CS 598 EVS: Tensor Computations

Tensor Computations

Edgar Solomonik

University of Illinois at Urbana-Champaign

Tensors

Tensors

A tensor is a collection of elements

- its dimensions define the size of the collection
- its order is the number of different dimensions
- specifying an index along each tensor mode defines an element of the tensor

A few examples of tensors are

- Order 0 tensors are scalars, e.g., $s \in \mathbb{R}$
- Order 1 tensors are vectors, e.g., $\boldsymbol{v} \in \mathbb{R}^{n}$
- Order 2 tensors are matrices, e.g., $\boldsymbol{A} \in \mathbb{R}^{m \times n}$
- An order 3 tensor with dimensions $s_{1} \times s_{2} \times s_{3}$ is denoted as $\boldsymbol{T} \in \mathbb{R}^{s_{1} \times s_{2} \times s_{3}}$ with elements $t_{i j k}$ for $i \in\left\{1, \ldots, s_{1}\right\}, j \in\left\{1, \ldots, s_{2}\right\}, k \in\left\{1, \ldots, s_{3}\right\}$

Applications of Tensors

Tensors provide a mathematical formalism for multidimensional data

- tensors arise naturally from discretization of equations with multiple variables
- data that can be tabulated according to multiple parameters is representible by a tensor
- numerical simulations with regular grids represent the solution as tensors (typically order 3) and apply discretized operators, which are structured tensors (of order 6 if the grid is 3D)
- higher-order tensors may arise from higher-order (many-body) interactions, such as in quantum chemistry
- tensor decompositions provide general techniques for approximations and analysis of such tensors

Reshaping Tensors

Its often helpful to use alternative views of the same collection of elements

- Folding a tensor yields a higher-order tensor with the same elements
- Unfolding a tensor yields a lower-order tensor with the same elements
- In linear algebra, we have the unfolding $v=\operatorname{vec}(\boldsymbol{A})$, which stacks the columns of $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ to produce $\boldsymbol{v} \in \mathbb{R}^{m n}$
- For a tensor $\mathcal{T} \in \mathbb{R}^{s_{1} \times s_{2} \times s_{3}}, \boldsymbol{v}=\operatorname{vec}(\mathcal{T})$ gives $\boldsymbol{v} \in \mathbb{R}^{s_{1} s_{2} s_{3}}$ with

$$
v_{i+(j-1) s_{1}+(k-1) s_{1} s_{2}}=t_{i j k}
$$

- A common set of unfoldings is given by matricizations of a tensor, e.g., for order 3,

$$
\boldsymbol{T}_{(1)} \in \mathbb{R}^{s_{1} \times s_{2} s_{3}}, \boldsymbol{T}_{(2)} \in \mathbb{R}^{s_{2} \times s_{1} s_{3}}, \text { and } \boldsymbol{T}_{(3)} \in \mathbb{R}^{s_{3} \times s_{1} s_{2}}
$$

Tensor Transposition

For tensors of order $\geqslant 3$, there is more than one way to transpose modes

- A tensor transposition is defined by a permutation p containing elements $\{1, \ldots, d\}$

$$
y_{i_{p_{1}}, \ldots, i_{p_{d}}}=x_{i_{1}, \ldots, i_{d}}
$$

- In this notation, a transposition \boldsymbol{A}^{T} of matrix \boldsymbol{A} is defined by $\boldsymbol{p}=[2,1]$ so that

$$
b_{i_{2} i_{1}}=a_{i_{1} i_{2}}
$$

- Tensor transposition is a convenient primitive for manipulating multidimensional arrays and mapping tensor computations to linear algebra
- When elementwise expressions are used in tensor algebra, indices are often carried through to avoid transpositions

Tensor Symmetry

We say a tensor is symmetric if $\forall j, k \in\{1, \ldots, d\}$

$$
t_{i_{1} \ldots i_{j} \ldots i_{k} \ldots i_{d}}=t_{i_{1} \ldots i_{k} \ldots i_{j} \ldots i_{d}}
$$

A tensor is antisymmetric (skew-symmetric) if $\forall j, k \in\{1, \ldots, d\}$

$$
t_{i_{1} \ldots i_{j} \ldots i_{k} \ldots i_{d}}=(-1) t_{i_{1} \ldots i_{k} \ldots i_{j} \ldots i_{d}}
$$

