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Iterative Methods for Linear Systems

Iterative methods for solving linear system Ax = b begin
with initial guess for solution and successively improve it
until solution is as accurate as desired

In theory, infinite number of iterations might be required to
converge to exact solution

In practice, iteration terminates when residual ∥b−Ax∥, or
some other measure of error, is as small as desired

Iterative methods are especially useful when matrix A is
sparse because, unlike direct methods, no fill is incurred
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Jacobi Method

Beginning with initial guess x(0), Jacobi method computes
next iterate by solving for each component of x in terms of
others

x
(k+1)
i =

(
bi −

∑
j ̸=i

aijx
(k)
j

)
/aii, i = 1, . . . , n

If D, L, and U are diagonal, strict lower triangular, and
strict upper triangular portions of A, then Jacobi method
can be written

x(k+1) = D−1
(
b− (L+U)x(k)

)
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Jacobi Method

Jacobi method requires nonzero diagonal entries, which
can usually be accomplished by permuting rows and
columns if not already true

Jacobi method requires duplicate storage for x, since no
component can be overwritten until all new values have
been computed

Components of new iterate do not depend on each other,
so they can be computed simultaneously

Jacobi method does not always converge, but it is
guaranteed to converge under conditions that are often
satisfied (e.g., if matrix is strictly diagonally dominant),
though convergence rate may be very slow
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Gauss-Seidel Method

Faster convergence can be achieved by using each new
component value as soon as it has been computed rather
than waiting until next iteration

This gives Gauss-Seidel method

x
(k+1)
i =

(
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

)
/aii

Using same notation as for Jacobi, Gauss-Seidel method
can be written

x(k+1) = (D +L)−1
(
b−Ux(k)

)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 6 / 50



Serial Iterative Methods
Parallel Iterative Methods

Preconditioning

Stationary Iterative Methods
Krylov Subspace Methods

Gauss-Seidel Method
Gauss-Seidel requires nonzero diagonal entries

Gauss-Seidel does not require duplicate storage for x,
since component values can be overwritten as they are
computed

But each component depends on previous ones, so they
must be computed successively

Gauss-Seidel does not always converge, but it is
guaranteed to converge under conditions that are
somewhat weaker than those for Jacobi method (e.g., if
matrix is symmetric and positive definite)

Gauss-Seidel converges about twice as fast as Jacobi, but
may still be very slow

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 7 / 50



Serial Iterative Methods
Parallel Iterative Methods

Preconditioning

Stationary Iterative Methods
Krylov Subspace Methods

Conjugate Gradient Method

If A is n× n symmetric positive definite matrix, then
quadratic function

ϕ(x) = 1
2x

TAx− xTb

attains minimum precisely when Ax = b

Optimization methods have form

xk+1 = xk + α sk

where α is search parameter chosen to minimize objective
function ϕ(xk + α sk) along sk

For method of steepest descent, sk = −∇ϕ(x)
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Conjugate Gradient Method

For special case of quadratic problem,

Negative gradient is residual vector

−∇ϕ(x) = b−Ax = r

Optimal line search parameter is given by

α = rTk sk/s
T
kAsk

Successive search directions can easily be
A-orthogonalized by three-term recurrence

Using these properties, we obtain conjugate gradient
method (CG ) for linear systems
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Conjugate Gradient Method

x0 = initial guess
r0 = b−Ax0

s0 = r0
for k = 0, 1, 2, . . .

αk = rTk rk/s
T
kAsk

xk+1 = xk + αksk
rk+1 = rk − αkAsk
βk+1 = rTk+1rk+1/r

T
k rk

sk+1 = rk+1 + βk+1sk
end
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Conjugate Gradient Method

Key features that make CG method effective

Short recurrence determines search directions that are
A-orthogonal (conjugate)
Error is minimal over space spanned by search directions
generated so far

Minimum error property implies that method produces
exact solution after at most n steps

In practice, rounding error causes loss of orthogonality that
spoils finite termination property, so method is used
iteratively
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Conjugate Gradient Method

Error is reduced at each iteration by factor of

(
√
κ− 1)/(

√
κ+ 1)

on average, where

κ = cond(A) = ∥A∥ · ∥A−1∥ = λmax(A)/λmin(A)

Thus, convergence tends to be rapid if matrix is
well-conditioned, but can be arbitrarily slow if matrix is
ill-conditioned

But convergence also depends on clustering of
eigenvalues of A
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Nonsymmetric Krylov Subspace Methods

CG is not directly applicable to nonsymmetric or indefinite
systems

CG cannot be generalized to nonsymmetric systems
without sacrificing one of its two key properties (short
recurrence and minimum error)

