Sparse Matrices Sparse Triangular Solve Cholesky Factorization Sparse Cholesky Factorization

Parallel Numerical Algorithms Chapter 4 – Sparse Linear Systems Section 4.1 – Direct Methods

Michael T. Heath and Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Outline

- Sparse Matrices
- 2 Sparse Triangular Solve
- Cholesky Factorization
- 4 Sparse Cholesky Factorization

Sparse Matrices

- Matrix is sparse if most of its entries are zero
- For efficiency, store and operate on only nonzero entries, e.g., $a_{jk} \cdot x_k$ need not be done if $a_{jk} = 0$
- But more complicated data structures required incur extra overhead in storage and arithmetic operations
- Matrix is "usefully" sparse if it contains enough zero entries to be worth taking advantage of them to reduce storage and work required
- In practice, grid discretizations often yield matrices with $\Theta(n)$ nonzero entries, i.e., (small) constant number of nonzeros per row or column

Graph Model

- Adjacency Graph G(A) of symmetric $n \times n$ matrix A is undirected graph having n vertices, with edge between vertices i and j if $a_{ij} \neq 0$
- Number of edges in G(A) is the number of nonzeros in A
- ullet For a grid-based discretization, G(A) is the grid
- Adjacency graph provides visual representation of algorithms and highlights connections between numerical and combinatorial algorithms
- For nonsymmetric A, G(A) would be directed
- Often convenient to think of a_{ij} as the weight of edge (i,j)

Sparse Matrix Representations

- Coordinate (COO) (naive) format store each nonzero along with its row and column index
- Compressed-sparse-row (CSR) format
 - Store value and column index for each nonzero
 - Store index of first nonzero for each row
- Storage for CSR is less than COO and CSR ordering is often convenient
- CSC (compressed-sparse column), blocked versions (e.g. CSB), and other storage formats are also used

Sparse Matrix Distributions

- Dense matrix mappings can be adapted to sparse matrices
 - 1-D blocked mapping store all nonzeros in n/p consecutive rows on each processor
 - 1-D cyclic or randomized mapping store all nonzeros in some subset of n/p rows on each processor
 - 2-D block mapping store all nonzeros in a $n/\sqrt{p} \times n/\sqrt{p}$ block of matrix
- 1-D blocked mappings are best for exploiting locality in graph, especially when there are $\Theta(n)$ nonzeros
- Row ordering matters for all mappings, randomization and cyclicity yield load balance, blocking can yield locality

Sparse Matrix Vector Multiplication

Sparse matrix vector multiplication (SpMV) is

$$y = Ax$$

where A is sparse and x is dense

CSR-based matrix-vector product, for all i (in parallel) do

$$y_i = \sum_{j} a_{i,c(j)} x_{c(j)} = \sum_{j=1}^{n} a_{ij} x_j$$

where c(j) is the index of the jth nonzero in row i

 For random 1-D or 2-D mapping, cost of vector communication is same as in corresponding dense case

SpMV with 1-D Mapping

- For 1D blocking (each processor owns n/p rows), number of elements of x needed by a processor is the number of columns with a nonzero in the rows it owns
- In general, want to order rows to minimize maximum number of vector elements needed on any processor
- Graphically, we want to partition the graph into p subsets of n/p nodes, to minimize the maximum number of nodes to which any subset is connected, i.e., for $G(\mathbf{A}) = (V, E)$,

$$V = V_1 \cup \cdots \cup V_p, \quad |V_i| = n/p$$

is selected to minimize the largest number of external vertices adjacent to any partition,

$$\max_{i}(|\{v:v\in V\setminus V_{i},\exists w\in V_{i},(v,w)\in E\}|)$$

Surface Area to Volume Ratio in SpMV

- The number of external vertices the maximum partition is adjacent to depends on the expansion of the graph
- Expansion can be interpreted as a measure of the surface-area to volume ratio of the subgraphs
- For example, for a $k \times k \times k$ grid, a subvolume of $k/p^{1/3} \times k/p^{1/3} \times k/p^{1/3}$ has surface area $\Theta(k^2/p^{2/3})$
- Communication for this case becomes a neighbor halo exchange on a 3-D processor mesh
- Thus, finding the best 1-D partitioning for SpMV often corresponds to domain partitioning and depends on the physical geometry of the problem

Other Sparse Matrix Products

- SpMV is of critical importance to many numerical methods, but suffers from a *low flop-to-byte ratio* and a potentially high communication bandwidth cost
- In graph algorithms SpMSpV (x and y are sparse) is prevalent, which is even harder to perform efficiently (e.g., to minimize work need layout other than CSR, like CSC)
- SpMM (x becomes dense matrix X) provides a higher flop-to-byte ratio and is much easier to do efficiently
- SpGEMM (SpMSpM) (matrix multiplication where all matrices are sparse) arises in e.g., algebraic multigrid and graph algorithms, efficiency is highly dependent on sparsity

Solving Triangular Sparse Linear Systems

Given sparse lower-triangular matrix L and vector b, solve

$$Lx = b$$

- all nonzeros of L must be in its lower-triangular part
- Sequential algorithm: take $x_i = b_i/l_{ii}$, update

$$b_j = b_j - l_{ji}x_i$$
 for all $j \in \{i+1,\ldots,n\}$

• If L has m > n nonzeros, require $Q_1 \approx 2m$ operations

Parallelism in Sparse Triangular Solve

- We can adapt any dense parallel triangular solve algorithm to the sparse case
 - Again have fan-in (left-looking) and fan-out (right-looking) variants
 - Communication cost stays the same, computational cost decreases
- In fact there may be additional sources of parallelism, e.g., if $l_{21}=0$, we can solve for x_1 and x_2 concurrently
- More generally, can *concurrently prune sinks* of directed acyclic adjacency graph (DAG) G(A) = (V, E), where $(i,j) \in E$ if $l_{ij} \neq 0$
- Depth of algorithm corresponds to diameter of this DAG

Parallel Algorithm for Sparse Triangular Solve

- Partition: associate fine-grain tasks with each (i, j) such that $l_{ij} \neq 0$
- Communicate: task (i,i) communicates with task (j,i) and (i,j) for all possible j
- Agglomerate: form coarse-grain tasks for each column of L, i.e., do 1-D agglomeration, combining fine-grain tasks (\star, i) into agglomerated task i
- Map: assign coarse-grain tasks (columns of L) to processors with blocking (for locality) and/or cyclicity (for load balance and concurrency)

Analysis of 1-D Parallel Sparse Triangular Solve

- Cost of 1-D algorithm will clearly be less than the corresponding algorithm for the dense case
- Load balance depends on distribution of nonzeros, cyclicity can help distribute dense blocks
- Naive algorithm with 1-D column blocking exploits concurrency only in fan-out updates
- Communication bandwidth cost depends on surface-to-volume ratio of each subset of vertices associated with a block of columns
- Higher concurrency and better performance possible with dynamic/adaptive algorithms

Cholesky Factorization

Symmetric positive definite matrix A has Cholesky factorization

$$A = LL^T$$

where L is lower triangular matrix with positive diagonal entries

Linear system

$$Ax = b$$

can then be solved by forward-substitution in lower triangular system Ly = b, followed by back-substitution in upper triangular system $L^Tx = y$

Computing Cholesky Factorization

- Algorithm for computing Cholesky factorization can be derived by equating corresponding entries of \boldsymbol{A} and $\boldsymbol{L}\boldsymbol{L}^T$ and generating them in correct order
- For example, in 2×2 case

$$\begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \ell_{11} & 0 \\ \ell_{21} & \ell_{22} \end{bmatrix} \begin{bmatrix} \ell_{11} & \ell_{21} \\ 0 & \ell_{22} \end{bmatrix}$$

so we have

$$\ell_{11} = \sqrt{a_{11}}, \quad \ell_{21} = a_{21}/\ell_{11}, \quad \ell_{22} = \sqrt{a_{22} - \ell_{21}^2}$$

