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N-Body Problems

Many physical systems can be modeled as collection of
interacting particles

“Particles ” vary from atoms in molecule to planets in solar
system or stars in galaxy

Particles exert mutual forces on each other, such as
gravitational or electrostatic forces
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N-Body Model

Newton’s Second Law

F = ma

Force between particles at positions xi and xj

f(xi, xj)

Overall force on ith particle

F (xi) =

n∑
j=1

f(xi, xj)
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N-Body Simulation

System of ODEs

F (xi) = mi
d2xi
dt2

Verlet time-stepping scheme

xk+1
i = 2xki − xk−1

i + (∆t)2F (xki )/mi

For long time integration, symplectic integrators are
appropriate (preserve geometric properties, such as orbits)
Velocity Verlet scheme used in molecular dynamics to
preserve energy

O(n2) cost of evaluating force at each time step dominates
overall computational cost
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Molecular Dynamics

A molecular dynamics simulation performs the following
calculations at every timestep

1 Calculate non-bonded forces Fij for each pair (i, j) of
particles (atoms)

2 Integrate non-bonded forces fi =
∑

j Fij

3 Consider local bonded many-particle interactions and
update fi

4 Update acceleration ai = fi/mi and velocity vi using ai

5 Compute new particle position xi using vi and ai
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Van der Waals Forces
Short-range atomic interactions governed by electronic
coupling (Pauli exclusion principle)

Molecular bonds typically treated specially

Short-range ’non-bonded’ forces modelled by Van der
Waals (dipole) potential

These are based on approximations to the electronic
wavefunction

A simple formulation is the Lennard-Jones potential

FLJ(xi, xj) =
1

xi − xj

(
σ
(A)
ij

|xi − xj |12
−

σ
(B)
ij

|xi − xj |6

)
where σ

(A)
ij and σ

(B)
ij depend on the types of atoms

particles i and j are
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Electrostatic Forces

Electrostatic potentials describe Coulomb’s law for electric
fields due to charge

They decay slowly relative to Van Der Waals interactions

FEC(xi, xj) = (xi − xj)
qiqj

|xi − xj |3

where qi and qj are the charges of particles at xi and xj

Coulomb potential interactions are well-approximated
using fast solvers
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Particle Decomposition
The simplest way to parallelize MD is by particle decomposition

Fine-grained tasks are particles, each processor is
assigned n/p of them

Processors exchange particles in a ring, computing forces
from received particles to original n/p

Parallel execution time is

Tp(n) = O(pα+ nβ + (n2/p)γ)

Memory footprint is minimal Mp = Θ(n)

Can reduce latency cost by working with larger subsets of
particles
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Force Decomposition
Force decomposition achieves lower communication volume

Fine-grained tasks are forces, coarse-grained (aggregated)
tasks are square blocks of forces

Assignment/scheduling of aggregated tasks on processors
must control for memory usage

Each processor gets s× t block (st = n2/p, s ≤ t),
accumulates forces for s particles, by streaming in t in t/s
steps and reducing at the end

Memory footprint per processor is Mp = ps, time is

Tp(s, t) = O

(( t

s
+ log p

)
α+ tβ +

n2

p
γ

)
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Algorithms for All-pairs Force Calculation

1D – particle decomposition (c = 1, s = n/p, t = n)
2D – force decomposition (c =

√
p, s = n/

√
p, t = n/

√
p)

1.5D – memory-constrained force decomposition
(Mp = cn2, s = cn/p, t = n/c)
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Decay of Forces with Distance

Molecular dynamics is typically done without explicitly
computing all particle interactions

Van der Waals interactions decay very rapidly and can be
ignored for far-away particles

Electrostatic forces can be computed by fast solvers

Electrostatic potential obeys the Poisson equation

The gravitational potential (used for cosmological
simulation) is also Poisson

While pairwise interactions decay slowly, the aggregate
potential due to long-range forces will be a smooth function
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Cutoff Radius
For molecular dynamics, interactions decoupled as follows

Compute Van der Waals interactions of all particle pairs
(i, j) within distance |xi − xj | ≤ rc

Fit a 3D charge density grid to the particle charges

Solve the 3D Poisson equation on the grid via 3D FFT or
Multigrid to obtain potential at grid-points

Extrapolate potential from grid to compute electrostatic
forces on particles

Force is given by the spatial gradient of potential

B-splines provide a basis with compact spatial support and
easy computation of derivatives
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Spatial Decomposition
Domain is n1/3 × n1/3 × n1/3 box with uniform density

MD simulations are typically done inside ‘solute’ (water),
and have uniform density

Uniform density does not necessarily hold in other
domains, e.g. cosmological simulations

Fine-grained tasks are unit-volume boxes

Aggregated-tasks (boxes) are mapped to processors

Each processor can have subdomain of dimensions
(n/p)1/3 × (n/p)1/3 × (n/p)1/3

To compute forces onto all these particles, need all
particles within rc away from subdomain

Wp(n, rc) = O((rc + (n/p)1/3)3 − n/p) = O(r3c + rc(n/p)
2/3)
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Neutral Territory Methods

Spatial decomposition leverage locality of particles, neutral
territory methods directly exploit locality of forces