Nevertheless, several generalizations have been
developed for solving nonsymmetric systems, including
GMRES, QMR, CGS, BiCG, and Bi-CGSTAB

These tend to be less robust and require more storage
than CG, but they can still be very useful for solving large
nonsymmetric systems
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Parallel Implementation

Iterative methods for linear systems are composed of basic
operations such as

vector updates (saxpy)
inner products
matrix-vector multiplication
solution of triangular systems

In parallel implementation, both data and operations are
partitioned across multiple tasks

In addition to communication required for these basic
operations, necessary convergence test may require
additional communication (e.g., sum or max reduction)
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Partitioning of Vectors

Iterative methods typically require several vectors,
including solution x, right-hand side b, residual
r = b−Ax, and possibly others

Even when matrix A is sparse, these vectors are usually
dense

These dense vectors are typically uniformly partitioned
among p tasks, with given task holding same set of
component indices of each vector

Thus, vector updates require no communication, whereas
inner products of vectors require reductions across tasks,
at cost we have already seen
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Partitioning of Sparse Matrix

Sparse matrix A can be partitioned among tasks by rows,
by columns, or by submatrices

Partitioning by submatrices may give uneven distribution of
nonzeros among tasks; indeed, some submatrices may
contain no nonzeros at all

Partitioning by rows or by columns tends to yield more
uniform distribution because sparse matrices typically have
about same number of nonzeros in each row or column
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Row Partitioning of Sparse Matrix

Suppose that each task is assigned n/p rows, yielding p
tasks, where for simplicity we assume that p divides n

In dense matrix-vector multiplication, since each task owns
only n/p components of vector operand, communication is
required to obtain remaining components

If matrix is sparse, however, few components may actually
be needed, and these should preferably be stored in
neighboring tasks

Assignment of rows to tasks by contiguous blocks or
cyclically would not, in general, result in desired proximity
of vector components
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Graph Partitioning

Desired data locality can be achieved by partitioning graph
of matrix, or partitioning underlying grid or mesh for finite
difference or finite element problem

For example, graph can be partitioned into p pieces by
nested dissection, and vector components corresponding
to nodes in each resulting piece assigned to same task,
with neighboring pieces assigned to neighboring tasks

Then matrix-vector product requires relatively little
communication, and only between neighboring tasks
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Two-Dimensional Partitioning
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Sparse MatVec with 2-D Partitioning

Partition entries of both x and y across processors
Partition entries of A accordingly

(a) Send entries xj to processors with nonzero aij for some i

(b) Local multiply-add: yi = yi + aijxj

(c) Send partial inner products to relevant processors

(d) Local sum: sum partial inner products
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Sparse MatVec with 2-D Partitioning
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Graph Partitioning Methods Types

Coordinate-based
Coordinate bisection

Inertial

Geometric

Multilevel

Coordinate-free

Level structure

Spectral

Combinatorial refinement (e.g., Kernighan-Lin)
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Graph Partitioning Software

Chaco
Jostle
Meshpart
Metis/ParMetis
Mondriaan
Party
Scotch
Zoltan
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Coordinate-free partitioning
Partitioning is hard for arbitrary graphs

Level partitioning – breadth-first-search (BFS) tree levels
Maximal k-independent sets – select vertices separated by
distance k and create partitions by combining vertices with
nearest vertex in k-independent set
Spectral partitioning looks at eigenvalues of Laplacian
matrix L of a graph G = (V,E),

lij =


i = j : degree(V (i))

(i, j) ∈ E : −1
(i, j) /∈ E : 0

the eigenvector of L with the second smallest eigenvalue
(the Fiedler vector) provides a good partition of G
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Coordinate-based partitioning

Assume graph embedded in d-dimensional space, so we
have coordinates for nodes
In a mesh, only neighboring points will be adjacent
G. Miller, S. Teng, W. Thurston, S. Vavasis (1997) provide a
general algorithm for finding an optimal geometric partition

points are projected onto surface of a sphere
centerpoint (generalized median) of points is computed
sphere is rotated and dilated so centerpoint becomes origin
points adjacent to any hyperplane containing the
centerpoint provides a good partition

Gives vertex separators of size O(n(d−1)/d) for meshes
with constant aspect ratio – max relative distance of edges
in space
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Parallel Jacobi

We have already seen example of this approach with
Jacobi method for 1-D Laplace equation

Contiguous groups of variables are assigned to each task,
so most communication is internal, and external
communication is limited to nearest neighbors in 1-D mesh

More generally, Jacobi method usually parallelizes well if
underlying grid is partitioned in this manner, since all
components of x can be updated simultaneously
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Parallel Gauss-Seidel

