

- In person next week (hopefully?) - 3025 CIF - discussion invites - HVI

Examples: Order, Linearity?

$$(xu^{2})u_{xx} + (u_{x} + y)u_{yy} + u_{x}^{3} + yu_{y} = f$$

$$(xu^{2})u_{xx} + (u_{x} + y)u_{yy} + u_{x}^{3} + yu_{y} = f$$

$$(xu^{2})u_{xx} + (u_{x} + y)u_{yy} + u_{x}^{3} + yu_{y} = f$$

$$(x + y + z)u_x + (z^2)u_y + (\sin x)u_z = f$$

Function Spaces: Examples
Name some function spaces with their norms.

$$\begin{array}{c}
\mathcal{C}^{0}(\mathcal{D}) : \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal{D}) : \quad k - times \quad continuous \\
\mathcal{C}^{0}(\mathcal$$

Solving PDEs

Closed-form solutions:

 If separation of variables applies to the domain: good luck with your ODE

 $\alpha(f, \kappa) = (J(\kappa), V(I))$

20

▶ If not: Good luck! \rightarrow Numerics

General Idea (that we will follow some of the time)

- ▶ Pick $V_h \subseteq V$ finite-dimensional
 - h is often a mesh spacing
- Approximate u through $u_h \in V_h$
- Show: $u_h \rightarrow u$ (in some sense) as $h \rightarrow 0$

Example

About grand big unifying theories

Is there a grand big unifying theory of PDEs?

Collect some stamps

 $a(x, y)u_{xx}+2b(x, y)u_{xy}+c(x, y)u_{yy}+d(x, y)u_x+e(x, y)u_y+f(x, y)u=g(x, y)u_{yy}+d(x, y)u_x+e(x, y)u_y+d(x, y)u_$

Discriminant value	Kind	Example
$b^{2} - ac < 0$	Elliptic	Laplace $u_{xx} + u_{yy} = 0$
$b^2 - ac = 0$	Parabolic	Heat $u_t = u_{xx}$
$b^2 - ac > 0$	Hyperbolic	Wave $u_{tt} = u_{xx}$

Where do these names come from?

PDE Classification in Other Cases

Scalar first order PDEs?

First order systems of PDEs?

Classification in higher dimensions

$$Lu := \sum_{i=1}^{d} \sum_{j=1}^{d} a_{i,j}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \text{lower order terms}$$

Consider the matrix $A(x) = (a_{ij}(x))_{i,j}$. May assume A symmetric. Why?

What cases can arise for the eigenvalues?

$$\triangle u = \sum_{i=1}^{a} \frac{\partial^2 u}{\partial x_i^2} = \nabla \cdot \nabla u(x) \stackrel{\text{2D}}{=} u_{xx} + u_{yy} = f(x) \quad (x \in \Omega)$$

Called Laplace equation if f = 0. With Dirichlet boundary condition

$$u(x) = g(x)$$
 $(x \in \partial \Omega).$

Demo: Elliptic PDE Illustrating the Maximum Principle [cleared]

Elliptic PDEs: Justifying the Singular Solution

$$u(x) = (G * f)(x) = \int_{\mathbb{R}^{d}} G(x - y)f(y)dy$$

Why?

$$\int G(x - y) \int G(x - y) \int (y) dy$$

$$= \int A G(x - y) \int (y) dy$$

$$= \int A G(x - y) \int (y) dy$$

$$= \int (x - y) \int (y) dy$$

$$= \int (x - y) \int (y) dy$$

55.

Parabolic PDE: Heat Equation · Separation of Variables $\begin{array}{cccc} (op. & M_{xx} + M_{yy} = 0 & L_{x} & u_t = u_{xx} & f((x,t) \in [0,1] \times [0,T]) \\ W_{\text{ove}} & u_{\text{t}} = c_{\text{t},\text{t},\text{t}} & u(x,0) = g(x) & (x \in [0,1]) \\ & u(0,t) = u(1,t) = 0 & (t \in [0,T]) \end{array}$ u(x,f)=v(f). w(x) Plug into POE: v'(t)·w (x) = v(d)·w" (x) $\frac{V(f)}{V(F)} = C = \frac{w''(X)}{w(X)}$ $v'(4) - (\cdot v(1))$ $\omega''(x) = C \cdot \omega(x)$ $W(X) = \kappa \cdot \sin(m\pi x)$ V(d)-exp(-m2 r2t) ~> (=~ m2 F2

Demo: Parabolic PDE [cleared] What can we learn from analytic and numerical solution?

Hyperbolic PDE: Wave Equation

$$egin{aligned} & u_{tt}=c^2u_{xx} & \quad ((x,t)\in\mathbb{R} imes[0,T])\ & u(x,0)=g(x) & \quad (x\in\mathbb{R}) \end{aligned}$$

with $g(x) = \sin(\pi x)$.

Is this problem well-posed?

Can be rewritten in conservation law form: