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Eigenvalues and Eigenvectors

Given n× n matrix A, find scalar λ and nonzero vector x
such that

Ax = λx

λ is eigenvalue and x is corresponding eigenvector

A always has n eigenvalues, but they may be neither real
nor distinct

May need to compute only one or few eigenvalues, or all n
eigenvalues

May or may not need corresponding eigenvectors
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Problem Transformations

Shift : for scalar σ, eigenvalues of A− σI are eigenvalues
of A shifted by σ, λi − σ

Inversion : for nonsingular A, eigenvalues of A−1 are
reciprocals of eigenvalues of A, 1/λi

Powers : for integer k > 0, eigenvalues of Ak are kth
powers of eigenvalues of A, λk

i

Polynomial : for polynomial p(t), eigenvalues of p(A) are
values of p evaluated at eigenvalues of A, p(λi)
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Similarity Transformations

B is similar to A if there is nonsingular T such that

B = T−1AT

Then

By = λy ⇒ T−1ATy = λy ⇒ A(Ty) = λ(Ty)

so A and B have same eigenvalues, and if y is
eigenvector of B, then x = Ty is eigenvector of A

Similarity transformations preserve eigenvalues, and
eigenvectors are easily recovered
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Similarity Transformations

Forms attainable by similarity transformation

A T B
distinct eigenvalues nonsingular diagonal
real symmetric orthogonal real diagonal
complex Hermitian unitary real diagonal
normal unitary diagonal
arbitrary real orthogonal real upper Hessenberg
arbitrary unitary upper triangular (Schur)
arbitrary nonsingular almost diagonal (Jordan)
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Preliminary Reduction

Eigenvalues easier to compute if matrix first reduced to
simpler form by similarity transformation

Diagonal or triangular most desirable, but cannot always
be reached in finite number of steps

Preliminary reduction usually to tridiagonal form (for
symmetric matrix) or Hessenberg form (for nonsymmetric
matrix)

Preliminary reduction usually done by orthogonal
transformations, using algorithms similar to QR
factorization, but transformations must be applied from
both sides to maintain similarity
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Parallel Algorithms for Eigenvalues

Algorithms for computing eigenvalues and eigenvectors
employ basic operations such as

vector updates (saxpy)
inner products
matrix-vector and matrix-matrix multiplication
solution of triangular systems
orthogonal (QR) factorization

In many cases, parallel implementations will be based on
parallel algorithms we have already seen for these basic
operations, although there will sometimes be new sources
of parallelism
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Power Iteration

Simplest method for computing one eigenvalue-
eigenvector pair is power iteration, which in effect takes
successively higher powers of matrix times initial starting
vector

x0 = arbitrary nonzero vector
for k = 1, 2, . . .

yk = Axk−1

xk = yk/∥yk∥∞
end

If A has unique eigenvalue λ1 of maximum modulus, then
power iteration converges to eigenvector corresponding to
dominant eigenvalue
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Power Iteration

Convergence rate of power iteration depends on ratio
|λ2/λ1|, where λ2 is eigenvalue having second largest
modulus

It may be possible to choose shift, A− σI, so that ratio is
more favorable and yields more rapid convergence

Shift must then be added to result to obtain eigenvalue of
original matrix
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Parallel Power Iteration

Power iteration requires repeated matrix-vector products,
which are easily implemented in parallel for dense or
sparse matrix, as we have seen

Additional communication may be required for
normalization, shifts, convergence test, etc.

Though easily parallelized, power iteration is often too slow
to be useful in this form
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Inverse Iteration

Inverse iteration is power iteration applied to A−1, which
converges to eigenvector corresponding to dominant
eigenvalue of A−1, which is reciprocal of smallest
eigenvalue of A

Inverse of A is not computed explicitly, but only
factorization of A (and only once) to solve system of linear
equations at each iteration

x0 = arbitrary nonzero vector
for k = 1, 2, . . .