Unfortunately, Gauss-Seidel methods require successive
updating of solution components in given order (in effect,
solving triangular system), rather than permitting
simultaneous updating as in Jacobi method
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Row-Wise Ordering for 2-D Grid

G (A)
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Red-Black Ordering

Apparent sequential order can be broken, however, if
components are reordered according to coloring of
underlying graph

For 5-point discretization on square grid, for example, color
alternate nodes in each dimension red and others black,
giving color pattern of chess or checker board

Then all red nodes can be updated simultaneously, as can
all black nodes, so algorithm proceeds in alternating
phases, first updating all nodes of one color, then those of
other color, repeating until convergence
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Red-Black Ordering for 2-D Grid

G (A)
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Multicolor Orderings

More generally, arbitrary graph requires more colors, so
there is one phase per color in parallel algorithm

Nodes must also be partitioned among tasks, and load
should be balanced for each color

Reordering nodes may affect convergence rate, however,
so gain in parallel performance may be offset somewhat by
slower convergence rate
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Sparse Triangular Systems

More generally, multicolor ordering of graph of matrix
enhances parallel performance of sparse triangular
solution by identifying sets of solution components that can
be computed simultaneously (rather than in usual
sequential order for triangular solution)
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Parallel 1D 2-pt Stencil

Normally, halo exchange done before every stencil application
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In-time Blocking

Instead apply stencil repeatedly before larger halo exchange
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In-time Blocking

Instead apply stencil repeatedly before larger halo exchange
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Analysis of in-time blocking for 1D mesh

For 1-D 2-pt stencil (3-pt stencil similar)

Consider t steps, and execute s without messages

Bring down latency cost by a factor of s, for t = Θ(n), we
improve latency cost from Θ(αn) to Θ(αp) with s = n/p

Also improves flop-to-byte ratio of local subcomputations
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Analysis of in-time blocking for 2-D mesh

For 2-D mesh, there is more complexity

Consider t steps and execute s ≤
√
n/p without msgs

Need to do asymptotically more computation and
interprocessor communication if s >

√
n/p
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Asynchronous or Chaotic Relaxation

Using updated values for solution components in
Gauss-Seidel methods improves convergence rate, but
limits parallelism and requires synchronization

Alternatively, in computing next iterate, each processor
could use most recent value it has for each solution
component, rather than waiting for latest value on any
processor

This approach, sometimes called asynchronous or chaotic
relaxation, can be effective, but stochastic behavior
complicates analysis of convergence and convergence rate
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Preconditioning

Convergence rate of iterative methods depends on
condition number and can often be substantially
accelerated by preconditioning

Apply method to M−1A, where M is chosen so that
M−1A is better conditioned than A, and systems of form
Mz = Ay are easily solved for z

Typically, M is (block)-diagonal or triangular
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Basic Preconditioners: M for M−1A

Polynomial (most commonly Chebyshev)

M−1 = poly(A)

neither M nor M−1 explicitly formed, latter applied by
multiple SpMVs

Diagonal (Jacobi) (diagonal scaling)

M = diag(d)

sometime can use d = diag(A), easy but ineffective
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Block Preconditioners: M for M−1A

Consider partitioning

A =

[
B E
F C

]
=



B1 E1

. . . . . .
Bp Ep

F1 C11 . . . C1p

. . .
...

. . .
...

Fp Cp1 . . . Cpp


Block-diagonal (domain decomposition)

M =

[
B

I

]
so M−1A

[
y1

y2

]
=

[
y1 +B−1Ey2

Fy1 +Cy2

]
iterative methods with M−1A can compute each B−1

i in
parallel to get and apply B−1
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Sparse Preconditioners: M for M−1A

Incomplete LU (ILU) computes an approximate LU
factorization, ignoring fill entries throughout regular sparse LU

Let S ∈ N2 to be a sparsity mask and compute L,U on S

Level-0 ILU factorization

ILU[0] : (i, j) ∈ S if and only if aij ̸= 0

Given [L(0),U (0)]← ILU[0](A), our preconditioner will be
M = L(0)U (0) ≈ A

Level-1 ILU factorization

ILU[1] : (i, j) ∈ S if ∃k, l(0)ik u
(0)
kj ̸= 0 or aij ̸= 0

(generate fill only if updates are from non-newly-filled
entries)
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Parallel Incomplete LU

When the number of nonzeros per row is small, computing
ILU[0] is as hard as triangular solves with the factors

Elimination tree is given by spanning tree of original graph,

filled graph = original graph

No need for symbolic factorization and lesser
memory-usage

However, no general accuracy guarantees

ILU can be approximated iteratively with high concurrency
(see Chow and Patel, 2015)
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