Cholesky Factorization Algorithm

```
for k=1 to n
    a_{kk} = \sqrt{a_{kk}}
    for i = k + 1 to n
        a_{ik} = a_{ik}/a_{kk}
    end
    for j = k + 1 to n
         for i = j to n
             a_{ij} = a_{ij} - a_{ik} \, a_{jk}
         end
    end
end
```

Cholesky Factorization Algorithm

- All n square roots are of positive numbers, so algorithm well defined
- Only lower triangle of A is accessed, so strict upper triangular portion need not be stored
- Factor L computed in place, overwriting lower triangle of A
- Pivoting is not required for numerical stability
- About $n^3/6$ multiplications and similar number of additions are required (about half as many as for LU)

Parallel Algorithm

Partition

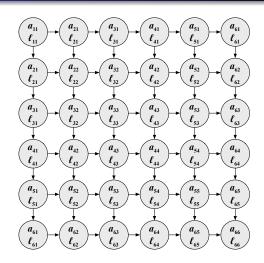
• For i, j = 1, ..., n, fine-grain task (i, j) stores a_{ij} and computes and stores

$$\left\{ \begin{array}{ll} \ell_{ij}, & \text{if } i \geq j \\ \ell_{ji}, & \text{if } i < j \end{array} \right.$$

yielding 2-D array of n^2 fine-grain tasks

• Zero entries in upper triangle of L need not be computed or stored, so for convenience in using 2-D mesh network, ℓ_{ij} can be redundantly computed as both task (i,j) and task (j,i) for i>j

Fine-Grain Tasks and Communication



Fine-Grain Parallel Algorithm

```
for k = 1 to \min(i, j) - 1
    recv broadcast of a_{kj} from task (k, j)
    recv broadcast of a_{ik} from task (i, k)
    a_{ij} = a_{ij} - a_{ik} a_{kj}
end
if i = i then
    a_{ii} = \sqrt{a_{ii}}
    broadcast a_{ii} to tasks (k, i) and (i, k), k = i + 1, ..., n
else if i < j then
    recv broadcast of a_{ii} from task (i, i)
    a_{ij} = a_{ij}/a_{ii}
    broadcast a_{ij} to tasks (k, j), k = i + 1, \ldots, n
else
    recv broadcast of a_{jj} from task (j, j)
    a_{ij} = a_{ij}/a_{jj}
    broadcast a_{ij} to tasks (i, k), k = j + 1, \ldots, n
end
```

Agglomeration Schemes

Agglomerate

- Agglomeration of fine-grain tasks produces
 - 2-D
 - 1-D column
 - 1-D row

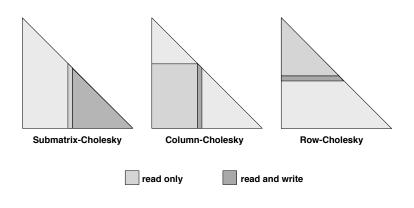
parallel algorithms analogous to those for LU factorization, with similar performance and scalability

Loop Orderings for Cholesky

Each choice of i, j, or k index in outer loop yields different Cholesky algorithm, named for portion of matrix updated by basic operation in inner loops

- Submatrix-Cholesky: (fan-out) with k in outer loop, inner loops perform rank-1 update of remaining unreduced submatrix using current column
- Column-Cholesky: (fan-in) with j in outer loop, inner loops compute current column using matrix-vector product that accumulates effects of previous columns
- Row-Cholesky: (fan-in) with i in outer loop, inner loops compute current row by solving triangular system involving previous rows

