scipy
is unused here, but is commonmatpllotlib.pyplot
is used for plotting%matplotlib inline
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
Here you will set up the problem for $$ u_t + c u_x = 0$$ with periodic BC on the interval [0,1]
c = 1.0
T = 1.0 / c # end time
dx will be the grid spacing in the $x$-direction
x will be the grid coordinates
xx will be really fine grid coordinates
nx = 82
x = np.linspace(0, 1, nx, endpoint=False)
dx = x[1] - x[0]
xx = np.linspace(0, 1, 1000, endpoint=False)
Now define an initial condition
def f(x):
u = np.zeros(x.shape)
u[np.intersect1d(np.where(x>0.4), np.where(x<0.6))] = 1.0
return u
plt.plot(x, f(x), lw=3, clip_on=False)
Now we need a time step. Let $$ \Delta t = \Delta x \frac{\lambda}{c}$$
So we need a parameter $\lambda$
What happens when $\lambda>1.0$?
When the `method` changes to FTCS, what is the impact of $\lambda$?
lmbda = 0.93
dt = dx * lmbda / c
nt = int(T/dt)
print('T = %g' % T)
print('tsteps = %d' % nt)
print(' dx = %g' % dx)
print(' dt = %g' % dt)
print('lambda = %g' % lmbda)
Now make an index list, called $J$, so that we can access $J+1$ and $J-1$ easily
J = np.arange(0, nx - 1) # all vertices
Jm1 = np.roll(J, 1)
Jp1 = np.roll(J, -1)
For ipython notebooks be sure to use clear_output. Alternatively, animation
from matplotlib
may be useful.
import time
from IPython.display import clear_output, display
method = 'FTBS'
plotit = True
u = f(x)
if plotit:
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111)
ax.set_title('u vs x')
for n in range(0, nt):
if method == 'FTBS':
u[J] = u[J] - lmbda * (u[J] - u[Jm1]) # FTBS
if method == 'FTFS':
u[J] = u[J] - lmbda * (u[Jp1] - u[J]) # FTFS
if method == 'FTCS':
u[J] = u[J] - lmbda * (1.0 / 2.0) * (u[Jp1] - u[Jm1]) # FTCS
uex = f((xx - c * (n+1) * dt) % 1.0)
if plotit:
ax.plot(xx, uex, 'r-', lw=3, clip_on=False)
ax.plot(x, u, '-', lw=3, clip_on=False)
clear_output(True)
display(fig)
ax.cla()
uex = f((x - c * (n+1) * dt) % 1.0)
error = u - uex
l2err = np.sqrt(dx * np.sum(error**2))
print(l2err)
5.5 % 1.0