
Low Rank Approximation by SVD
Computing Low Rank Approximations

Randomness and Approximation
Hierarchical Low-Rank Structure

Parallel Numerical Algorithms
Chapter 6 – Matrix Models

Section 6.2 – Low Rank Approximation

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Edgar Solomonik Parallel Numerical Algorithms 1 / 36



Low Rank Approximation by SVD
Computing Low Rank Approximations

Randomness and Approximation
Hierarchical Low-Rank Structure

Outline

1 Low Rank Approximation by SVD
Truncated SVD
Fast Algorithms with Truncated SVD

2 Computing Low Rank Approximations
Direct Computation
Indirect Computation

3 Randomness and Approximation
Randomized Approximation Basics
Structured Randomized Factorization

4 Hierarchical Low-Rank Structure
HSS Matrix–Vector Multiplication
Parallel HSS Matrix–Vector Multiplication

Edgar Solomonik Parallel Numerical Algorithms 2 / 36



Low Rank Approximation by SVD
Computing Low Rank Approximations

Randomness and Approximation
Hierarchical Low-Rank Structure

Truncated SVD
Fast Algorithms with Truncated SVD

Rank-k Singular Value Decomposition (SVD)

For any matrix A ∈ Rm×n of rank k there exists a factorization

A = UDV T

U ∈ Rm×k is a matrix of orthonormal left singular vectors
D ∈ Rk×k is a nonnegative diagonal matrix of singular
values in decreasing order σ1 ≥ · · · ≥ σk

V ∈ Rn×k is a matrix of orthonormal right singular vectors
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Truncated SVD
Given A ∈ Rm×n seek its best k < rank(A) approximation

B = argmin
B∈Rm×n,rank(B)≤k

(||A−B||2)

Eckart-Young theorem: given SVD

A =
[
U1 U2

] [D1

D2

] [
V1 V2

]T ⇒ B = U1D1V
T
1

where D1 is k × k.
U1D1V

T
1 is the rank-k truncated SVD of A and

||A−U1D1V
T
1 ||2 = min

B∈Rm×n,rank(B)≤k
(||A−B||2) = σk+1
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Computational Cost

Given a rank k truncated SVD A ≈ UDV T of A ∈ Rm×n with
m ≥ n

Performing approximately y = Ax requires O(mk) work

y ≈ U(D(V Tx))

Solving Ax = b requires O(mk) work via approximation

x ≈ V D−1UTb
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Computing the Truncated SVD

Reduction to upper-Hessenberg form via two-sided orthogonal
updates can compute full SVD

Given full SVD can obtain truncated SVD by keeping only
largest singular value/vector pairs

Given set of transformations Q1, . . . ,Qs so that
U = Q1 · · ·Qs, can obtain leading k columns of U by
computing

U1 = Q1

(
· · ·
(
Qs

[
I
0

]))
This method requires O(mn2) work for the computation of
singular values and O(mnk) for k singular vectors
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Computing the Truncated SVD by Krylov Subspace
Methods

Seek k ≪ m,n leading right singular vectors of A

Find a basis for Krylov subspace of B = ATA

Rather than computing B, compute products
Bx = AT (Ax)

For instance, do k′ ≥ k +O(1) iterations of Lanczos and
compute k Ritz vectors to estimate singular vectors V

Left singular vectors can be obtained via AV = UD

This method requires O(mnk) work for k singular vectors

However, Θ(k) sparse-matrix-vector multiplications are
needed (high latency and low flop/byte ratio)
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Generic Low-Rank Factorizations
A matrix A ∈ Rm×n is rank k, if for someX ∈ Rm×k,Y ∈ Rn×k

with k ≤ min(m,n),
A = XY T

If A = XY T (exact low rank factorization), we can obtain
reduced SVD A = UDV T via

1 [U1,R] = QR(X)
2 [U2,D,V ] = SVD(RY T )
3 U = U1U2

with cost O(mk2) using an SVD of a k × k rather than
m× n matrix
If instead ||A−XY T ||2 ≤ ε then ||A−UDV T ||2 ≤ ε