Solve Ayk = xk−1 for yk

xk = yk/∥yk∥∞
end
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Inverse Iteration

Shifting strategy can greatly accelerate convergence

Inverse iteration is especially useful for computing
eigenvector corresponding to approximate eigenvalue,
since it converges rapidly when approximate eigenvalue is
used as shift

Inverse iteration also useful for computing eigenvalue
closest to any given value β, since if β is used as shift,
then desired eigenvalue corresponds to smallest
eigenvalue of shifted matrix
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Parallel Inverse Iteration

Inverse iteration requires initial factorization of matrix A
and solution of triangular systems at each iteration, so it
appears to be much less amenable to efficient parallel
implementation than power iteration

However, inverse iteration is often used to compute
eigenvector in situations where

approximate eigenvalue is already known, so using it as
shift yields very rapid convergence
matrix has previously been reduced to simpler form (e.g.,
tridiagonal) for which linear system is easy to solve
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Simultaneous Iteration

To compute many eigenvalue-eigenvector pairs, could
apply power iteration to several starting vectors
simultaneously, giving simultaneous iteration

X0 = arbitrary n× q matrix of rank q
for k = 1, 2, . . .

Xk = AXk−1

end

span(Xk) converges to invariant subspace determined by
q largest eigenvalues of A, provided |λq| > |λq+1|

Normalization is needed at each iteration, and columns of
Xk become increasingly ill-conditioned basis for span(Xk)
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Orthogonal Iteration

Both issues addressed by computing QR factorization at
each iteration, giving orthogonal iteration

X0 = arbitrary n× q matrix of rank q
for k = 1, 2, . . .

Compute reduced QR factorization
Q̂kRk = Xk−1

Xk = AQ̂k

end

Converges to block triangular form, and blocks are
triangular where moduli of consecutive eigenvalues are
distinct
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Parallel Orthogonal Iteration

Orthogonal iteration requires matrix-matrix multiplication
and QR factorization at each iteration, both of which we
know how to implement in parallel with reasonable
efficiency
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QR Iteration
If we take X0 = I, then orthogonal iteration should
produce all eigenvalues and eigenvectors of A

Orthogonal iteration can be reorganized to avoid explicit
formation and factorization of matrices Xk

Instead, sequence of unitarily similar matrices is generated
by computing QR factorization at each iteration and then
forming reverse product, giving QR iteration

A0 = A
for k = 1, 2, . . .

Compute QR factorization
QkRk = Ak−1

Ak = RkQk

end
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In simple form just given, each iteration of QR method
requires Θ(n3) work

Work per iteration is reduced to Θ(n2) if matrix is in
Hessenberg form, or Θ(n) if symmetric matrix is in
tridiagonal form

Preliminary reduction is usually done by Householder or
Givens transformations

In addition, number of iterations required is reduced by
preliminary reduction of matrix

Convergence rate also enhanced by judicious choice of
shifts
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Parallel QR Iteration

Preliminary reduction can be implemented efficiently in
parallel, using algorithms analogous to parallel QR
factorization for dense matrix

But subsequent QR iteration for reduced matrix is
inherently serial, and permits little parallel speedup for this
portion of algorithm

This may not be of great concern if iterative phase is
relatively small portion of total time, but it does limit
efficiency and scalability
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Reduction to Hessenberg/Tridiagonal
To reduce to Hessenberg can execute QR on each column

If Hi is the Householder transformation used to annihilate
ith subcolumn, perform similarity transformation

A(i+1) = HiA
(i)HT

i

More generally, run QR on b subcolumns of A to reduce to
band-width b

B(i+1) = QiB
(i)QT

i

To avoid fill QT
i must not operate on the b columns which

Qi reduces

Once reduction completed to a band-width subsequent
eliminations introduce fill (bulges) but can be done
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Two-sided successive orthogonal reductions generate
bulges of fill when applied to a banded matrix
Bulges can be chased with pipelined parallelism
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Krylov Subspace Methods

Krylov subspace methods reduce matrix to Hessenberg
(or tridiagonal) form using only matrix-vector multiplication

For arbitrary starting vector x0, if

Kk =
[
x0 Ax0 · · · Ak−1x0

]
then

K−1
n AKn = Cn

where Cn is upper Hessenberg (in fact, companion matrix)
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Krylov Subspace Methods

To obtain better conditioned basis for span(Kn), compute
QR factorization

QnRn = Kn

so that
QH

n AQn = RnCnR
−1
n ≡ H

with H upper Hessenberg
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Krylov Subspace Methods

