
CS 598 EVS: Tensor Computations
Tensor Computations

Edgar Solomonik

University of Illinois at Urbana-Champaign

Tensors

Tensors

A tensor is a collection of elements

§ its dimensions define the size of the collection
§ its order is the number of different dimensions
§ specifying an index along each tensor mode defines

an element of the tensor

A few examples of tensors are
§ Order 0 tensors are scalars, e.g., s P R
§ Order 1 tensors are vectors, e.g., v P Rn

§ Order 2 tensors are matrices, e.g., A P Rmˆn

§ An order 3 tensor with dimensions s1 ˆ s2 ˆ s3 is denoted as T P Rs1ˆs2ˆs3

with elements tijk for i P t1, . . . , s1u, j P t1, . . . , s2u, k P t1, . . . , s3u

Applications of Tensors
Tensors provide a mathematical formalism for multidimensional data

§ tensors arise naturally from discretization of equations with multiple
variables

§ data that can be tabulated according to multiple parameters is representible
by a tensor

§ numerical simulations with regular grids represent the solution as tensors
(typically order 3) and apply discretized operators, which are structured
tensors (of order 6 if the grid is 3D)

§ higher-order tensors may arise from higher-order (many-body) interactions,
such as in quantum chemistry

§ tensor decompositions provide general techniques for approximations and
analysis of such tensors

Reshaping Tensors

Its often helpful to use alternative views of the same collection of elements
§ Folding a tensor yields a higher-order tensor with the same elements
§ Unfolding a tensor yields a lower-order tensor with the same elements
§ In linear algebra, we have the unfolding v “ vecpAq, which stacks the

columns of A P Rmˆn to produce v P Rmn

§ For a tensor T P Rs1ˆs2ˆs3 , v “ vecpT q gives v P Rs1s2s3 with

vi`pj´1qs1`pk´1qs1s2 “ tijk

§ A common set of unfoldings is given by matricizations of a tensor, e.g., for
order 3,

Tp1q P Rs1ˆs2s3 ,Tp2q P Rs2ˆs1s3 , and Tp3q P Rs3ˆs1s2

Tensor Transposition

For tensors of order ě 3, there is more than one way to transpose modes

§ A tensor transposition is defined by a permutation p containing elements
t1, . . . , du

yip1 ,...,ipd “ xi1,...,id

§ In this notation, a transposition AT of matrix A is defined by p “ r2, 1s so that

bi2i1 “ ai1i2

§ Tensor transposition is a convenient primitive for manipulating
multidimensional arrays and mapping tensor computations to linear algebra

§ When elementwise expressions are used in tensor algebra, indices are often
carried through to avoid transpositions

Tensor Symmetry
We say a tensor is symmetric if @j, k P t1, . . . , du

ti1...ij ...ik...id “ ti1...ik...ij ...id

A tensor is antisymmetric (skew-symmetric) if @j, k P t1, . . . , du

ti1...ij ...ik...id “ p´1qti1...ik...ij ...id

A tensor is partially-symmetric if such index interchanges are restricted to be
within disjoint subsets of t1, . . . , du, e.g., if the subsets for d “ 4 and t1, 2u and
t3, 4u, then

tijkl “ tjikl “ tjilk “ tijlk

Tensor Sparsity
We say a tensor T is diagonal if for some v,

ti1,...,id “

#

vi1 : i1 “ ¨ ¨ ¨ “ id

0 : otherwise
“ vi1δi1i2δi2i3 ¨ ¨ ¨ δid´1id

§ In the literature, such tensors are sometimes also referred to as
‘superdiagonal’

§ Generalizes diagonal matrix
§ A diagonal tensor is symmetric (and not antisymmetric)

If most of the tensor entries are zeros, the tensor is sparse
§ Generalizes notion of sparse matrices
§ Sparsity enables computational and memory savings
§ We will consider data structures and algorithms for sparse tensor operations

later in the course

Tensor Products and Kronecker Products
Tensor products can be defined with respect to maps f : Vf Ñ Wf and
g : Vg Ñ Wg

h “ f ˆ g ñ g : pVf ˆ Vgq Ñ pWf ˆ Wgq, hpx, yq “ fpxqgpyq

Tensors can be used to represent multilinear maps and have a corresponding
definition for a tensor product

T “ X ˆ Y ñ ti1,...,im,j1,...,jn “ xi1,...,imyj1,...,jn

The Kronecker product between two matrices A P Rm1ˆm2 , B P Rn1ˆn2

C “ A b B ñ ci2`pi1´1qn1,j2`pj1´1qn2
“ ai1j1bi2j2

corresponds to transposing and unfolding the tensor product

General Tensor Contractions
Given tensor U of order s ` v and V of order v ` t, a tensor contraction summing
over v modes can be written as

wi1...isj1...jt “
ÿ

k1...kv

ui1...isk1...kvvk1...kvj1...jt

§ This form omits ’Hadamard indices’, i.e., indices that appear in both inputs
and the output (as with pointwise product, Hadamard product, and batched
mat–mul.)

§ Other contractions can be mapped to this form after transposition
Unfolding the tensors reduces the tensor contraction to matrix multiplication

§ Combine (unfold) consecutive indices in appropriate groups of size s ,t, or v
§ If all tensor modes are of dimension n, obtain matrix–matrix product
C “ AB where C P Rnsˆnt , A P Rnsˆnv , and B P Rnvˆnt

§ Assuming classical matrix multiplication, contraction requires ns`t`v

elementwise products and ns`t`v ´ ns`t additions

Properties of Einsums
Given an elementwise expression containing a product of tensors, the operands
commute

§ For example AB ‰ BA, but
ÿ

k

aikbkj “
ÿ

k

bkjaik

§ Similarly with multiple terms, we can bring summations out and reorder as
needed, e.g., for ABC

ÿ

k

aikp
ÿ

l

bklcljq “
ÿ

kl

cljbklaik

A contraction can be succinctly described by a tensor diagram
§ Indices in contractions are only meaningful in so far as they are matched up
§ A tensor diagram is defined by a graph with a vertex for each tensor and an

edge/leg for each index/mode
§ Indices that are not-summed are drawn by pointing the legs/edges into

whitespace

Matrix-style Notation for Tensor Contractions
The tensor times matrix contraction along the mth mode of U to produce V is
expressed as follows

W “ U ˆm V ñ Wpmq “ V Upmq

§ Wpmq and Upmq are unfoldings where the mth mode is mapped to be an index
into rows of the matrix

§ To perform multiple tensor times matrix products, can write, e.g.,

W “ U ˆ1 X ˆ2 Y ˆ3 Z ñ wijk “
ÿ

pqr

upqrxipyjqzkr

The Khatri-Rao product of two matrices U P Rmˆk and V P Rnˆk products
W P Rmnˆk so that

W “
“

u1 b v1 ¨ ¨ ¨ uk b vk
‰

The Khatri-Rao product computes the einsum ŵijk “ uikvjk then unfolds Ŵ so
that wi`pj´1qn,k “ ŵijk

Tensor Contractions

A tensor contraction multiplies elements of two tensors and computes partial
sums to produce a third, in a fashion expressible by pairing up modes of different
tensors, defining einsum (term stems from Einstein’s summation convention)

tensor contraction einsum diagram
inner product w “

ř

i uivi
outer product wij “ uivij

pointwise product wi “ uivi
Hadamard product wij “ uijvij

matrix multiplication wij “
ř

k uikvkj
batched mat.-mul. wijl “

ř

k uiklvkjl
tensor times matrix wilk “

ř

j uijkvlj

The terms ‘contraction’ and ‘einsum’ are also often used when more than two
operands are involved

Identities with Kronecker and Khatri-Rao Products
§ Matrix multiplication is distributive over the Kronecker product

pA b BqpC b Dq “ AC b BD

we can derive this from the einsum expression
ÿ

kl

aikbjlckpdlq “

´

ÿ

k

aikckp

¯´

ÿ

l

bjldlq

¯

§ For the Khatri-Rao product a similar distributive identity is

pA d BqT pC d Dq “ ATC ˚ BTD

where ˚ denotes that Hadamard product, which holds since
ÿ

kl

akiblickjdlj “

´

ÿ

k

akickj

¯´

ÿ

l

blidlj

¯

CP Decomposition
§ The canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition

expresses an order d tensor in terms of d factor matrices
§ For a tensor T P Rnˆnˆn, the CP decomposition is defined by matrices U , V ,

and W such that

tijk “

R
ÿ

r“1

uirvjrwkr

the columns of U , V , and W are generally not orthonormal, but may be
normalized, so that

tijk “

R
ÿ

r“1

σruirvjrwkr

where each σr ě 0 and }ur}2 “ }vr}2 “ }wr}2 “ 1

§ For an order N tensor, the decomposition generalizes as follows,

ti1...id “

R
ÿ

r“1

d
ź

j“1

u
pjq

ijr

§ Its rank is generally bounded by R ď nd´1

CP Decomposition Basics
§ The CP decomposition is useful in a variety of contexts