So we can obtain a truncated SVD given an optimal
generic low-rank approximation
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Rank-Revealing QR
If A is of rank k and its first k columns are linearly independent

A = Q

R11 R12

0 0
0 0


where R11 is upper-triangular and k × k and Q = Y TY T with
n× k matrix Y

For arbitrary A we need column ordering permutation P

A = QRP

QR with column pivoting (due to Gene Golub) is an
effective method for this

pivot so that the leading column has largest 2-norm
method can break in the presence of roundoff error (see
Kahan matrix), but is very robust in practice
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Low Rank Factorization by QR with Column Pivoting

QR with column pivoting can be used to either

determine the (numerical) rank of A

compute a low-rank approximation with a bounded error
performs only O(mnk) rather than O(mn2) work for a full QR or
SVD
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Parallel QR with Column Pivoting

In distributed-memory, column pivoting poses further
challenges

Need at least one message to decide on each pivot
column, which leads to Ω(k) synchronizations

Existing work tries to pivot many columns at a time by
finding subsets of them that are sufficiently linearly
independent

Randomized approaches provide alternatives and flexibility
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Randomization Basics
Intuition: consider a random vector w of dimension n, all of the
following holds with high probability in exact arithmetic

Given any basis Q for the n dimensional space, random w
is not orthogonal to any row of QT

Let A = UDV T where V T ∈ Rn×k

Vector w is at random angle with respect to any row of V T ,
so z = V Tw is a random vector

Aw = UDz is random linear combination of cols of UD

Given k random vectors, i.e., random matrix W ∈ Rn×k

Columns of B = AW gives k random linear combinations
of columns of in UD

B has the same span as U !
Edgar Solomonik Parallel Numerical Algorithms 12 / 36



Low Rank Approximation by SVD
Computing Low Rank Approximations

Randomness and Approximation
Hierarchical Low-Rank Structure

Randomized Approximation Basics
Structured Randomized Factorization

Using the Basis to Compute a Factorization

If B has the same span as the range of A

[Q,R] = QR(B) gives orthogonal basis Q for B = AW

QQTA = QQTUDV T = (QQTU)DV T , now QTU is
orthogonal and so QQTU is a basis for the range of A

so compute H = QTA, H ∈ Rk×n and compute
[U1,D,V ] = SVD(H)

then compute U = QU1 and we have a rank k truncated
SVD of A

A = UDV T
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Cost of the Randomized Method

Matrix multiplications e.g. AW , all require O(mnk)
operations

QR and SVD require O((m+ n)k2) operations

If k ≪ min(m,n) the bulk of the computation here is within
matrix multiplication, which can be done with fewer
synchronizations and higher efficiency than QR with
column pivoting or Arnoldi
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Randomized Approximate Factorization
Now lets consider the case when A = UDV T +E where
D ∈ Rk×k and E is a small perturbation

E may be noise in data or numerical error

To obtain a basis for U it is insufficient to multiply by
random W ∈ Rn×k, due to influence of E

However, oversampling, for instance l = k + 10, and
random W ∈ Rn×l gives good results

A Gaussian random distribution provides particularly good
accuracy

So far the dimension of W has assumed knowledge of the
target approximate rank k, to determine it dynamically
generate vectors (columns of W ) one at a time or a block
at a time, which results in a provably accurate basis
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Cost Analysis of Randomized Low-rank Factorization

The cost of the randomized algorithm for is

TMM
p (m,n, k) + TQR

p (m, k, k)

which means that the work is O(mnk) and the algorithm is
well-parallelizable
This assumes we factorize the basis by QR and SVD of R
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Subsampled Random Fourier Transform
We can lower the number of operations needed by the
randomized algorithm by generating W so that AW can be
computed more rapidly

Generate W as a pseudo-random matrix

W = DFR

D is diagonal with random elements
F can be applied to a vector in O(n log(n)) operations

e.g. DFT or Hadamard matrix H2n =

[
Hn Hn

Hn −Hn

]
R is p ≈ k columns of the n× n identity matrix
Computes AW with O(mn log(n)) operations (if m > n)
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Cost of Pseudo-Randomized Factorization