Memory Access Patterns



Column-Oriented Cholesky Algorithms

Submatrix-Cholesky

```
\begin{aligned} &\text{for } k=1 \text{ to } n \\ &a_{kk} = \sqrt{a_{kk}} \\ &\text{for } i=k+1 \text{ to } n \\ &a_{ik} = a_{ik}/a_{kk} \\ &\text{end} \\ &\text{for } j=k+1 \text{ to } n \\ &\text{for } i=j \text{ to } n \\ &a_{ij} = a_{ij} - a_{ik} \, a_{jk} \\ &\text{end} \\ &\text{end} \\ &\text{end} \end{aligned}
```

Column-Cholesky

```
\begin{array}{l} \text{for } j=1 \text{ to } n \\ \text{for } k=1 \text{ to } j-1 \\ \text{for } i=j \text{ to } n \\ a_{ij}=a_{ij}-a_{ik}\,a_{jk} \\ \text{end} \\ \text{end} \\ a_{jj}=\sqrt{a_{jj}} \\ \text{for } i=j+1 \text{ to } n \\ a_{ij}=a_{ij}/a_{jj} \\ \text{end} \\ \text{end} \end{array}
```

Column Operations

Column-oriented algorithms can be stated more compactly by introducing column operations

 cdiv(j): column j is divided by square root of its diagonal entry

$$\begin{array}{l} a_{jj} = \sqrt{a_{jj}} \\ \text{for } i = j+1 \text{ to } n \\ a_{ij} = a_{ij}/a_{jj} \\ \text{end} \end{array}$$

 cmod (j,k): column j is modified by multiple of column k, with k < j

$$\begin{aligned} & \text{for } i = j \text{ to } n \\ & a_{ij} = a_{ij} - a_{ik} \, a_{jk} \\ & \text{end} \end{aligned}$$

Column-Oriented Cholesky Algorithms

Submatrix-Cholesky

```
\begin{aligned} &\text{for } k=1 \text{ to } n \\ & & \textit{cdiv}(k) \\ &\text{for } j=k+1 \text{ to } n \\ & & \textit{cmod}(j,k) \\ &\text{end} \end{aligned}
```

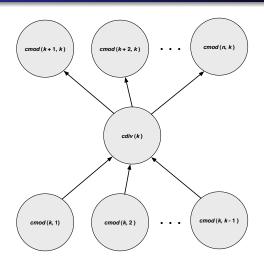
- right-looking
- immediate-update
- data-driven
- fan-out

Column-Cholesky

```
\begin{aligned} & \textbf{for } j = 1 \textbf{ to } n \\ & \textbf{for } k = 1 \textbf{ to } j - 1 \\ & \textit{cmod} \left(j, k\right) \\ & \textbf{end} \\ & \textit{cdiv} \left(j\right) \\ & \textbf{end} \end{aligned}
```

- left-looking
- delayed-update
- demand-driven
- fan-in

Data Dependences



Data Dependences

- cmod (k,*) operations along bottom can be done in any order, but they all have same target column, so updating must be coordinated to preserve data integrity
- $cmod(\star, k)$ operations along top can be done in any order, and they all have different target columns, so updating can be done simultaneously
- Performing cmods concurrently is most important source of parallelism in column-oriented factorization algorithms
- For dense matrix, each cdiv(k) depends on immediately preceding column, so cdivs must be done sequentially

Sparsity Structure

- For sparse matrix M, let $M_{i\star}$ denote its ith row and $M_{\star j}$ its jth column
- Define $Struct(M_{i\star}) = \{k < i \mid m_{ik} \neq 0\}$, nonzero structure of row i of strict lower triangle of M
- Define $Struct(M_{\star j}) = \{k > j \mid m_{kj} \neq 0\}$, nonzero structure of column j of strict lower triangle of M

Sparse Cholesky Algorithms

Submatrix-Cholesky

```
\begin{array}{c} \textbf{for } k=1 \textbf{ to } n \\ \textit{cdiv}(\,k) \\ \textbf{ for } j \in \textit{Struct}(\boldsymbol{L}_{\star k}) \\ \textit{cmod}\,(\,j,k) \\ \textbf{ end} \\ \textbf{end} \end{array}
```