A tensor is partially-symmetric if such index interchanges are restricted to be within disjoint subsets of $\{1, \ldots, d\}$, e.g., if the subsets for $d=4$ and $\{1,2\}$ and $\{3,4\}$, then

$$
t_{i j k l}=t_{j i k l}=t_{j i l k}=t_{i j l k}
$$

Tensor Sparsity

We say a tensor \mathcal{T} is diagonal if for some \boldsymbol{v},

$$
t_{i_{1}, \ldots, i_{d}}=\left\{\begin{array}{ll}
v_{i_{1}} & : i_{1}=\cdots=i_{d} \\
0 & : \text { otherwise }
\end{array}=v_{i_{1}} \delta_{i_{1} i_{2}} \delta_{i_{2} i_{3}} \cdots \delta_{i_{d-1} i_{d}}\right.
$$

- In the literature, such tensors are sometimes also referred to as 'superdiagonal'
- Generalizes diagonal matrix
- A diagonal tensor is symmetric (and not antisymmetric)

If most of the tensor entries are zeros, the tensor is sparse

- Generalizes notion of sparse matrices
- Sparsity enables computational and memory savings
- We will consider data structures and algorithms for sparse tensor operations later in the course

Tensor Products and Kronecker Products

Tensor products can be defined with respect to maps $f: V_{f} \rightarrow W_{f}$ and $g: V_{g} \rightarrow W_{g}$

$$
h=f \times g \quad \Rightarrow \quad g:\left(V_{f} \times V_{g}\right) \rightarrow\left(W_{f} \times W_{g}\right), \quad h(x, y)=f(x) g(y)
$$

Tensors can be used to represent multilinear maps and have a corresponding definition for a tensor product

$$
\boldsymbol{T}=\boldsymbol{X} \times \boldsymbol{Y} \quad \Rightarrow \quad t_{i_{1}, \ldots, i_{m}, j_{1}, \ldots, j_{n}}=x_{i_{1}, \ldots, i_{m}} y_{j_{1}, \ldots, j_{n}}
$$

The Kronecker product between two matrices $\boldsymbol{A} \in \mathbb{R}^{m_{1} \times m_{2}}, \boldsymbol{B} \in \mathbb{R}^{n_{1} \times n_{2}}$

$$
\boldsymbol{C}=\boldsymbol{A} \otimes \boldsymbol{B} \quad \Rightarrow \quad c_{i_{2}+\left(i_{1}-1\right) n_{1}, j_{2}+\left(j_{1}-1\right) n_{2}}=a_{i_{1} j_{1}} b_{i_{2} j_{2}}
$$

corresponds to transposing and unfolding the tensor product

General Tensor Contractions

Given tensor \mathcal{U} of order $s+v$ and \mathcal{V} of order $v+t$, a tensor contraction summing over v modes can be written as

$$
w_{i_{1} \ldots i_{s} j_{1} \ldots j_{t}}=\sum_{k_{1} \ldots k_{v}} u_{i_{1} \ldots i_{s} k_{1} \ldots k_{v}} v_{k_{1} \ldots k_{v} j_{1} \ldots j_{t}}
$$

- This form omits 'Hadamard indices', i.e., indices that appear in both inputs and the output (as with pointwise product, Hadamard product, and batched mat-mul.)
- Other contractions can be mapped to this form after transposition

Unfolding the tensors reduces the tensor contraction to matrix multiplication

- Combine (unfold) consecutive indices in appropriate groups of size s, t, or v
- If all tensor modes are of dimension n, obtain matrix-matrix product $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$ where $\boldsymbol{C} \in \mathbb{R}^{n^{s} \times n^{t}}, \boldsymbol{A} \in \mathbb{R}^{n^{s} \times n^{v}}$, and $\boldsymbol{B} \in \mathbb{R}^{n^{v} \times n^{t}}$
- Assuming classical matrix multiplication, contraction requires n^{s+t+v} elementwise products and $n^{s+t+v}-n^{s+t}$ additions

Properties of Einsums

Given an elementwise expression containing a product of tensors, the operands commute

