Parallel Numerical Algorithms Chapter 5 - Eigenvalue Problems Section 5.1 - QR Factorization

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign
CS 554 / CSE 512

Outline

(1) QR Factorization
(2) Householder Transformations

- Recursive TSQR
- 2D and 3D Householder QR
(3) Givens Rotations

QR Factorization

- For given $m \times n$ matrix \boldsymbol{A}, with $m>n, Q R$ factorization has form

$$
A=Q\left[\begin{array}{l}
R \\
O
\end{array}\right]
$$

where matrix \boldsymbol{Q} is $m \times m$ with orthonormal columns, and \boldsymbol{R} is $n \times n$ and upper triangular

- Can be used to solve linear systems, least squares problems, and eigenvalue problems
- As with Gaussian elimination, zeros are introduced successively into matrix \boldsymbol{A}, eventually reaching upper triangular form, but using orthogonal transformations instead of elementary eliminators

Methods for QR Factorization

- Householder transformations (elementary reflectors)
- Givens transformations (plane rotations)
- Gram-Schmidt orthogonalization

Householder Transformations

- Householder transformation has form

$$
\boldsymbol{H}=\boldsymbol{I}-2 \frac{\boldsymbol{v} \boldsymbol{v}^{T}}{\boldsymbol{v}^{T} \boldsymbol{v}}
$$

where v is nonzero vector

- From definition, $\boldsymbol{H}=\boldsymbol{H}^{T}=\boldsymbol{H}^{-1}$, so \boldsymbol{H} is both orthogonal and symmetric
- For given vector a, choose v so that

$$
\boldsymbol{H} \boldsymbol{a}=\left[\begin{array}{c}
\alpha \\
0 \\
\vdots \\
0
\end{array}\right]=\alpha\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]=\alpha \boldsymbol{e}_{1}
$$

Householder Transformations

- Substituting into formula for \boldsymbol{H}, we see that we can take

$$
\boldsymbol{v}=\boldsymbol{a}-\alpha \boldsymbol{e}_{1}
$$

and to preserve norm we must have $\alpha= \pm\|\boldsymbol{a}\|_{2}$, with sign chosen to avoid cancellation

Householder QR Factorization

for $k=1$ to n

$$
\begin{aligned}
& \alpha_{k}=-\operatorname{sign}\left(a_{k k}\right) \sqrt{a_{k k}^{2}+\cdots+a_{m k}^{2}} \\
& \boldsymbol{v}_{k}=\left[\begin{array}{lllll}
0 & \cdots & 0 & a_{k k} & \cdots \\
a_{m k}
\end{array}\right]^{T}-\alpha_{k} \boldsymbol{e}_{k} \\
& \beta_{k}=\boldsymbol{v}_{k}^{T} \boldsymbol{v}_{k} \\
& \text { if } \beta_{k}=0 \text { then }
\end{aligned}
$$

continue with next k
for $j=k$ to n
$\gamma_{j}=\boldsymbol{v}_{k}^{T} \boldsymbol{a}_{j}$
$\boldsymbol{a}_{j}=\boldsymbol{a}_{j}-\left(2 \gamma_{j} / \beta_{k}\right) \boldsymbol{v}_{k}$
end
end

Basis-Kernel Representations

- A Householder matrix \boldsymbol{H} is represented by $\boldsymbol{H}=\boldsymbol{I}-\boldsymbol{u} \boldsymbol{u}^{T}$, i.e. a rank-1 perturbation of the identity
- We can combine r Householder matrices $\boldsymbol{H}_{1}, \ldots, \boldsymbol{H}_{r}$ into a rank- r peturbation of the identity

$$
\overline{\boldsymbol{H}}=\prod_{i=1}^{r} \boldsymbol{H}_{i}=\boldsymbol{I}-\boldsymbol{Y} \boldsymbol{V}^{T}, \text { where } \boldsymbol{Y}, \boldsymbol{V} \in \mathbb{R}^{n \times r}
$$