- right-looking
- immediate-update
- data-driven
- fan-out

Column-Cholesky

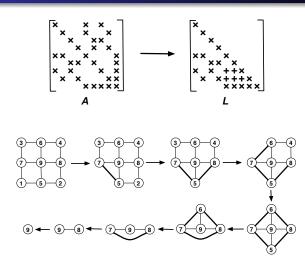
```
\begin{array}{c} \textbf{for } j=1 \textbf{ to } n \\ \textbf{ for } k \in \textit{Struct}(\boldsymbol{L}_{j\star}) \\ \textit{ cmod}\left(j,k\right) \\ \textbf{ end} \\ \textit{ cdiv}\left(j\right) \\ \textbf{end} \\ \end{array}
```

- left-looking
- delayed-update
- demand-driven
- fan-in

Graph Model

- Recall that adjacency graph G(A) of symmetric $n \times n$ matrix A is undirected graph with edge between vertices i and j if $a_{ij} \neq 0$
- At each step of Cholesky factorization algorithm, corresponding vertex is eliminated from graph
 - Neighbors of eliminated vertex in previous graph become clique (fully connected subgraph) in modified graph
 - Entries of A that were initially zero may become nonzero entries, called fill

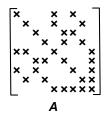
Example: Graph Model of Elimination

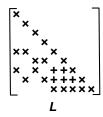


Elimination Tree

- parent(j) is row index of first offdiagonal nonzero in column j of L, if any, and j otherwise
- *Elimination tree* T(A) is graph having n vertices, with edge between vertices i and j, for i > j, if i = parent(j)
- If matrix is irreducible, then elimination tree is single tree with root at vertex n; otherwise, it is more accurately termed elimination forest
- T(A) is spanning tree for *filled graph*, F(A), which is G(A) with all fill edges added
- Each column of Cholesky factor L depends only on its descendants in elimination tree

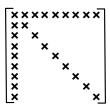
Example: Elimination Tree

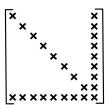




Effect of Matrix Ordering

- Amount of fill depends on order in which variables are eliminated
- Example: "arrow" matrix if first row and column are dense, then factor fills in completely, but if last row and column are dense, then they cause no fill





Ordering Heuristics

General problem of finding ordering that minimizes fill is NP-complete, but there are relatively cheap heuristics that limit fill effectively

- Bandwidth or profile reduction: reduce distance of nonzero diagonals from main diagonal (e.g., RCM)
- Minimum degree: eliminate node having fewest neighbors first
- Nested dissection: recursively split graph into pieces using a vertex separator, numbering separator vertices last

Symbolic Factorization

- For symmetric positive definite (SPD) matrices, ordering can be determined in advance of numeric factorization
- Only locations of nonzeros matter, not their numerical values, since pivoting is not required for numerical stability
- Once ordering is selected, locations of all fill entries in L
 can be anticipated and efficient static data structure set up
 to accommodate them prior to numeric factorization
- Structure of column j of L is given by union of structures of lower triangular portion of column j of A and prior columns of L whose first nonzero below diagonal is in row j

Solving Sparse SPD Systems

Basic steps in solving sparse SPD systems by Cholesky factorization

- Ordering: Symmetrically reorder rows and columns of matrix so Cholesky factor suffers relatively little fill
- Symbolic factorization: Determine locations of all fill entries and allocate data structures in advance to accommodate them
- Numeric factorization: Compute numeric values of entries of Cholesky factor
- Triangular solve: Compute solution by forward- and back-substitution

Parallel Sparse Cholesky

- In sparse submatrix- or column-Cholesky, if $a_{jk}=0$, then $\operatorname{cmod}(j,k)$ is omitted
- Sparse factorization thus has additional source of parallelism, since "missing" cmods may permit multiple cdivs to be done simultaneously
- Elimination tree shows data dependences among columns of Cholesky factor L, and hence identifies potential parallelism
- At any point in factorization process, all factor columns corresponding to *leaves* in the elimination tree can be computed simultaneously