Equating kth columns on each side of equation
AQn = QnH yields recurrence

Aqk = h1kq1 + · · ·+ hkkqk + hk+1,kqk+1

relating qk+1 to preceding vectors q1, . . . , qk

Premultiplying by qHj and using orthonormality,

hjk = qHj Aqk, j = 1, . . . , k

These relationships yield Arnoldi iteration, which produces
upper Hessenberg matrix column by column using only
matrix-vector multiplication by A and inner products of
vectors
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Arnoldi Iteration

x0 = arbitrary nonzero starting vector
q1 = x0/∥x0∥2
for k = 1, 2, . . .

uk = Aqk
for j = 1 to k

hjk = qHj uk

uk = uk − hjkqj
end
hk+1,k = ∥uk∥2
if hk+1,k = 0 then stop
qk+1 = uk/hk+1,k

end
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Arnoldi Iteration

If
Qk =

[
q1 · · · qk

]
,

then
Hk = QH

k AQk

is upper Hessenberg matrix

Eigenvalues of Hk, called Ritz values, are approximate
eigenvalues of A, and Ritz vectors given by Qky, where y
is eigenvector of Hk, are corresponding approximate
eigenvectors of A

Eigenvalues of Hk must be computed by another method,
such as QR iteration, but this is easier problem if k ≪ n
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Arnoldi Iteration
Arnoldi iteration expensive in work and storage because
each new vector qk must be orthogonalized against all
previous columns of Qk, which must be stored

So Arnoldi process usually restarted periodically with
carefully chosen starting vector

Ritz values and vectors produced are often good
approximations to eigenvalues and eigenvectors of A after
relatively few iterations

Work and storage costs drop dramatically if matrix
symmetric or Hermitian, since recurrence then has only
three terms and Hk is tridiagonal (so usually denoted Tk),
yielding Lanczos iteration
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Lanczos Iteration

q0 = 0
β0 = 0
x0 = arbitrary nonzero starting vector
q1 = x0/∥x0∥2
for k = 1, 2, . . .

uk = Aqk
αk = qHk uk

uk = uk − βk−1qk−1 − αkqk
βk = ∥uk∥2
if βk = 0 then stop
qk+1 = uk/βk

end
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Lanczos Iteration

αk and βk are diagonal and subdiagonal entries of
symmetric tridiagonal matrix Tk

As with Arnoldi, Lanczos iteration does not produce
eigenvalues and eigenvectors directly, but only tridiagonal
matrix Tk, whose eigenvalues and eigenvectors must be
computed by another method to obtain Ritz values and
vectors

If βk = 0, then algorithm appears to break down, but in that
case invariant subspace has already been identified (i.e.,
Ritz values and vectors are already exact at that point)
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Lanczos Iteration

In principle, if Lanczos algorithm is run until k = n,
resulting tridiagonal matrix is orthogonally similar to A

In practice, rounding error causes loss of orthogonality,
invalidating this expectation

Problem can be overcome by reorthogonalizing vectors as
needed, but expense can be substantial

Alternatively, can ignore problem, in which case algorithm
still produces good eigenvalue approximations, but multiple
copies of some eigenvalues may be generated
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Krylov Subspace Methods

Virtue of Arnoldi and Lanczos iterations is ability to produce
good approximations to extreme eigenvalues for k ≪ n

Moreover, they require only one matrix-vector multiplication
by A per step and little auxiliary storage, so are ideally
suited to large sparse matrices

If eigenvalues are needed in middle of spectrum, say near
σ, then algorithm can be applied to matrix (A− σI)−1,
assuming it is practical to solve systems of form
(A− σI)x = y
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Parallel Krylov Subspace Methods

Krylov subspace methods composed of

vector updates (saxpy)
inner products
matrix-vector multiplication
computing eigenvalues/eigenvectors of tridiagonal matrices

Parallel implementation requires implementing each of
these in parallel as before

For early iterations, Hessenberg or tridiagonal matrices
generated are too small to benefit from parallel
implementation, but Ritz values and vectors need not be
computed until later
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Jacobi Method

Jacobi method for symmetrix matrix starts with A0 = A
and computes sequence

Ak+1 = JT
k AkJk

where Jk is plane rotation that annihilates symmetric pair
of off-diagonal entries in Ak

Plane rotations are applied repeatedly from both sides in
systematic sweeps through matrix until magnitudes of all
off-diagonal entries are reduced below tolerance

Resulting diagonal matrix is orthogonally similar to original
matrix, so diagonal entries are eigenvalues, and
eigenvectors given by product of plane rotations
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Parallel Jacobi Method