- For example $\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$, but

$$
\sum_{k} a_{i k} b_{k j}=\sum_{k} b_{k j} a_{i k}
$$

- Similarly with multiple terms, we can bring summations out and reorder as needed, e.g., for ABC

$$
\sum_{k} a_{i k}\left(\sum_{l} b_{k l} c_{l j}\right)=\sum_{k l} c_{l j} b_{k l} a_{i k}
$$

A contraction can be succinctly described by a tensor diagram

- Indices in contractions are only meaningful in so far as they are matched up
- A tensor diagram is defined by a graph with a vertex for each tensor and an edge/leg for each index/mode
- Indices that are not-summed are drawn by pointing the legs/edges into whitespace

Matrix-style Notation for Tensor Contractions

The tensor times matrix contraction along the m th mode of \mathcal{U} to produce \mathcal{V} is expressed as follows

$$
\mathcal{W}=\boldsymbol{U} \times_{m} \boldsymbol{V} \Rightarrow \boldsymbol{W}_{(m)}=\boldsymbol{V} \boldsymbol{U}_{(m)}
$$

- $\boldsymbol{W}_{(m)}$ and $\boldsymbol{U}_{(m)}$ are unfoldings where the mth mode is mapped to be an index into rows of the matrix
- To perform multiple tensor times matrix products, can write, e.g.,

$$
\mathcal{W}=\boldsymbol{U} \times_{1} \boldsymbol{X} \times_{2} \boldsymbol{Y} \times_{3} \boldsymbol{Z} \Rightarrow w_{i j k}=\sum_{p q r} u_{p q r} x_{i p} y_{j q} z_{k r}
$$

The Khatri-Rao product of two matrices $\boldsymbol{U} \in \mathbb{R}^{m \times k}$ and $\boldsymbol{V} \in \mathbb{R}^{n \times k}$ products $\boldsymbol{W} \in \mathbb{R}^{m n \times k}$ so that

$$
\boldsymbol{W}=\left[\begin{array}{lll}
\boldsymbol{u}_{1} \otimes \boldsymbol{v}_{1} & \cdots & \boldsymbol{u}_{k} \otimes \boldsymbol{v}_{k}
\end{array}\right]
$$

The Khatri-Rao product computes the einsum $\hat{w}_{i j k}=u_{i k} v_{j k}$ then unfolds $\hat{\mathcal{W}}$ so that $w_{i+(j-1) n, k}=\hat{w}_{i j k}$

Tensor Contractions

A tensor contraction multiplies elements of two tensors and computes partial sums to produce a third, in a fashion expressible by pairing up modes of different tensors, defining einsum (term stems from Einstein's summation convention)

tensor contraction	einsum	diagram
inner product	$w=\sum_{i} u_{i} v_{i}$	
outer product	$w_{i j}=u_{i} v_{i j}$	
pointwise product	$w_{i}=u_{i} v_{i}$	
Hadamard product	$w_{i j}=u_{i j} v_{i j}$	
matrix multiplication	$w_{i j}=\sum_{k} u_{i k} v_{k j}$	
batched mat.-mul.	$w_{i j l}=\sum_{k} u_{i k l} v_{k j l}$	
tensor times matrix	$w_{i l k}=\sum_{j} u_{i j k} v_{l j}$	

The terms 'contraction' and 'einsum' are also often used when more than two operands are involved

Identities with Kronecker and Khatri-Rao Products

- Matrix multiplication is distributive over the Kronecker product

$$
(\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{C} \otimes \boldsymbol{D})=\boldsymbol{A} \boldsymbol{C} \otimes \boldsymbol{B} \boldsymbol{D}
$$

we can derive this from the einsum expression

$$
\sum_{k l} a_{i k} b_{j l} c_{k p} d_{l q}=\left(\sum_{k} a_{i k} c_{k p}\right)\left(\sum_{l} b_{j l} d_{l q}\right)
$$

- For the Khatri-Rao product a similar distributive identity is

$$
(\boldsymbol{A} \odot \boldsymbol{B})^{T}(\boldsymbol{C} \odot \boldsymbol{D})=\boldsymbol{A}^{T} \boldsymbol{C} * \boldsymbol{B}^{T} \boldsymbol{D}
$$

where * denotes that Hadamard product, which holds since

$$
\sum_{k l} a_{k i} b_{l i} c_{k j} d_{l j}=\left(\sum_{k} a_{k i} c_{k j}\right)\left(\sum_{l} b_{l i} d_{l j}\right)
$$