Parallel Sparse Cholesky

- Height of elimination tree determines longest serial path through computation, and hence parallel execution time
- Width of elimination tree determines degree of parallelism available
- Short, wide, well-balanced elimination tree desirable for parallel factorization
- Structure of elimination tree depends on ordering of matrix
- So ordering should be chosen both to preserve sparsity and to enhance parallelism

Levels of Parallelism in Sparse Cholesky

Fine-grain

- Task is one multiply-add pair
- Available in either dense or sparse case
- Difficult to exploit effectively in practice

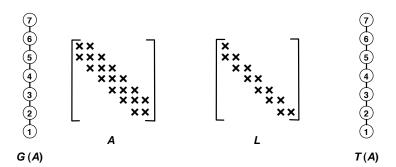
Medium-grain

- Task is one cmod or cdiv
- Available in either dense or sparse case
- Accounts for most of speedup in dense case

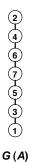
Large-grain

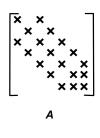
- Task computes entire set of columns in subtree of elimination tree
- Available only in sparse case

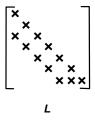
Example: Band Ordering, 1-D Grid

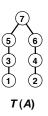


Example: Minimum Degree, 1-D Grid

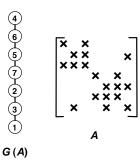


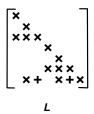


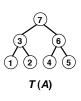




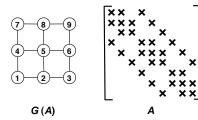
Example: Nested Dissection, 1-D Grid

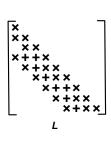






Example: Band Ordering, 2-D Grid

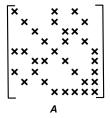


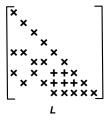


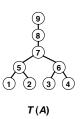
T(A)

Example: Minimum Degree, 2-D Grid

G(A)

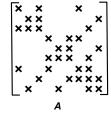


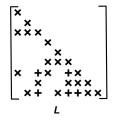


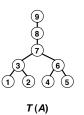


Example: Nested Dissection, 2-D Grid

G(A)



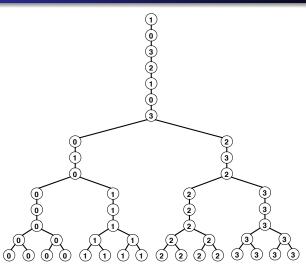




Mapping

- Cyclic mapping of columns to processors works well for dense problems, because it balances load and communication is global anyway
- To exploit locality in communication for sparse factorization, better approach is to map columns in subtree of elimination tree onto local subset of processors
- Still use cyclic mapping within dense submatrices ("supernodes")

Example: Subtree Mapping



Fan-Out Sparse Cholesky

```
for j \in mycols
    if i is leaf node in T(A) then
        cdiv(j)
       send L_{\star i} to processes in map (Struct (L_{\star i}))
        mycols = mycols - \{i\}
   end
end
while mycols \neq \emptyset
    receive any column of L, say L_{\star k}
    for j \in mycols \cap Struct(L_{+k})
        cmod(i,k)
       if column i requires no more cmods then
            cdiv(i)
            send L_{\star i} to processes in map (Struct (L_{\star i}))
            mvcols = mvcols - \{i\}
       end
   end
end
```

Fan-In Sparse Cholesky

```
for j=1 to n
    if j \in mycols or mycols \cap Struct(L_{i\star}) \neq \emptyset then
       u = 0
       for k \in mycols \cap Struct(L_{i*})
           u = u + \ell_{ik} \mathbf{L}_{\star k}
       if j \in mycols then
            incorporate u into factor column j
            while any aggregated update column
               for column i remains, receive one
               and incorporate it into factor column j
            end
            cdiv(i)
       else
            send u to process map(i)
       end
   end
end
```