- Often, $\boldsymbol{V}=\boldsymbol{Y} \boldsymbol{T}$ where \boldsymbol{T} is upper-triangular and \boldsymbol{Y} is lower-triangular, yielding

$$
\overline{\boldsymbol{H}}=\boldsymbol{I}-\boldsymbol{Y} \boldsymbol{T}^{T} \boldsymbol{Y}^{T}
$$

- If $\boldsymbol{H}_{i}=\boldsymbol{I}-\boldsymbol{y}_{i} \boldsymbol{y}_{i}^{T}$, then the i th column of \boldsymbol{Y} is \boldsymbol{y}_{i}, while \boldsymbol{T} is defined by $\boldsymbol{T}^{-1}+\boldsymbol{T}^{-T}=\boldsymbol{Y}^{T} \boldsymbol{Y}$

Parallel Householder QR

- A basis kernel representation of Householder transformations, allows us to update a trailing matrix \boldsymbol{B} as

$$
\overline{\boldsymbol{H}} \boldsymbol{B}=\left(\boldsymbol{I}-\boldsymbol{Y} \boldsymbol{T}^{T} \boldsymbol{Y}^{T}\right) \boldsymbol{B}=\boldsymbol{B}-\boldsymbol{Y}\left(\boldsymbol{T}^{T}\left(\boldsymbol{Y}^{T} \boldsymbol{B}\right)\right)
$$

with cost $O\left(n^{2} r\right)$

- Performing such updates is essentially as hard as Schur complement updates in LU
- Forming Householder vector \boldsymbol{v}_{k} is also analogous to computing multipliers in Gaussian elimination
- Thus, parallel implementation is similar to parallel LU, but with Householder vectors broadcast horizontally instead of multipliers

Panel QR Factorization

- Finding Householder vector \boldsymbol{y}_{i} requires computation of the norm of the leading vector of the i th trailing matrix, creating a latency bottleneck much like that of pivot row selection in partial pivoting
- Other methods need $L=\Theta(\log (p))$ rather than $\Theta(n)$ msgs
- For example Cholesky-QR and Cholesky-QR2 perform $\boldsymbol{R}=\operatorname{Cholesky}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right), \boldsymbol{Q}=\boldsymbol{A} \boldsymbol{R}^{-1}$ (Cholesky-QR2 does one step of refinement), requiring only a single allreduce, but losing stability
- Unconditional stability and $O(\log (p))$ messages achieved by TSQR algorithm with row-wise recursion (akin to tournament pivoting)
- Basis-kernel representation can be recovered by constructing first r columns of $\overline{\boldsymbol{H}}$

Cholesky QR2

Cholesky-QR can be made more stable [Yamamoto et al 2014]

- As before, compute $\{\overline{\boldsymbol{Q}}, \overline{\boldsymbol{R}}\}=$ Cholesky-QR (\boldsymbol{A})
- Then, iterate $\{\boldsymbol{Q}, \hat{\boldsymbol{R}}\}=$ Cholesky-QR $(\overline{\boldsymbol{Q}})$
- $\boldsymbol{R}=\hat{\boldsymbol{R}} \overline{\boldsymbol{R}}$
- $A=Q R$
- Solution still bad when $\kappa(\boldsymbol{A}) \geq 1 / \sqrt{\epsilon_{\text {mach }}}$
- But if $\kappa(\boldsymbol{A})<1 / \sqrt{\epsilon_{\text {mach }}}$, it is numerically stable because $\kappa(\overline{\boldsymbol{Q}}) \approx 1$
- For QR of a tall-skinny A with $\kappa(A)<1 / \sqrt{\epsilon_{\text {mach }}}$, this algorithm is easy to implement, stable, and scalable