Allow interactions between particles owned by two different
processors to be computed on a third, in neutral territory
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3D Neutral Territory Methods

Diagrams taken from D. Shaw, “A Fast, Scalable Method for the Parallel
Evaluation of Distance-Limited Pairwise Particle Interactions”, 2005
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Minimal Import Regions
Assign each processor k is assigned a unique subvolume
Xk ×Yk ×Zk of dimensions bxy × bxy × bz such that b2xybz = n/p

Processor k computes interactions of particle pair (i, j) if

i and j have a z-coordinate in Zk and x, y-coordinates
within rc of some element in Xk, Yk, respectively

i and j have x, y-coordinates in Xk, Yk and a z−coordinate
within rc of some element in Zk

The volume of the region (amount of communication) is

Wp(n, rc, bxy, bz) = O(rcb
2
xy + rcbzbxy + r2cbz)

Minimizing the import region with respect to bxy and bz

Wp(rc) = O(rc(n/p)
2/3 +

√
r3cn/p)
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Smooth Particle Mesh Ewald (SPME)

Solve for long range interactions on a m×m×m charge grid

System assumed periodic, which is often valid in MD

Ewald summation is used to split the total potential energy

E =
1

2

∑
c∈Z3

n∑
i=1

n∑
j=1

qiqj

|xi − xj + cn1/3|
=

1

2

∑
c∈Z3

n∑
i=1

n∑
j=1

qiqj

r
(n)
ij

into two parts (the form here is slightly simplified)
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Ewald Summation

The first part is a dampened direct summation

Edir =
1

2

∑
c∈Z3

n∑
i=1

n∑
j=1

qiqj(1− erf(r(n)ij /(
√
2σ)))

r
(n)
ij

where erf(x) = 2
π

∫ x
0 e−t2dt is the Gaussian error function

The reciprocal term (second part) comes from solving a
smooth periodic Poisson equation induced by the
Gaussian terms, with exception of the base cell

Erec =
1

2

∑
c∈Z3,c ̸=(0,0,0)

n∑
i=1

n∑
j=1

qiqjerf(r(n)ij )

r
(n)
ij

A self-term correction is also required to account for the
effect of the Gaussian distribution on the base cell
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SPME Computational Structure
The forces on particles in SPME are obtained by equations that
are derivatives of the energy with respect to position

SPME with m×m×m grid calculates the reciprocal
portion as follows

B-splines interpolate charge from nearby region of particles

Tp(n,m) = O(α+ (n/p)2/3β + (m3/p)γ)

The grid convolution by 3D FFT for p ≤ m5/2 takes time

Tp(m) = O(log pα+ (m3/p)β + (m3 log(m)/p)γ)

Extrapolating potential from grid to particles

Tp(m) = O(log pα+ (m2/p2/3)β + (m3/p)γ)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 20 / 30



Particle Simulations
All-Pair Interactions

Distance-Limited Interactions

Spatial Decomposition
Neutral Territory Methods
Smooth Particle Mesh Ewald Method
Hierarchical Methods

Alternative Methods

Poisson equation on grid can theoretically be solved
fastest by multigrid

SPME can outperform multigrid in practice, achieving high
accuracy with a small grid

Advantage in part due to sensibility of periodicity condition

Particle simulations with unbalanced particle distributions
require different methods

The Barnes-Hut method and the Fast Multipole Method
(FMM) leverage hierarchical domain partitioning
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Tree Partitioning for N-Body Problems

Tree-based methods such as Barnes-Hut and FMM
replace a set of forces from far-away particles with a single
aggregate approximate force
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Barnes-Hut

Barnes-Hut simulations provide a hierarchical spatial
decomposition suitable for unbalanced distributions

Subdivide space recursively until cells contain O(k)
particles

in 1D, obtain binary tree

in 2D, obtain quad tree

in 3D, obtain oct tree

Compute a centered mass/charge for each tree node or r
terms of a Taylor series for higher accuracy

Calculate forces between far-away particles in far-away
cells, based on interaction with particle and a mass/charge
at a higher-level tree node
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Barnes-Hut

Diagram taken from course webpage of Mowry and Railing
(CMU)
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Fast Multipole Method (FMM)
FMM obtains linear complexity for integral equations

Derivations specific to equations, Greengard and Rokhlin
originally focused on 2D electrostatics

In Barnes-Hut leaves interact with tree nodes, in FMM, tree
nodes interact with O(1) other tree nodes

Each node has a multipole (inner) and Taylor (outer)
expansion consisting of O(log(1/ϵ)) terms for accuracy ϵ

Error is controlled by number of terms in expansion

A multipole expansion is a special type of Taylor expansion

Transformation operators are defined to ‘shift’ multipole
and Taylor expansions, and to convert between the two
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FMM Algorithm
The computation in FMM proceeds as follows

1 Perform interactions among particles in neighboring blocks

2 Upward pass – generate multipole expansion for every tree
node starting from leaves

3 Downward pass – generate local expansion for every tree
node starting from root

Structure and execution time model is analogous to HSS
matrices, but with some differences

1 All neighboring cells interact directly

2 Amount of work associated with each tree node may vary
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