CP Decomposition

- The canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition expresses an order d tensor in terms of d factor matrices
- For a tensor $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$, the CP decomposition is defined by matrices $\boldsymbol{U}, \boldsymbol{V}$, and \boldsymbol{W} such that

$$
t_{i j k}=\sum_{r=1}^{R} u_{i r} v_{j r} w_{k r}
$$

the columns of $\boldsymbol{U}, \boldsymbol{V}$, and \boldsymbol{W} are generally not orthonormal, but may be normalized, so that

$$
t_{i j k}=\sum_{r=1}^{R} \sigma_{r} u_{i r} v_{j r} w_{k r}
$$

where each $\sigma_{r} \geqslant 0$ and $\left\|\boldsymbol{u}_{r}\right\|_{2}=\left\|\boldsymbol{v}_{r}\right\|_{2}=\left\|\boldsymbol{w}_{r}\right\|_{2}=1$

- For an order N tensor, the decomposition generalizes as follows,

$$
t_{i_{1} \ldots i_{d}}=\sum_{r=1}^{R} \prod_{j=1}^{d} u_{i_{j} r}^{(j)}
$$

- Its rank is generally bounded by $R \leqslant n^{d-1}$

CP Decomposition Basics

- The CP decomposition is useful in a variety of contexts
- If an exact decomposition with $R \ll n^{d-1}$ is expected to exist
- If an approximate decomposition with $R \ll n^{d-1}$ is expected to exist
- If the factor matrices from an approximate decomposition with $R=O(1)$ are expected to contain information about the tensor data
- CP a widely used tool, appearing in many domains of science and data analysis
- Basic properties and methods
- Uniqueness (modulo normalization) is dependent on rank
- Finding the CP rank of a tensor or computing the CP decomposition is NP-hard (even with $R=1$)
- Typical rank of tensors (likely rank of a random tensor) is generally less than the maximal possible rank
- CP approximation as a nonlinear least squares (NLS) problem and NLS methods can be applied in a black-box fashion, but structure of decomposition motivates alternating least-squares (ALS) optimization

Alternating Least Squares Algorithm

- The standard approach for finding an approximate or exact CP decomposition of a tensor is the alternating least squares (ALS) algorithm
- Consider rank R decomposition of a tensor $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$ over \mathbb{R}
- A sweep takes as input $\llbracket \boldsymbol{U}^{(k)}, \boldsymbol{V}^{(k)}, \boldsymbol{W}^{(k)} \rrbracket$ solves 3 quadratic optimization problems to obtain $\llbracket \boldsymbol{U}^{(k+1)}, \boldsymbol{V}^{(k+1)}, \boldsymbol{W}^{(k+1)} \rrbracket$, updating each factor matrix in sequence, typically via the normal equations:

$$
\begin{gathered}
\left(\boldsymbol{V}^{(k)^{T}} \boldsymbol{V}^{(k)} * \boldsymbol{W}^{(k)^{T}} \boldsymbol{W}^{(k)}\right) \boldsymbol{U}^{(k+1)}=\boldsymbol{T}_{(1)}\left(\boldsymbol{V}^{(k)} \odot \boldsymbol{W}^{(k)}\right) \\
\left(\boldsymbol{U}^{(k+1)^{T}} \boldsymbol{U}^{(k+1)} * \boldsymbol{W}^{(k)^{T}} \boldsymbol{W}^{(k)}\right) \boldsymbol{V}^{(k+1)}=\boldsymbol{T}_{(2)}\left(\boldsymbol{U}^{(k+1)} \odot \boldsymbol{W}^{(k)}\right) \\
\left(\boldsymbol{U}^{(k+1)^{T}} \boldsymbol{U}^{(k+1)} * \boldsymbol{V}^{(k+1)^{T}} \boldsymbol{V}^{(k+1)}\right) \boldsymbol{W}^{(k+1)}=\boldsymbol{T}_{(3)}\left(\boldsymbol{U}^{(k+1)} \odot \boldsymbol{V}^{(k+1)}\right)
\end{gathered}
$$

- Residual decreases monotonically, since the subproblems in each subset of $n R$ variables are quadratic
- Forming the linear equations has cost $O\left(d n R^{2}\right)$ while forming the right-hand-sides requires an MTTKRP with cost $O\left(n^{d} R\right)$