Multifrontal Sparse Cholesky

- Multifrontal algorithm operates recursively, starting from root of elimination tree for A
- Dense frontal matrix F_j is initialized to have nonzero entries from corresponding row and column of A as its first row and column, and zeros elsewhere
- F_j is then updated by extend_add operations with update matrices from its children in elimination tree
- extend_add operation, denoted by ⊕, merges matrices by taking union of their subscript sets and summing entries for any common subscripts
- After updating of F_j is complete, its partial Cholesky factorization is computed, producing corresponding row and column of L as well as update matrix U_j

Example: extend_add

$$\begin{bmatrix} a_{11} & a_{13} & a_{15} & a_{18} \\ a_{31} & a_{33} & a_{35} & a_{38} \\ a_{51} & a_{53} & a_{55} & a_{58} \\ a_{81} & a_{83} & a_{85} & a_{88} \end{bmatrix} \oplus \begin{bmatrix} b_{11} & b_{12} & b_{15} & b_{17} \\ b_{21} & b_{22} & b_{25} & b_{27} \\ b_{51} & b_{52} & b_{55} & b_{57} \\ b_{71} & b_{72} & b_{75} & b_{77} \end{bmatrix}$$

$$=\begin{bmatrix} a_{11}+b_{11} & b_{12} & a_{13} & a_{15}+b_{15} & b_{17} & a_{18} \\ b_{21} & b_{22} & 0 & b_{25} & b_{27} & 0 \\ a_{31} & 0 & a_{33} & a_{35} & 0 & a_{38} \\ a_{51}+b_{51} & b_{52} & a_{53} & a_{55}+b_{55} & b_{57} & a_{58} \\ b_{71} & b_{72} & 0 & b_{75} & b_{77} & 0 \\ a_{81} & 0 & a_{83} & a_{85} & 0 & a_{88} \end{bmatrix}$$

Multifrontal Sparse Cholesky

$$\begin{aligned} &\mathsf{Factor}(j) \\ &\mathsf{Let}\ \{i_1,\dots,i_r\} = \textit{Struct}(\boldsymbol{L}_{\star j}) \\ &\mathsf{Let}\ \boldsymbol{F}_j = \begin{bmatrix} a_{j,j} & a_{j,i_1} & \dots & a_{j,i_r} \\ a_{i_1,j} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-j} & 0 & \dots & 0 \end{bmatrix} \end{aligned}$$

for each child i of j in elimination tree

Factor(i)

$$F_j = F_j \oplus U_i$$

end

Perform one step of dense Cholesky:

$$egin{aligned} oldsymbol{F}_j = egin{bmatrix} \ell_{j,j} & \mathbf{0} \ \ell_{i_1,j} & & \ dots & oldsymbol{I} \ \ell_{i_r,j} & & \end{bmatrix} egin{bmatrix} 1 & \mathbf{0} \ \mathbf{0} & oldsymbol{U}_j \end{bmatrix} egin{bmatrix} \ell_{j,j} & \ell_{i_1,j} & \dots & \ell_{i_r,j} \ \mathbf{0} & & oldsymbol{I} \end{bmatrix} \end{aligned}$$

Advantages of Multifrontal Method

- Most arithmetic operations performed on dense matrices, which reduces indexing overhead and indirect addressing
- Can take advantage of loop unrolling, vectorization, and optimized BLAS to run at near peak speed on many types of processors
- Data locality good for memory hierarchies, such as cache, virtual memory with paging, or explicit out-of-core solvers
- Naturally adaptable to parallel implementation by processing multiple independent fronts simultaneously on different processors
- Parallelism can also be exploited in dense matrix computations within each front

Summary for Parallel Sparse Cholesky

Principal ingredients in efficient parallel algorithm for sparse Cholesky factorization

