Elliptic PDE: Radially Symmetric Singular Solution

Copyright (C) 2010-2020 Luke Olson
Copyright (C) 2020 Andreas Kloeckner

MIT License Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Poisson Problem:

Given open domain $\Omega \subset \mathbb{R}^2$

$$ -\nabla \cdot \nabla u = f(x)\quad \text{in}\, \Omega $$ $$ u = g(x)\quad \text{on}\, \partial\Omega $$ Let: $$ f(x) = \delta(x) $$
$\delta(x)$ is the Dirac delta function. This problem describes a unit charge at the origin.


Potential due to point charge: $$ u(x,y) = -\frac{1}{2\pi}\ln(r) $$

$r = \sqrt{x^2+y^2}$, the distance to the origin.
In [18]:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import math

import sympy as sym

Set up Grid

In [19]:
X = np.arange(-10, 10, 0.2)
Y = np.arange(-10, 10, 0.2)
X, Y = np.meshgrid(X, Y)


In [20]:
r = np.sqrt(X**2 + Y**2)
Z = -np.log(r)/(2*math.pi)

Check Symbolically

In [21]:
sx = sym.Symbol("x")
sy = sym.Symbol("y")
sr = sym.sqrt(sx**2 + sy**2)
ssol = sym.log(sr)

sym.simplify(sym.diff(ssol, sx, 2) + sym.diff(ssol, sy, 2))
$\displaystyle 0$


In [23]:
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
#ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,
#                       linewidth=0, antialiased=False)
ax.plot_wireframe(X, Y, Z, linewidth=0.2)
#ax.set_zlim(-1.0, 1.0)
<mpl_toolkits.mplot3d.art3d.Line3DCollection at 0x7f8af6335dd0>

Given $C\log(r)$ as the free-space Green's function, can we construct the solution to the PDE with a more general $f$?