§ If an exact decomposition with R ! nd´1 is expected to exist
§ If an approximate decomposition with R ! nd´1 is expected to exist
§ If the factor matrices from an approximate decomposition with R “ Op1q are

expected to contain information about the tensor data
§ CP a widely used tool, appearing in many domains of science and data analysis

§ Basic properties and methods
§ Uniqueness (modulo normalization) is dependent on rank
§ Finding the CP rank of a tensor or computing the CP decomposition is NP-hard

(even with R “ 1)
§ Typical rank of tensors (likely rank of a random tensor) is generally less than

the maximal possible rank
§ CP approximation as a nonlinear least squares (NLS) problem and NLS methods

can be applied in a black-box fashion, but structure of decomposition motivates
alternating least-squares (ALS) optimization

Alternating Least Squares Algorithm
§ The standard approach for finding an approximate or exact CP

decomposition of a tensor is the alternating least squares (ALS) algorithm
§ Consider rank R decomposition of a tensor T P Rnˆnˆn over R
§ A sweep takes as input rrU pkq,V pkq,W pkqss solves 3 quadratic optimization

problems to obtain rrU pk`1q,V pk`1q,W pk`1qss, updating each factor matrix in
sequence, typically via the normal equations:

pV pkqTV pkq ˚ W pkqTW pkqqU pk`1q “ Tp1qpV pkq d W pkqq

pU pk`1qTU pk`1q ˚ W pkqTW pkqqV pk`1q “ Tp2qpU pk`1q d W pkqq

pU pk`1qTU pk`1q ˚ V pk`1qTV pk`1qqW pk`1q “ Tp3qpU pk`1q d V pk`1qq

§ Residual decreases monotonically, since the subproblems in each subset of nR
variables are quadratic

§ Forming the linear equations has cost OpdnR2q while forming the
right-hand-sides requires an MTTKRP with cost OpndRq

Tucker Decomposition
§ The Tucker decomposition expresses an order d tensor via a smaller order d

core tensor and d factor matrices
§ For a tensor T P Rnˆnˆn, the Tucker decomposition is defined by core tensor

Z P RR1ˆR2ˆR3 and factor matrices U , V , and W with orthonormal columns,
such that

tijk “

R1
ÿ

p“1

R2
ÿ

q“1

R3
ÿ

r“1

zpqruipvjqwkr

§ For general tensor order, the Tucker decomposition is defined as

ti1...id “

R1
ÿ

r1“1

¨ ¨ ¨

Rd
ÿ

rd“1

zr1...rd

d
ź

j“1

u
pjq

ijrj

which can also be expressed as

T “ Z ˆ1 U
p1q ¨ ¨ ¨ ˆd U

pdq

§ The Tucker ranks, pR1, R2, R3q are each bounded by the respective tensor
dimensions, in this case, R1, R2, R3 ď n

§ In relation to CP, Tucker is formed by taking all combinations of tensor products
between columns of factor matrices, while CP takes only disjoint products

Tucker Decomposition Basics
§ The Tucker decomposition is used in many of the same contexts as CP

§ If an exact decomposition with each Rj ă n is expected to exist
§ If an approximate decomposition with Rj ă n is expected to exist
§ If the factor matrices from an approximate decomposition with R “ Op1q are

expected to contain information about the tensor data
§ Tucker is most often used for data compression and appears less often than CP

in theoretical analysis
§ Basic properties and methods

§ The Tucker decomposition is not unique (can pass transformations between
core tensor and factor matrices, which also permit their orthogonalization)

§ Finding the best Tucker approximation is NP-hard (for R “ 1, CP = Tucker)
§ If an exact decomposition exists, it can be computed by high-order SVD

(HOSVD), which performs d SVDs on unfoldings
§ HOSVD obtains a good approximation with cost Opnd`1q (reducible to OpndRq

via randomized SVD or QR with column pivoting)
§ Accuracy can be improved by iterative nonlinear optimization methods, such as

high-order orthogonal iteration (HOOI)