Instead of matrix multiplication, apply m FFTs of dimension n

Each FFT is independent, so it suffices to perform a single
transpose

So we have the following overall cost

O

(
mn log(n)

p
· γ
)
+ T all−to−all

p (mn/p) + TQR
p (m, k, k)

assuming m > n

This is lower with respect to the unstructured/randomized
version, however, this idea does not extend well to the
case when A is sparse
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CountSketch

For sparse matrices, sampling algorithms are more efficient
then Gaussian or SRFT sketching

Sketching matrix W contains a single nonzero unit value
per column with random position and sign

Instead of solving Ax ∼= b, solve WAx̂ ∼= Wb

If A and or b are sparse, applying W has cost proportional
to the number of nonzeros

Similar error bounds can be proven in comparison to
Gaussian/SRFT, with some differences

Alternating sparse sketching strategies include leverage
score sampling
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Hierarchical Low Rank Structure
Consider two-way partitioning of vertices of a graph
The connectivity within each partition is given by a block
diagonal matrix [

A1

A2

]
If the graph is nicely separable there is little connectivity
between vertices in the two partitions
Consequently, it is often possible to approximate the
off-diagonal blocks by low-rank factorization[

A1 U1D1V
T
1

U2D2V
T
2 A2

]
Doing this recursively to A1 and A2 yields a matrix with
hierarchical low-rank structure
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HSS Matrix, Two Levels

Hierarchically semi-separable (HSS) matrix, space padded
around each matrix block, which are uniquely identified by
dimensions and color
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HSS Matrix, Three Levels
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HSS Matrix Formal Definition
The l-level HSS factorization is described by

Hl(A) =

{
{U ,V ,T12,T21,A11,A22} : l = 1

{U ,V ,T12,T21,Hl−1(A11),Hl−1(A22)} : l > 1

The low-rank representation of the diagonal blocks is given by
A21 = Ū2T21V̄

T
1 , A12 = Ū1T12V̄

T
2 where for a ∈ {1, 2},

Ūa = Ua(Hl(A)) =


Ua : l = 1[
U1(Hl−1(Aaa)) 0

0 U2(Hl−1(Aaa))

]
Ua : l > 1

V̄a = Va(Hl(A)) =


Va : l = 1[
V1(Hl−1(Aaa)) 0

0 V2(Hl−1(Aaa))

]
Va : l > 1
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HSS Matrix–Vector Multiplication

We now consider computing y = Ax

With H1(A) we would just compute
y1 = A11x1 +U1(T12(V

T
2 x2)) and

y2 = A22x2 +U2(T21(V
T
1 x1))

For general Hl(A) perform up-sweep and down-sweep

up-sweep computes w =

[
V̄ T
1 x1

V̄ T
2 x2

]
at every tree node

down-sweep computes a tree sum of
[
Ū1T12w2

Ū2T21w1

]
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HSS Matrix–Vector Multiplication, Up-Sweep

The up-sweep is performed by using the nested structure of V̄

w = W(Hl(A),x) =



[
V T
1 0

0 V T
2

]
x : l = 1[

V T
1 0

0 V T
2

][
W(Hl−1(A11),x1)

W(Hl−1(A22),x2)

]
: l > 1
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HSS Matrix–Vector Multiplication, Down-Sweep
Use w = W(Hl(A),x) from the root to the leaves to get

y = Ax =

[
U1T12w2

U2T21w1

]
+

[
A11x1

A22x2

]
=

[
Ū1 0
0 Ū2

] [
0 T12

T21 0

]
w+

[
A11 0
0 A22

]
x

using the nested structure of Ūa and v =

[
U1 0
0 U2

] [
0 T12

T21 0

]
w,

ya =

[
U1(Hl−1(Aaa)) 0

0 U2(Hl−1(Aaa))

]
va +Aaaxa for a ∈ {1, 2}

which gives the down-sweep recurrence

y = Ax+ z = Y(Hl(A),x,z) =



[
U1q1

U2q2

]
+

[
A11x1

A22x2

]
: l = 1[

Y(Hl−1(A11),x1,U1q1)

Y(Hl−1(A22),x2,U2q2)

]
: l > 1

where q =

[
0 T12

T21 0

]
w + z
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Prefix Sum as HSS Matrix–Vector Multiplication
We can express the n-element prefix sum y(i) =

∑i−1
j=1 x(j) as

y = Lx where L =

[
L11 0
L21 L22

]
=


0 0 · · · 0

1 0 · · ·
...