Recursive TSQR

Block Givens rotations yield another idea

- We can also employ a recursive scheme analogous to tournament pivoting for LU
- Subdivide $\boldsymbol{A}=\left[\begin{array}{l}\boldsymbol{A}_{U} \\ \boldsymbol{A}_{L}\end{array}\right]$ and recursively compute
$\left\{\boldsymbol{Q}_{U}, \boldsymbol{R}_{U}\right\}=\boldsymbol{Q} \boldsymbol{R}\left(\boldsymbol{A}_{U}\right),\left\{\boldsymbol{Q}_{L}, \boldsymbol{R}_{L}\right\}=\boldsymbol{Q} \boldsymbol{R}\left(\boldsymbol{A}_{L}\right)$ concurrently with $P / 2$ processors each
- We have $\boldsymbol{A}=\left[\begin{array}{l}\boldsymbol{Q}_{U} \boldsymbol{R}_{U} \\ \boldsymbol{Q}_{L} \boldsymbol{R}_{L}\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{Q}_{U} & \\ & \boldsymbol{Q}_{L}\end{array}\right]\left[\begin{array}{l}\boldsymbol{R}_{U} \\ \boldsymbol{R}_{L}\end{array}\right]$
- Gather \boldsymbol{R}_{U} and \boldsymbol{R}_{L} and compute sequentially, $\left[\begin{array}{l}\boldsymbol{R}_{U} \\ \boldsymbol{R}_{L}\end{array}\right]=\tilde{\boldsymbol{Q}} \boldsymbol{R}$
- We now have $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R}$ where $\boldsymbol{Q}=\left[\begin{array}{ll}\boldsymbol{Q}_{U} & \\ & \boldsymbol{Q}_{L}\end{array}\right] \tilde{\boldsymbol{Q}}$

Recursive TSQR, Binary (Binomial) Tree

Cost Analysis of Recursive TSQR

We can subdivide the cost into base cases (tree leaves) and internal nodes

- Every processor computes a QR of their $m / P \times n$ leaf matrix block

$$
T_{\text {Rec-TSQR }}(m, n, P)=T_{\text {Rec-TSQR }}(n P, n, 1)+(m / P) n^{2} \cdot \gamma
$$

- Subsequently for each tree node, each processor we sends/receives a message of size $O\left(n^{2}\right)$ and performs $O\left(n^{3}\right)$ work to factorize $2 n \times n$ matrix
- The total cost is

$$
\begin{aligned}
T_{\text {Rec-TSQR }}(m, n, P)=O & \left(\left[m n^{2} / P+n^{3} \log (P)\right] \cdot \gamma\right. \\
& \left.+n^{2} \log (P) \cdot \beta+\log (P) \cdot \alpha\right)
\end{aligned}
$$

- Communication cost is higher than of Cholesky-QR2, which is $2 T_{\text {allreduce }}\left(n^{2} / 2, P\right)=O\left(n^{2} \beta+\log (P) \alpha\right)$

Recovering Q in Recursive TSQR

Householder Reconstruction

Given $m \times n$ matrix \boldsymbol{Q}_{1}, we can construct \boldsymbol{Y} such that $\boldsymbol{Q}=\left(\boldsymbol{I}-\boldsymbol{Y} \boldsymbol{T} \boldsymbol{Y}^{T}\right)=\left[\boldsymbol{Q}_{1}, \boldsymbol{Q}_{2}\right]$ and \boldsymbol{Q} is orthogonal

- note that in the Householder representation, we have $\boldsymbol{I}-\boldsymbol{Q}=\boldsymbol{Y} \cdot \boldsymbol{T} \boldsymbol{Y}^{T}$, where \boldsymbol{Y} is lower-trapezoidal and $\boldsymbol{T} \boldsymbol{Y}^{T}$ is upper-trapezoidal
- Let $\boldsymbol{Q}_{1}=\left[\begin{array}{l}\boldsymbol{Q}_{11} \\ \boldsymbol{Q}_{21}\end{array}\right]$ where \boldsymbol{Q}_{11} is $n \times n$, compute

$$
\left\{\boldsymbol{Y}, \boldsymbol{T} \boldsymbol{Y}_{1}^{T}\right\}=\operatorname{LU}\left(\left[\begin{array}{c}
\boldsymbol{I}-\boldsymbol{Q}_{11} \\
\boldsymbol{Q}_{21}
\end{array}\right]\right)
$$

where \boldsymbol{Y}_{1} is the upper-triangular $n \times n$ leading block of \boldsymbol{Y}^{T}