Jacobi method, though slower than QR iteration serially,
parallelizes better

Parallel implementation of Jacobi method performs many
annihilations simultaneously, at locations chosen so that
rotations do not interfere with each other (analogous to
parallel Givens QR factorization)
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Divide-and-Conquer Method

One method for computing eigenvalues and eigenvectors
of real symmetric tridiagonal matrix is based on
divide-and-conquer

Express symmetric tridiagonal matrix T as

T =

[
T1 O
O T2

]
+ β uuT

Can now compute eigenvalues and eigenvectors of smaller
matrices T1 and T2

To relate these back to eigenvalues and eigenvectors of
original matrix requires solution of secular equation, which
can be done reliably and efficiently
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Divide-and-Conquer Method

Applying this approach recursively yields
divide-and-conquer algorithm that is naturally parallel

Parallelism in solving secular equations grows as
parallelism in processing independent tridiagonal matrices
shrinks, and vice versa

Algorithm is complicated to implement and difficult
questions of numerical stability, eigenvector orthogonality,
and load balancing must be addressed
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Polar Decomposition
The polar decomposition uses spectrum slicing to obtain
the symmetric eigenvalue decomposition via O(log n) QR
factorizations and matrix multiplications and O(n3) work

The polar decomposition of a matrix A is composed of an
orthogonal matrix U and symmetric positive semi-definite
matrix H, A = UH
It can be computed via the QR-based Dynamically
Weighted Halley (QDWH) algorithm, an iterative scheme
that starts with X0 = A/α and computes[√

ckXk

I

]
=

[
Q1

Q2

]
R, Xk+1 =

bk
ck

Xk+
1

√
ck

(ak−bk/ck)Q1Q
T
2

With appropriate choices of α, ak, bk, ck, QDWH converges
within 6 iterations for double precision

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 38 / 41



Basics
Power Iteration

QR Iteration
Krylov Methods
Other Methods

Jacobi Method
Divide-and-Conquer
Polar Decomposition

Eigenvalues via Polar Decomposition

When A is symmetric, the orthogonal matrix U in the polar
decomposition is given by the sign function,

U = sign(A) = A(A2)−1/2

If the eigenvalue decomposition of A is A = V DV T , then

U = V sign(D)V T =
[
V1 V2

] [Ik
−In−k

] [
V1 V2

]T
Consequently, given an estimate σ of a median eigenvalue
of A, the polar decomposition of A− σI allows one to
partition the spectrum by finding V1 from subspace
iteration on U + I = 2V1V

T
1

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 39 / 41



Basics
Power Iteration

QR Iteration
Krylov Methods
Other Methods

References

Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst,
eds., Templates for the Solution of Algebraic Eigenvalue
Problems: A Practical Guide, SIAM, 2000

J. W. Demmel, M. T. Heath, and H. A. van der Vorst, Parallel
numerical linear algebra, Acta Numerica 2:111-197, 1993

P. J. Eberlein and H. Park, Efficient implementation of Jacobi
algorithms and Jacobi sets on distributed memory architectures,
J. Parallel Distrib. Comput., 8:358-366, 1990

G. W. Stewart, A Jacobi-like algorithm for computing the Schur
decomposition of a non-Hermitian matrix, SIAM J. Sci. Stat.
Comput. 6:853-864, 1985

G. W. Stewart, A parallel implementation of the QR algorithm,
Parallel Comput. 5:187-196, 1987

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 40 / 41



Basics
Power Iteration

QR Iteration
Krylov Methods
Other Methods

References

Y. Nakatsukasa and N.J Higham, Stable and efficient spectral
divide and conquer algorithms for the symmetric eigenvalue
decomposition and the SVD, SIAM Journal on Scientific
Computing, 2013.

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 41 / 41


	Basics
	Definitions
	Transformations
	Parallel Algorithms

	Power Iteration
	Power Iteration
	Inverse Iteration
	Simultaneous Iteration

	QR Iteration
	Orthogonal Iteration
	QR Iteration

	Krylov Methods
	Krylov Subspaces
	Arnoldi Iteration
	Lanczos Iteration
	Krylov Subspace Methods

	Other Methods
	Jacobi Method
	Divide-and-Conquer
	Polar Decomposition

	

