
Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Parallel Numerical Algorithms
Chapter 6 – Matrix Models

Section 6.1 – Fast Fourier Transform

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 1 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Outline

1 Convolution
Problem
Toom-Cook Algorithm

2 Discrete Fourier Transform
Roots of Unity
DFT
Inverse DFT

3 Fast Fourier Transform
FFT Algorithm

4 Parallel FFT
Binary Exchange Parallel FFT
Transpose Parallel FFT

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 2 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Problem
Toom-Cook Algorithm

Convolution
Convolution takes input a and b and computes c

∀k ∈ [0, n− 1] ck =

k∑
j=0

ajbk−j

If a and b are coefficients of degree n/2− 1 polynomials

pa(x) =

n/2−1∑
k=0

akx
k, pb(x) =

n/2−1∑
k=0

bkx
k

the convolution computes the coefficients c of the product

pc(x) = pa(x)pb(x) =

n−1∑
k=0

ckx
k

naive evaluation costs O(n2) operations
Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Problem
Toom-Cook Algorithm

Convolution and Toeplitz Matrices

Convolution can be interpreted as matrix-vector
multiplication with a triangular Toeplitz matrix

[c0 c1 c2 c3] = [a1 a2 a3 a4]


b0 b1 b2 b3
0 b0 b1 b2
0 0 b0 b1
0 0 0 b0


Toeplitz and Hankel matrices (in the latter, each
antidiagonal is defined by a single element) provide a
general matrix representation for convolutional operators

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 4 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Problem
Toom-Cook Algorithm

Convolution via Interpolation (Toom-Cook)

Evaluate pa and pb at a set of nodes x0, . . . , xn−1

The values of pc at each xj are then easily obtained

pc(xj) = pa(xj)pb(xj)

The inverse DFT, F−1
n pc(x) interpolates the values of the

polynomial pc at each xj producing its coefficients c

For a Vandermonde matrix Vn associtated with nodes
x0, . . . , xn−1, the overall procedure is described by

c = V −1
n [(Vna)⊙ (Vnb)]

where ⊙ is an elementwise product (a and b are padded
with trailing zeros)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 5 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Roots of Unity
DFT
Inverse DFT

Roots of Unity

For given integer n, we use notation

ωn = cos(2π/n)− i sin(2π/n) = e−2πi/n

for primitive nth root of unity, where i =
√
−1

nth roots of unity, sometimes called twiddle factors in this
context, are then given by ωk

n or by ω−k
n , k = 0, . . . , n− 1

For convenience, we will assume that n is power of two,
and all logarithms used will be base two

We will also index sequences (components of vectors)
starting from 0 rather than 1

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 6 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Roots of Unity
DFT
Inverse DFT

Discrete Fourier Transform

Discrete Fourier Transform, or DFT, of sequence
x = [x0, . . . , xn−1]

T is sequence y = [y0, . . . , yn−1]
T given

by

ym =

n−1∑
k=0

xk ω
mk
n , m = 0, 1, . . . , n− 1

or
y = Fn x

where entries of DFT matrix Fn are given by

{Fn}mk = ωmk
n

The DFT matrix is a Vandermonde matrix with nodes
ω0
n, . . . , ω

n
n−1

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 7 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Roots of Unity
DFT
Inverse DFT

Inverse DFT

It is easily seen that

F−1
n = (1/n)FH

n

Hence κ(Fn) = 1, while for Vandermonde matrices with
real nodes, condition number grows exponentially with n

So, since (ωk
n)

∗ = ω−k
n , inverse DFT is given by

xk =
1

n

n−1∑
m=0

ym ω−mk
n k = 0, 1, . . . , n− 1

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Roots of Unity
DFT
Inverse DFT

Example

F4 =


1 1 1 1
1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i



4F−1
4 =


1 1 1 1
1 ω−1 ω−2 ω−3

1 ω−2 ω−4 ω−6

1 ω−3 ω−6 ω−9

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i



Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 9 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

FFT Algorithm

Radix-2 Fast Fourier Transform (FFT)
Consider b = Fna, we have

∀j ∈ [0, n− 1] bj =

n−1∑
k=0

ωjk
n ak

Express DFT as two DFTs of dimension n/2, with a
different root of unity ωn/2

Separate summands into odds and evens, use ωn/2 = ω2
n

bj =

n/2−1∑
k=0

ωj(2k)
n a2k +

n/2−1∑
k=0

ωj(2k+1)
n a2k+1

=

n/2−1∑
k=0

ωjk
n/2a2k + ωj

n

n/2−1∑
k=0

ωjk
n/2a2k+1

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

FFT Algorithm

Radix-2 Fast Fourier Transform (FFT), contd.