Householder Reconstruction Stability

Householder reconstruction can be done with unconditional stability

- We need to be just a little more careful

$$
\left\{\boldsymbol{Y}, \boldsymbol{T} \boldsymbol{Y}_{1}^{T}\right\}=\operatorname{LU}\left(\left[\begin{array}{c}
\boldsymbol{S}-\boldsymbol{Q}_{11} \\
\boldsymbol{Q}_{21}
\end{array}\right]\right),
$$

where \boldsymbol{S} is a sign matrix (each value in $\{-1,1\}$) with values picked to match the sign of the diagonal entry within LU

- These are the sign choices we need to make for regular Householder factorization
- Since all entries of Q are ≤ 1, pivoting is unnecessary (partial pivoting would do nothing)
- Since $\kappa(\boldsymbol{Q}) \approx 1$, Householder reconstruction is stable

2D Householder QR, Basis-Kernel Representation

Transpose and Broadcast \boldsymbol{Y}

2D Householder QR, Basis-Kernel Representation

Reduce $\boldsymbol{W}=\boldsymbol{Y}^{T} \boldsymbol{A}$

$$
W=Y^{\top} A
$$

2D Householder QR, Basis-Kernel Representation

Transpose \boldsymbol{W} and Compute $\boldsymbol{T}^{T} \boldsymbol{W}$
$\mathrm{T}^{\top} \mathrm{W}=\mathrm{T}^{\top} \mathrm{Y}^{\top} \mathrm{A}$

2D Householder QR, Trailing Matrix Update

Compute $\boldsymbol{Y} \boldsymbol{T}^{T} \boldsymbol{Y}^{T} \boldsymbol{A}$ and subsequently $\boldsymbol{Q}^{T} \boldsymbol{A}=\boldsymbol{A}-\boldsymbol{Y} \boldsymbol{T}^{T} \boldsymbol{Y}^{T} \boldsymbol{A}$ $Y\left(T^{\top} W\right)=Y T^{\top} Y^{\top} A$

Elmroth-Gustavson Algorithm (3Dx2Dx1D)

One approach is to use column-recursion $\boldsymbol{A}=\left[\boldsymbol{A}_{1}, \boldsymbol{A}_{2}\right]$

- Compute $\left\{\boldsymbol{Y}_{1}, \boldsymbol{T}_{1}, \boldsymbol{R}_{1}\right\}=\mathrm{QR}\left(\boldsymbol{A}_{1}\right)$ recursively with P processors
- Perform rectangular matrix multiplications with communication-avoiding algorithms to compute

$$
\boldsymbol{B}_{2}=\left(\boldsymbol{I}-\boldsymbol{Y}_{1} \boldsymbol{T}_{1} \boldsymbol{Y}_{1}^{T}\right)^{T} \boldsymbol{A}_{2}
$$

- Compute $\left\{\boldsymbol{Y}_{2}, \boldsymbol{T}_{2}, \boldsymbol{R}_{2}\right\}=\operatorname{QR}\left(\boldsymbol{B}_{22}\right)$ where $\boldsymbol{B}_{2}=\left[\begin{array}{l}\boldsymbol{R}_{12} \\ \boldsymbol{B}_{22}\end{array}\right]$ recursively
- Concatenate \boldsymbol{Y}_{1} and \boldsymbol{Y}_{2} into \boldsymbol{Y} and compute \boldsymbol{T} from \boldsymbol{Y} via rectangular matrix multiplication
- Output $\left\{\boldsymbol{Y}, \boldsymbol{T},\left[\begin{array}{cc}\boldsymbol{R}_{1} & \boldsymbol{R}_{12} \\ & \boldsymbol{R}_{2}\end{array}\right]\right\}$
- Pick an appropriate number of columns for a TSQR base-case

Givens Rotations

- Givens rotation operates on pair of rows to introduce single zero
- For given 2-vector $\boldsymbol{a}=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]^{T}$, if

$$
c=\frac{a_{1}}{\sqrt{a_{1}^{2}+a_{2}^{2}}}, \quad s=\frac{a_{2}}{\sqrt{a_{1}^{2}+a_{2}^{2}}}
$$

then

$$
\boldsymbol{G} \boldsymbol{a}=\left[\begin{array}{rr}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\alpha \\
0
\end{array}\right]
$$