Tensor Train Decomposition
§ The tensor train decomposition expresses an order d tensor as a chain of

products of order 2 or order 3 tensors
§ For an order 4 tensor, we can express the tensor train decomposition as

tijkl “
ÿ

p,q,r

uipvpjqwqkrzrl

§ More generally, the Tucker decomposition is defined as follows,

ti1...id “

R1
ÿ

r1“1

¨ ¨ ¨

Rd´1
ÿ

rd´1“1

u
p1q

i1r1

ˆ d´1
ź

j“2

u
pjq

rj´1ijrj

˙

u
pdq

rd´1id

§ In physics literature, it is known as a matrix product state (MPS), as we can
write it in the form,

ti1...id “ xu
p1q

i1
,U

p2q

i2
¨ ¨ ¨U

pd´1q

id´1
u

pdq

id
y

§ For an equidimensional tensor, the ranks are bounded as Rj ď minpnj , nd´jq

Tensor Train Decomposition Basics
§ Tensor train has applications in quantum simulation and in numerical PDEs

§ Its useful whenever the tensor is low-rank or approximately low-rank, i.e.,
RjRj`1 ă nd´1 for all j ă d ´ 1

§ MPS (tensor train) and extensions are widely used to approximate quantum
systems with Θpdq particles/spins

§ Often the MPS is optimized relative to an implicit operator (often of a similar
form, referred to as the matrix product operator (MPO))

§ Operators and solutions to some standard numerical PDEs admit tensor-train
approximations that yield exponential compression

§ Basic properties and methods
§ The tensor train decomposition is not unique (can pass transformations,

permitting orthogonalization into canonical forms)
§ Approximation with tensor train is NP hard (for R “ 1, CP = Tucker = TT)
§ If an exact decomposition exists, it can be computed by tensor train SVD

(TTSVD), which performs d ´ 1 SVDs
§ TTSVD can be done with the cost Opnd`1q or OpndRq with faster low-rank SVD
§ Iterative (alternating) optimization is generally used when optimizing tensor

train relative to an implicit operator or to refine TTSVD

Summary of Tensor Decomposition Basics

We can compare the aforementioned decomposition for an order d tensor with all
dimensions equal to n and all decomposition ranks equal to R

decomposition CP Tucker tensor train
size dnR dnR ` Rd 2nR ` pd ´ 2qnR2

uniqueness if R ď p3n ´ 2q{2 no no
orthogonalizability none partial partial

exact decomposition NP hard Opnd`1q Opnd`1q

approximation NP hard NP hard NP hard
typical method ALS HOSVD TT-ALS (implicit)

Sparse Tensor Formats
§ The overhead of transposition, and non-standard nature of the arising

sparse matrix products, motivates sparse data structures for tensors that
are suitable for tensor contractions of interest

§ Particularly important, especially for tensor decomposition, are MTTKRP
(suffices to CP ALS) and TTMc (suffices for HOOI)

§ TTM is also prevalent, but is a less attractive primitive in the sparse case than
MTTKRP and TTMc, as these yield dense, low-order outputs, while the output of
TTM can be sparse and larger than the starting tensor

§ The compressed sparse fiber (CSF) format provides an effective
representation for sparse tensors

§ CSF can be visualized as a tree (diagram taken from original CSF paper, by
Shaden Smith and George Karpis, IAˆ3, 2015)

Operations in Compressed Format

§ CSF permits efficient execution of important sparse tensor kernels
§ Analogous to CSR format, which enables efficient implementation of the sparse

matrix vector product
§ where row[i] stores a list of column indices and nonzeros in the ith row of A

for i in range(n):
for (a_ij ,j) in row[i]:

y[i] += a_ij * x[j]

§ In CSF format, a multilinear function evaluation f pT qpx,yq “ Tp1qpx d yq can
be implemented as

for (i,T_i) in T_CSF:
for (j,T_ij) in T_i:

for (k,t_ijk) in T_ij:
z[i] += t_ijk * x[j] * y[k]

MTTKRP in Compressed Format
§ MTTKRP and CSF pose additional implementation opportunities and

challenges
§ MTTKRP uir “

ř

j,k tijkvjrwkr can be implemented by adding a loop over r to
our code for f pT q, but would then require 3mr operations if m is the number of
nonzeros in T , can reduce to 2mr by amortization

for (i,T_i) in T_CSF:
for (j,T_ij) in T_i:

for r in range(R):
f_ij = 0
for (k,t_ijk) in T_ij:

f_ij += t_ijk * w[k,r]
u[i,r] = f_ij * v[j,r]

§ However, this amortization is harder (requires storage or iteration overheads) if
the index i is a leaf node in the CSF tree

§ Similar challenges in achieving good reuse and obtaining good arithmetic
intensity arise in implementation of other kernels, such as TTMc

