{j} from task (j, j)
$t=\ell_{i j} x_{j}$
reduce t across tasks $(i, k), k=1, \ldots, i$
end

Fine-Grain Algorithm

- If communication is suitably pipelined, then fine-grain algorithm can achieve $\Theta(n)$ execution time, but uses $\Theta\left(n^{2}\right)$ tasks, so it is inefficient
- If there are multiple right-hand-side vectors b, then successive solutions can be pipelined to increase overall efficiency
- Agglomerating fine-grain tasks yields more reasonable number of tasks and improves ratio of computation to communication

Agglomeration

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- 2-D: combine $k \times k$ subarray of fine-grain tasks to form each coarse-grain task, yielding $(n / k)^{2}$ coarse-grain tasks
- 1-D column: combine n fine-grain tasks in each column into coarse-grain task, yielding n coarse-grain tasks
- 1-D row: combine n fine-grain tasks in each row into coarse-grain task, yielding n coarse-grain tasks

2D Algorithms and TRSM

2-D Agglomeration

1-D Column Agglomeration

1-D Row Agglomeration

Mapping

Map

- 2-D: assign $(n / k)^{2} / p$ coarse-grain tasks to each of p processors using any desired mapping in each dimension, treating target network as 2-D mesh
- 1-D: assign n / p coarse-grain tasks to each of p processors using any desired mapping, treating target network as 1-D mesh

1-D Column Agglomeration, Block Mapping

1-D Column Agglomeration, Cyclic Mapping

(t)

1-D Aggregation with Block-Cyclic Mapping Cost

- With block-size b, 1D partitioning
- requires n / b broadcasts of b items for row-agglomeration
- requires n / b reductions of b items for column-agglomeration
- in both cases $O\left(n b / p+b^{2}\right)$ work must be done to solve for b entries of \boldsymbol{x} between each of the n / b collectives
- The overall execution time is

$$
T_{p}(n, b)=\Theta\left(\alpha(n / b) \log (p)+\beta n+\gamma\left(n^{2} / p+n b\right)\right)
$$

- Selecting block-size $b=n / p$, parallel execution time is

$$
T_{p}(n, n / p)=\Theta\left(\alpha p \log (p)+\beta n+\gamma n^{2} / p\right)
$$

1-D Block-Cyclic Algorithm Communication Cost

To determine strong scalability limit, we wish to determine when $T_{p}(n, n / p)$ is dominated by the term $\gamma n^{2} / p$, we have

$$
T_{p}(n, n / p)=\Theta\left(\alpha p \log (p)+\beta n+\gamma n^{2} / p\right)
$$

- The bandwidth cost yields the bound

$$
p_{s}=O((\gamma / \beta) n)
$$

- The latency cost yields the bound

$$
p_{s}=O((\sqrt{\gamma / \alpha}) n / \sqrt{\log (\sqrt{(\gamma / \alpha)} n)})
$$

1-D Block-Cyclic Algorithm Weak Scalability

- The efficiency of the block-cyclic algorithm is

$$
E_{p}(n)=\Theta\left(1 /\left(1+(\alpha / \gamma) p^{2} \log (p) / n^{2}+(\beta / \gamma) p / n\right)\right)
$$

- Weak scaling, corresponds to p processors and $n=\sqrt{p_{w}} n_{0}$ elements (input size per processor is $\left.M_{1} / p=\left(n_{0} \sqrt{p}\right)^{2} / p=n_{0}^{2}\right)$ $E_{p_{w}}\left(n_{0} \sqrt{p_{w}}\right)=\Theta\left(1 /\left(1+(\alpha / \gamma) p_{w} \log \left(p_{w}\right) / n_{0}^{2}+(\beta / \gamma) \sqrt{p_{w}} / n_{0}\right)\right)$
- Therefore, weak scalability is possible to

$$
p_{w}=\Theta\left(\min \left[(\gamma / \alpha) n_{0}^{2} / \log \left((\gamma / \alpha) n_{0}^{2}\right),(\gamma / \beta)^{2} n_{0}^{2}\right]\right) \quad \text { processors }
$$