Tucker Decomposition

- The Tucker decomposition expresses an order d tensor via a smaller order d core tensor and d factor matrices
- For a tensor $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$, the Tucker decomposition is defined by core tensor $\mathcal{Z} \in \mathbb{R}^{R_{1} \times R_{2} \times R_{3}}$ and factor matrices $\boldsymbol{U}, \boldsymbol{V}$, and \boldsymbol{W} with orthonormal columns, such that

$$
t_{i j k}=\sum_{p=1}^{R_{1}} \sum_{q=1}^{R_{2}} \sum_{r=1}^{R_{3}} z_{p q r} u_{i p} v_{j q} w_{k r}
$$

- For general tensor order, the Tucker decomposition is defined as

$$
t_{i_{1} \ldots i_{d}}=\sum_{r_{1}=1}^{R_{1}} \cdots \sum_{r_{d}=1}^{R_{d}} z_{r_{1} \ldots r_{d}} \prod_{j=1}^{d} u_{i_{j} r_{j}}^{(j)}
$$

which can also be expressed as

$$
\boldsymbol{T}=\mathcal{Z} \times_{1} \boldsymbol{U}^{(1)} \cdots \times_{d} \boldsymbol{U}^{(d)}
$$

- The Tucker ranks, (R_{1}, R_{2}, R_{3}) are each bounded by the respective tensor dimensions, in this case, $R_{1}, R_{2}, R_{3} \leqslant n$
- In relation to CP, Tucker is formed by taking all combinations of tensor products between columns of factor matrices, while CP takes only disjoint products

Tucker Decomposition Basics

- The Tucker decomposition is used in many of the same contexts as CP
- If an exact decomposition with each $R_{j}<n$ is expected to exist
- If an approximate decomposition with $R_{j}<n$ is expected to exist
- If the factor matrices from an approximate decomposition with $R=O(1)$ are expected to contain information about the tensor data
- Tucker is most often used for data compression and appears less often than CP in theoretical analysis
- Basic properties and methods
- The Tucker decomposition is not unique (can pass transformations between core tensor and factor matrices, which also permit their orthogonalization)
- Finding the best Tucker approximation is NP-hard (for $R=1, C P=$ Tucker)
- If an exact decomposition exists, it can be computed by high-order SVD (HOSVD), which performs d SVDs on unfoldings
- HOSVD obtains a good approximation with cost $O\left(n^{d+1}\right)$ (reducible to $O\left(n^{d} R\right)$ via randomized SVD or QR with column pivoting)
- Accuracy can be improved by iterative nonlinear optimization methods, such as high-order orthogonal iteration (HOOI)

Tensor Train Decomposition

- The tensor train decomposition expresses an order d tensor as a chain of products of order 2 or order 3 tensors
- For an order 4 tensor, we can express the tensor train decomposition as

$$
t_{i j k l}=\sum_{p, q, r} u_{i p} v_{p j q} w_{q k r} z_{r l}
$$

- More generally, the Tucker decomposition is defined as follows,

$$
t_{i_{1} \ldots i_{d}}=\sum_{r_{1}=1}^{R_{1}} \ldots \sum_{r_{d-1}=1}^{R_{d-1}} u_{i_{1} r_{1}}^{(1)}\left(\prod_{j=2}^{d-1} u_{r_{j-1} i_{j} r_{j}}^{(j)}\right) u_{r_{d-1} i_{d}}^{(d)}
$$

- In physics literature, it is known as a matrix product state (MPS), as we can write it in the form,

$$
t_{i_{1} \ldots i_{d}}=\left\langle\boldsymbol{u}_{i_{1}}^{(1)}, \boldsymbol{U}_{i_{2}}^{(2)} \cdots \boldsymbol{U}_{i_{d-1}}^{(d-1)} \boldsymbol{u}_{i_{d}}^{(d)}\right\rangle
$$

- For an equidimensional tensor, the ranks are bounded as $R_{j} \leqslant \min \left(n^{j}, n^{d-j}\right)$