- Reordering matrix to obtain relatively short and well balanced elimination tree while also limiting fill
- Multifrontal or supernodal approach to exploit dense subproblems effectively
- Subtree mapping to localize communication
- Cyclic mapping of dense subproblems to achieve good load balance
- 2-D algorithm for dense subproblems to enhance scalability

Scalability of Sparse Cholesky

- Performance and scalability of sparse Cholesky depend on sparsity structure of particular matrix
- Sparse factorization with nested dissection requires factorization of dense matrix of dimension $\Theta(\sqrt{n})$ for 2-D grid problem with n grid points (\sqrt{n} is the size of the root vertex separator), for which unconditional weak scalability is possible
- However, efficiency often deteriorates as a result of the rest of the sparse factorization taking more time

References – Dense Cholesky

- G. Ballard, J. Demmel, O. Holtz, and O. Schwartz,
 Communication-optimal parallel and sequential Cholesky decomposition, SIAM J. Sci. Comput. 32:3495-3523, 2010
- J. W. Demmel, M. T. Heath, and H. A. van der Vorst, Parallel numerical linear algebra, *Acta Numerica* 2:111-197, 1993
- D. O'Leary and G. W. Stewart, Data-flow algorithms for parallel matrix computations, Comm. ACM 28:840-853, 1985
- D. O'Leary and G. W. Stewart, Assignment and scheduling in parallel matrix factorization, *Linear Algebra Appl.* 77:275-299, 1986

References – Sparse Cholesky

- M. T. Heath, Parallel direct methods for sparse linear systems, D. E. Keyes, A. Sameh, and V. Venkatakrishnan, eds., Parallel Numerical Algorithms, pp. 55-90, Kluwer, 1997
- M. T. Heath, E. Ng and B. W. Peyton, Parallel algorithms for sparse linear systems, SIAM Review 33:420-460, 1991
- J. Liu, Computational models and task scheduling for parallel sparse Cholesky factorization, *Parallel Computing* 3:327-342, 1986
- J. Liu, Reordering sparse matrices for parallel elimination, Parallel Computing 11:73-91, 1989
- J. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl. 11:134-172, 1990

References – Multifrontal Methods

- I. S. Duff, Parallel implementation of multifrontal schemes, Parallel Computing 3:193-204, 1986
- A. Gupta, Parallel sparse direct methods: a short tutorial, IBM Research Report RC 25076, November 2010
- J. Liu, The multifrontal method for sparse matrix solution: theory and practice, SIAM Review 34:82-109, 1992
- J. A. Scott, Parallel frontal solvers for large sparse linear systems, ACM Trans. Math. Software 29:395-417, 2003

References – Scalability

- A. George, J. Lui, and E. Ng, Communication results for parallel sparse Cholesky factorization on a hypercube, Parallel Computing 10:287-298, 1989
- A. Gupta, G. Karypis, and V. Kumar, Highly scalable parallel algorithms for sparse matrix factorization, *IEEE Trans. Parallel Distrib. Systems* 8:502-520, 1997
- T. Rauber, G. Runger, and C. Scholtes, Scalability of sparse Cholesky factorization, *Internat. J. High Speed* Computing 10:19-52, 1999
- R. Schreiber, Scalability of sparse direct solvers,
 A. George, J. R. Gilbert, and J. Liu, eds., *Graph Theory and Sparse Matrix Computation*, pp. 191-209,
 Springer-Verlag, 1993

References – Nonsymmetric Sparse Systems

- I. S. Duff and J. A. Scott, A parallel direct solver for large sparse highly unsymmetric linear systems, ACM Trans. Math. Software 30:95-117, 2004
- A. Gupta, A shared- and distributed-memory parallel general sparse direct solver, Appl. Algebra Engrg. Commun. Comput., 18(3):263-277, 2007
- X. S. Li and J. W. Demmel, SuperLU_Dist: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans. Math. Software 29:110-140, 2003
- K. Shen, T. Yang, and X. Jiao, S+: Efficient 2D sparse LU factorization on parallel machines, SIAM J. Matrix Anal. Appl. 22:282-305, 2000