Wavefront Algorithms

- Naive fan-out and fan-in algorithms derive their parallelism from inner loop, whose work is partitioned and distributed across processors, while outer loop is serial
- Conceptually, fan-out and fan-in algorithms work on only one component of solution at a time, though successive steps may be pipelined
- Wavefront algorithms exploit parallelism in outer loop explicitly by working on multiple components of solution simultaneously

1-D Column Wavefront Algorithm

- Naive 1-D column fan-out algorithm seems to admit no parallelism: after processor owning column j computes x_{j}, resulting updating of right-hand side cannot be shared with other processors because they cannot access column j
- Instead of performing all such updates immediately, however, process owning column j could complete only first s components of update vector and forward them to processor owning column $j+1$ before continuing with next s components of update vector, etc.
- Upon receiving first s components of update vector, processor owning column $j+1$ can compute x_{j+1}, begin further updates, forward its own contributions to next process, etc.

1-D Column Wavefront Algorithm

To formalize wavefront column algorithm we introduce

- z : vector in which to accumulate updates to right-hand-side
- segment: set containing at most s consecutive components of z

1-D Column Wavefront Algorithm

for $j \in$ mycols

for $k=1$ to \# segments
recv segment
if $k=1$ then
$x_{j}=\left(b_{j}-z_{j}\right) / \ell_{j j}$
segment $=$ segment $-\left\{z_{j}\right\}$
end
for $z_{i} \in$ segment

$$
z_{i}=z_{i}+\ell_{i j} x_{j}
$$

end
if \mid segment $\mid>0$ then
send segment to processor owning column $j+1$
end
end
end

1-D Column Wavefront Algorithm

- Depending on segment size, column mapping, communication-to-computation speed ratio, etc., it may be possible for all processors to become busy simultaneously, each working on different component of solution
- Segment size is adjustable parameter that controls tradeoff between communication and concurrency
- "First" segment for given column shrinks by one element after each component of solution is computed, disappearing after s steps, when next segment becomes "first" segment, etc.

1-D Column Wavefront Algorithm

- At end of computation only one segment remains and it contains only one element
- Communication volume declines throughout algorithm
- As segment length s increases, communication start-up cost decreases but computation cost increases, and vice versa as segment length decreases
- Optimal choice of segment length s can be predicted from performance model

1-D Row Wavefront Algorithm

- Wavefront approach can also be applied to 1-D row fan-in algorithm
- Computation of i th inner product cannot be shared because only one processor has access to row i of matrix
- Thus, work on multiple components must be overlapped to attain any concurrency
- Analogous approach is to break solution vector \boldsymbol{x} into segments that are pipelined through processors

1-D Row Wavefront Algorithm

- Initially, processor owning row 1 computes x_{1} and sends it to processor owning row 2 , which computes resulting update and then x_{2}
- This processor continues (serially at this early stage) until s components of solution have been computed
- Henceforth, receiving processors forward any full-size segments before they are used in updating
- Forwarding of currently incomplete segment is delayed until next component of solution is computed and appended to it

1-D Row Wavefront Algorithm

1-D Row Wavefront Algorithm

for $i \in$ myrows
for $k=1$ to \# segments - 1
recv segment
send segment to processor owning row $i+1$ for $x_{j} \in$ segment
$b_{i}=b_{i}-\ell_{i j} x_{j}$
end
end
recv segment /* last may be empty */
for $x_{j} \in$ segment $b_{i}=b_{i}-\ell_{i j} x_{j}$
end
$x_{i}=b_{i} / \ell_{i i}$
segment $=$ segment $\cup\left\{x_{i}\right\}$
send segment to processor owning row $i+1$
end

1-D Row Wavefront Algorithm

- Instead of starting with full set of segments that shrink and eventually disappear, segments appear and grow until there is a full set of them
- It may be possible for all processors to be busy simultaneously, each working on different segment
- Segment size is adjustable parameter that controls tradeoff between communication and concurrency, and optimal value of segment length s can be predicted from performance model