Tensor Train Decomposition Basics

- Tensor train has applications in quantum simulation and in numerical PDEs
- Its useful whenever the tensor is low-rank or approximately low-rank, i.e., $R_{j} R_{j+1}<n^{d-1}$ for all $j<d-1$
- MPS (tensor train) and extensions are widely used to approximate quantum systems with $\Theta(d)$ particles/spins
- Often the MPS is optimized relative to an implicit operator (often of a similar form, referred to as the matrix product operator (MPO))
- Operators and solutions to some standard numerical PDEs admit tensor-train approximations that yield exponential compression
- Basic properties and methods
- The tensor train decomposition is not unique (can pass transformations, permitting orthogonalization into canonical forms)
- Approximation with tensor train is NP hard (for $R=1, C P=$ Tucker $=T T$)
- If an exact decomposition exists, it can be computed by tensor train SVD (TTSVD), which performs $d-1$ SVDs
- TTSVD can be done with the cost $O\left(n^{d+1}\right)$ or $O\left(n^{d} R\right)$ with faster low-rank SVD
- Iterative (alternating) optimization is generally used when optimizing tensor train relative to an implicit operator or to refine TTSVD

Summary of Tensor Decomposition Basics

We can compare the aforementioned decomposition for an order d tensor with all dimensions equal to n and all decomposition ranks equal to R

decomposition	CP	Tucker	tensor train
size	$d n R$	$d n R+R^{d}$	$2 n R+(d-2) n R^{2}$
uniqueness	if $R \leqslant(3 n-2) / 2$	no	no
orthogonalizability	none	partial	partial
exact decomposition	NP hard	$O\left(n^{d+1}\right)$	$O\left(n^{d+1}\right)$
approximation	NP hard	NP hard	NP hard
typical method	ALS	HOSVD	TT-ALS (implicit)

Sparse Tensor Formats

- The overhead of transposition, and non-standard nature of the arising sparse matrix products, motivates sparse data structures for tensors that are suitable for tensor contractions of interest
- Particularly important, especially for tensor decomposition, are MTTKRP (suffices to CP ALS) and TTMc (suffices for HOOI)
- TTM is also prevalent, but is a less attractive primitive in the sparse case than MTTKRP and TTMc, as these yield dense, low-order outputs, while the output of TTM can be sparse and larger than the starting tensor
- The compressed sparse fiber (CSF) format provides an effective representation for sparse tensors
- CSF can be visualized as a tree (diagram taken from original CSF paper, by Shaden Smith and George Karpis, IA ^3, 2015)
$\left[\begin{array}{cccc}\mathbf{i} & \mathbf{j} & \mathbf{k} & \mathbf{l} \\ \hline 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 1 & 3 \\ 1 & 2 & 2 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 3 \\ 2 & 2 & 2 & 2\end{array}\right]$

Operations in Compressed Format

- CSF permits efficient execution of important sparse tensor kernels
- Analogous to CSR format, which enables efficient implementation of the sparse matrix vector product
- where row[i] stores a list of column indices and nonzeros in the i th row of \boldsymbol{A}

```
for i in range(n):
    for (a_ij,j) in row[i]:
        y[i] += a_ij * x[j]
```

- In CSF format, a multilinear function evaluation $\boldsymbol{f}^{(\mathcal{T})}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{T}_{(1)}(\boldsymbol{x} \odot \boldsymbol{y})$ can be implemented as

```
for (i,T_i) in T_CSF:
    for (j,T_ij) in T_i:
        for (k,t_ijk) in T_ij:
            z[i] += t_ijk * x[j] * y[k]
```


MTTKRP in Compressed Format

- MTTKRP and CSF pose additional implementation opportunities and challenges
- MTTKRP $u_{i r}=\sum_{j, k} t_{i j k} v_{j r} w_{k r}$ can be implemented by adding a loop over r to our code for $\boldsymbol{f}^{(\mathcal{T})}$, but would then require $3 m r$ operations if m is the number of nonzeros in \mathcal{T}, can reduce to $2 m r$ by amortization

```
for (i,T_i) in T_CSF:
    for (j,T_ij) in T_i:
        for r in range(R):
        f_ij = 0
        for (k,t_ijk) in T_ij:
            f_ij += t_ijk * w[k,r]
        u[i,r] = f_ij * v[j,r]
```

- However, this amortization is harder (requires storage or iteration overheads) if the index i is a leaf node in the CSF tree
- Similar challenges in achieving good reuse and obtaining good arithmetic intensity arise in implementation of other kernels, such as TTMc