bj =

n/2−1∑
k=0

ωjk
n/2a2k︸ ︷︷ ︸

uj

+ωj
n

n/2−1∑
k=0

ωjk
n/2a2k+1︸ ︷︷ ︸
vj

The summations for bj and bj+n/2 are closely related,

bj+n/2 =

n/2−1∑
k=0

ω
(j+n/2)k
n/2 a2k + ωj+n/2

n

n/2−1∑
k=0

ω
(j+n/2)k
n/2 a2k+1

Now ω
(j+n/2)k
n/2 = ωjk

n/2 since (ω
n/2
n/2)

k = 1k = 1 and using ω
n/2
n = −1,

bj+n/2 =

n/2−1∑
k=0

ωjk
n/2a2k︸ ︷︷ ︸

uj

−ωj
n

n/2−1∑
k=0

ωjk
n/2a2k+1︸ ︷︷ ︸
vj

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 11 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

FFT Algorithm

Radix-2 Fast Fourier Transform (FFT), contd.
Let vectors u and v be two recursive FFTs, ∀j ∈ [0, n/2− 1]

uj =

n/2−1∑
k=0

ωjk
n/2a2k, vj =

n/2−1∑
k=0

ωjk
n/2a2k+1

Given u and v scale using "twiddle factors" zj = ωj
n · vj

Then it suffices to combine the vectors as follows b =

[
u+ z
u− z

]
This recombination is an FFT of dimension 2

b =

[
b1
b2

]
= vec

([
b1 b2

])
= vec

([
u z

] [1 1
1 −1

]
︸ ︷︷ ︸
F4[0:2,0:2]

)

Radix-r algorithm for any A ∈ Rr×n/r

Fn vec (A) = vec
((
[Fn[0 : r, 0 : n/r]⊙ (FrA)]Fn/r)

T
)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

FFT Algorithm

FFT Algorithm

procedure fft(x, y, n, ω)
if n = 1 then

y[0] = x[0]
else

for k = 0 to (n/2)− 1
p[k] = x[2k]
s[k] = x[2k + 1]

end
fft(p, q, n/2, ω2)
fft(s, t, n/2, ω2)
for k = 0 to n− 1

y[k] = q[k mod (n/2)] + ωkt[k mod (n/2)]
end

end

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 13 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

FFT Algorithm

Complexity of FFT Algorithm

In the radix-2 algorithm, there are log n levels of recursion
(depth), each of which involves Θ(n) arithmetic operations,
so total cost is Θ(n log n)

By contrast, straightforward evaluation of matrix-vector
product defining DFT requires Θ(n2) arithmetic operations.
Alternatively, setting the radix to be the square root of the
vector dimension at each step, yields 2

√
n FFTs of size√

n, O(log log n) levels of recursion with overall work,

Q(n) = 2
√
nQ(

√
n) +O(n) = O(n log n),

and due to the dependency among left and right FFTs,
depth D(n) = 2D(

√
n) + 1 = O(log n).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

FFT Algorithm

Computing Inverse DFT

Because of similar form of DFT and its inverse, FFT
algorithm can also be used to compute inverse DFT
efficiently

Ability to transform back and forth quickly between time
and frequency domains makes it practical to perform any
computations or analysis that may be required in
whichever domain is more convenient and efficient

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 15 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Binary Exchange Parallel FFT
Transpose Parallel FFT

Binary Exchange Parallel FFT

To obtain fine-grain decomposition of FFT, we assign input
data xk to task k, which also computes result yk

x0
x1
x2
x3
x4
x5
x6
x7

y0
y1
y2
y3
y4
y5
y6
y7

At stage m of algorithm, tasks k and j exchange data,
where k and j differ only in their mth bits

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 16 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Binary Exchange Parallel FFT
Transpose Parallel FFT

Binary Exchange Parallel FFT

There are n tasks and log n stages, so parallel time
required to compute FFT is

Tn = (γ + α+ β) log n

where γ is cost of multiply-add, and α+ β is cost of
exchanging one number between pair of tasks at each
stage

Hypercube is natural network for FFT algorithm

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 17 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Binary Exchange Parallel FFT
Transpose Parallel FFT