- Scalars c and s are cosine and sine of angle of rotation, and $c^{2}+s^{2}=1$, so G is orthogonal

Givens QR Factorization

- Givens rotations can be systematically applied to successive pairs of rows of matrix \boldsymbol{A} to zero entire strict lower triangle
- Subdiagonal entries of matrix can be annihilated in various possible orderings (but once introduced, zeros should be preserved)
- Each rotation must be applied to all entries in relevant pair of rows, not just entries determining c and s
- Once upper triangular form is reached, product of rotations, Q, is orthogonal, so we have QR factorization of \boldsymbol{A}

Parallel Givens QR Factorization

- With 1-D partitioning of \boldsymbol{A} by columns, parallel implementation of Givens QR factorization is similar to parallel Householder QR factorization, with cosines and sines broadcast horizontally and each task updating its portion of relevant rows
- With 1-D partitioning of \boldsymbol{A} by rows, broadcast of cosines and sines is unnecessary, but there is no parallelism unless multiple pairs of rows are processed simultaneously
- Fortunately, it is possible to process multiple pairs of rows simultaneously without interfering with each other

Parallel Givens QR Factorization

- Stage at which each subdiagonal entry can be annihilated is shown here for 8×8 example
$\left[\begin{array}{cccccccc}\times & & & & & & & \\ 7 & \times & & & & & & \\ 6 & 8 & \times & & & & & \\ 5 & 7 & 9 & \times & & & & \\ 4 & 6 & 8 & 10 & \times & & & \\ 3 & 5 & 7 & 9 & 11 & \times & & \\ 2 & 4 & 6 & 8 & 10 & 12 & \times & \\ 1 & 3 & 5 & 7 & 9 & 11 & 13 & \times\end{array}\right]$
- Maximum parallelism is $n / 2$ at stage $n-1$ for $n \times n$ matrix

Parallel Givens QR Wavefront

Parallel Givens QR Factorization

- Communication cost is high, but can be reduced by having each task initially reduce its entire local set of rows to upper triangular form, which requires no communication
- Then, in subsequent phase, task pairs cooperate in annihilating additional entries using one row from each of two tasks, exchanging data as necessary
- Various strategies can be used for combining results of first phase, depending on underlying network topology
- Parallel partitioning with slanted-panels (slope -2) achieve same scalablility as parallel algorithms for LU without pivoting (see [Tiskin 2007])

Parallel Givens QR Factorization

- With 2-D partitioning of \boldsymbol{A}, parallel implementation combines features of 1-D column and 1-D row algorithms
- In particular, sets of rows can be processed simultaneously to annihilate multiple entries, but updating of rows requires horizontal broadcast of cosines and sines

References

- E. Chu and A. George, QR factorization of a dense matrix on a hypercube multiprocessor, SIAM J. Sci. Stat. Comput. 11:990-1028, 1990
- M. Cosnard, J. M. Muller, and Y. Robert, Parallel QR decomposition of a rectangular matrix, Numer. Math. 48:239-249, 1986
- M. Cosnard and Y. Robert, Complexity of parallel QR factorization, J. ACM 33:712-723, 1986
- E. Elmroth and F. G. Gustavson, Applying recursion to serial and parallel QR factorization leads to better performance, IBM J. Res. Develop. 44:605-624, 2000

References

- B. Hendrickson, Parallel QR factorization using the torus-wrap mapping, Parallel Comput. 19:1259-1271, 1993.
- F. T. Luk, A rotation method for computing the QR-decomposition, SIAM J. Sci. Stat. Comput. 7:452-459, 1986
- D. P. O'Leary and P. Whitman, Parallel QR factorization by Householder and modified Gram-Schmidt algorithms, Parallel Comput. 16:99-112, 1990.
- A. Pothen and P. Raghavan, Distributed orthogonal factorization: Givens and Householder algorithms, SIAM J. Sci. Stat. Comput. 10:1113-1134, 1989
- A. Tiskin, Communication-efficient parallel generic pairwise elimination. Future Generation Computer Systems 23.2 (2007): 179-188.