...
. . . . . .

...
1 · · · 1 0


L is an H-matrix since L21 = 1n1

T
n =

[
1 · · · 1

]T [
1 · · · 1

]
L also has rank-1 HSS structure, in particular

Hl(L) =


{
12,12,

[
0
]
,
[
1
]
,
[
0
]
,
[
0
]}

: l = 1{
14,14,

[
0
]
,
[
1
]
,Hl−1(L11),Hl−1(L22)

}
: l > 1

so each U ,V , Ū , V̄ is a vector of 1s, T12 =
[
0
]

and T21 =
[
1
]
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Cost of HSS Matrix–Vector Multiplication

The down-sweep and the up-sweep perform small dense
matrix–vector multiplications at each recursive step

Lets assume k is the dimension of the leaf blocks and the
rank at each level (number of columns in each Ua, Va)

The work for both the down-sweep and up-sweep is

Q(n, k) = 2Q(n/2, k) +O(k2 · γ), Q(k, k) = O(k2 · γ)
Q(n, k) = O(nk · γ)

The depth of the algorithm scales as D = Θ(log(n)) for
fixed k
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Parallel HSS Matrix–Vector Multiplication

If we assign each tree node to a single processor for the
first log2(p) levels, and execute a different leaf subtree with
a different processor

T1(n, k) = (nk · γ)
Tp(n, k) = Tp/2(n/2, k) +O(k2 · γ + k · β + α)

= O((nk/p+ k2 log(p)) · γ + k log(p) · β + log(p) · α)
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Synchronization-Efficient HSS Multiplication
The leaf subtrees can be computed independently

T leaf−subtrees
p (n, k) = O(nk/p · γ + k · β + α)

Consider up-sweep and down-sweep with log2(p) levels
Executing the root subtree sequentially takes time

T root−subtree
p (pk, k) = O(pk2 · γ + pk · β + α)

Instead have pr (r < 1) processors compute subtrees with
p1−r leaves, then recurse on the pr roots

T rec−tree
p (pk, k) = T rec−tree

pr (prk, k) +O(p1−rk2 · γ + p1−rk · β + α)

= O(p1−rk2 · γ + p1−rk · β + log1/r(log(p)) · α)
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HSS Multiplication by Multiple Vectors
Consider multiplication C = AB where A ∈ Rn×n is HSS and
B ∈ Rn×b

lets consider the case that p ≤ b ≪ n
if we assign each processor all of A, each can compute a
column of C simultaneously

this requires a prohibitive amount of memory usage
instead, perform leaf-level multiplications, processing n/p
rows of B with each processor (processor i computes row
c̄i of intermediate C̄)
transpose C̄ and apply log2(p) root levels of HSS tree to
columns of C̄ independently
this algorithm requires replication only of the root O(log(p))
levels of the HSS tree, O(pb) data
for large k or larger p different algorithms may be desirable
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Beyond the HSS Format
HSS matrices are one of a number of known formats that
leverage block low rank structure and/or
hierarchical/nested basis structure
H-matrices and H2-matrices consider low-rank
off-diagonal blocks with shared and nested basis structure,
and allow for more flexibility than HSS
The oct-tree and fast multipole methods also effectively
leverage the same type of low-rank structure, and will be
discussed in the chapter on particle methods
The butterfly decomposition expresses a matrix satisfying
a complementary low-rank property (every sub-block of the
matrix given by nα consecutive rows and n1−α columns
has rank O(1)) as a product of 2 log2(n) block sparse
matrices with O(n) nonzeros
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