Binary Exchange Parallel FFT

To obtain smaller number of coarse-grain tasks,
agglomerate sets of n/p components of input and output
vectors x and y, where we assume p is also power of two

x0
x1
x2
x3
x4
x5
x6
x7

y0
y1
y2
y3
y4
y5
y6
y7

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 18 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Binary Exchange Parallel FFT
Transpose Parallel FFT

Binary Exchange Parallel FFT

Components having their log p most significant bits in
common are assigned to same task

Thus, exchanges are required in binary exchange
algorithm only for first log p stages, since data are local for
remaining log(n/p) stages

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Binary Exchange Parallel FFT
Transpose Parallel FFT

Binary Exchange Parallel FFT

Each stage involves updating of n/p components by each
task, and exchange of n/p components for each of first
log p stages

Thus, total time required using hypercube network is

Tp = α (log p) + β n (log p)/p+ γ n (log n)/p

To determine isoefficiency function, set

γ n log n ≈ E (αp log p+ β n log p+ γ n log n)

which holds if n = Θ(p), so isoefficiency function is
Θ(p log p), since T1 = Θ(n log n)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 20 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Binary Exchange Parallel FFT
Transpose Parallel FFT

Transpose Parallel FFT

Binary exchange algorithm has one phase that is
communication free and another phase that requires
communication at each stage

Another approach is to realign data so that both
computational phases are communication free, and only
communication is for data realignment phase between
computational phases

To accomplish this, data can be organized in
√
n×

√
n

array, as illustrated next for n = 16

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 21 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Binary Exchange Parallel FFT
Transpose Parallel FFT

Transpose Parallel FFT

2

6

10

14

0

4

8

1

5

9

13

3

7

11

15

2

6

10

14

0

4

8

12

1

5

9

13

3

7

11

1512

initial phase final phase
data 

realignment 
phase

transpose

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Binary Exchange Parallel FFT
Transpose Parallel FFT

Transpose Parallel FFT

If array is partitioned by columns, which are assigned to
p ≤

√
n tasks, then no communication is required for first

log(
√
n ) stages

Data are then transposed using all-to-all personalized
collective communication, so that each row of data array is
now stored in single task

Thus, final log(
√
n ) stages now require no communication

Overall performance of transpose algorithm depends on
particular implementation of all-to-all personalized
collective communication

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 23 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

Binary Exchange Parallel FFT
Transpose Parallel FFT

Transpose Parallel FFT

Taking into account the cost of an all-to-all,
O(α log p+ βn log(p)/p), transpose-based approach yields
total parallel time

Tp = Θ(α log p+ β n log(p)/p+ γ n log(n)/p)

This time is the same as for the binary exchange parallel
FFT, the only advantage being that all communication
happens at once (can be performed with a single collective
communication routine).

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 24 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

References

A. Averbuch and E. Gabber, Portable parallel FFT for
MIMD multiprocessors, Concurrency: Practice and
Experience 10:583-605, 1998

C. Calvin, Implementation of parallel FFT algorithms on
distributed memory machines with a minimum overhead of
communication, Parallel Computing 22:1255-1279, 1996

R. M. Chamberlain, Gray codes, fast Fourier transforms,
and hypercubes, Parallel Computing 6:225-233, 1988

E. Chu and A. George, FFT algorithms and their
adaptation to parallel processing, Linear Algebra Appl.
284:95-124, 1998

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 25 / 26



Convolution
Discrete Fourier Transform

Fast Fourier Transform
Parallel FFT

References
A. Edelman, Optimal matrix transposition and bit reversal
on hypercubes: all-to-all personalized communication,
J. Parallel Computing 11:328-331, 1991

A. Gupta and V. Kumar, The Scalability of FFT on Parallel
Computers, IEEE Trans. Parallel Distrib. Sys. 4:922-932,
1993

R. B. Pelz, Parallel FFTs, D. E. Keyes, A. Sameh, and
V. Venkatakrishnan, eds., Parallel Numerical Algorithms,
pp. 245-266, Kluwer, 1997

P. N. Swarztrauber, Multiprocessor FFTs, Parallel
Computing 5:197-210, 1987
J. W. Demmel, Applied Numerical Linear Algebra, SIAM
Philadelphia, 1997.

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 26 / 26


	Convolution
	Problem
	Toom-Cook Algorithm

	Discrete Fourier Transform
	Roots of Unity
	DFT
	Inverse DFT

	Fast Fourier Transform
	FFT Algorithm

	Parallel FFT
	Binary Exchange Parallel FFT
	Transpose Parallel FFT

	