2-D Agglomeration, Cyclic Mapping

2-D Agglomeration, Block Mapping

2-D Algorithm

- For 2-D block mapping with $(n / \sqrt{p}) \times(n / \sqrt{p})$ fine-grain tasks per process, both vertical broadcasts and horizontal sum reductions are required to communicate solution components and accumulate inner products, respectively
- However, almost half the processors perform no work
- For 1-D block mapping with $n \times n / p$ fine-grain tasks per process, vertical broadcasts are no longer necessary, but horizontal broadcasts send much larger messages, and work is still unbalanced

2-D Algorithm

- Cyclic assignment of rows and columns to processors yields provides each processor with at least
$(n / \sqrt{p})(n / \sqrt{p}-1) / 2$ entries
- But obvious implementation, computing successive components of solution vector x and performing corresponding horizontal sum reductions and vertical broadcasts, still has limited concurrency

Triangular Solve with Many Right-Hand Sides

- The triangular solve is a BLAS-2 operation
- $\Theta(1)$ flop-to-byte ratio (operations per memory access)
- $Q_{1}=n^{2}$ and $D=n$, so degree of concurrency is $\Theta(n)$
- Solving many systems at a time, i.e. determining $\boldsymbol{X} \in \mathbb{R}^{n \times k}$ so that

$$
A X=B
$$

where degree of concurrency is $\Theta(n k)$ and flop-to-byte ratio can be as high as $\Theta(k)$

- Triangular solve with multiple equations TRSM can also achieve better parallel scaling efficiency

Triangular Inversion

- A different way to solve a triangular linear system is to
- Invert the triangular matrix $\boldsymbol{S}=\boldsymbol{L}^{-1}$, then perform a
- Matrix vector multiplication $\boldsymbol{x}=\boldsymbol{S} \boldsymbol{y}$

This method requires $Q_{1}=\Theta\left(n^{3}\right)$ work to solve a single linear system of equations, but has logarithmic depth

- For k linear systems (TRSM), $Q_{1}=\Theta\left(n^{3}+n^{2} k\right)$ may be ok
- Lower depth evident from decoupling of recursive equations

$$
\left[\begin{array}{ll}
\boldsymbol{L}_{11} & \\
\boldsymbol{L}_{21} & \boldsymbol{L}_{22}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{S}_{11} & \\
\boldsymbol{S}_{21} & \boldsymbol{S}_{22}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{I} & \\
& \boldsymbol{I}
\end{array}\right]
$$

where we deduce that $\boldsymbol{S}_{11}=\boldsymbol{L}_{11}^{-1}$ and $\boldsymbol{S}_{22}=\boldsymbol{L}_{22}^{-1}$ are independent, while $\boldsymbol{S}_{21}=\boldsymbol{S}_{22} \boldsymbol{L}_{21} \boldsymbol{S}_{11}$ can be done with matrix multiplication which has $D=\Theta(\log (n))$

References

- R. H. Bisseling and J. G. G. van de Vorst, Parallel triangular system solving on a mesh network of Transputers, SIAM J. Sci. Stat. Comput. 12:787-799, 1991
- S. C. Eisenstat, M. T. Heath, C. S. Henkel, and C. H. Romine, Modified cyclic algorithms for solving triangular systems on distributed-memory multiprocessors, SIAM J. Sci. Stat. Comput. 9:589-600, 1988
- M. T. Heath and C. H. Romine, Parallel solution of triangular systems on distributed-memory multiprocessors, SIAM J. Sci. Stat. Comput. 9:558-588, 1988
- N. J. Higham, Stability of parallel triangular system solvers, SIAM J. Sci. Comput. 16:400-413, 1995

References

- G. Li and T. F. Coleman, A parallel triangular solver for a distributed-memory multiprocessor, SIAM J. Sci. Stat. Comput. 9:485-502, 1988
- G. Li and T. F. Coleman, A new method for solving triangular systems on distributed-memory message-passing multiprocessors, SIAM J. Sci. Stat. Comput. 10:382-396, 1989
- C. H. Romine and J. M. Ortega, Parallel solution of triangular systems of equations, Parallel Computing 6:109-114, 1988
- E. E. Santos, On designing optimal parallel triangular solvers, Information and Computation 161:172-210, 2000

