Anyoncements

- In perison next week (hopeiully?)

$$
-3025 \text { CIF }
$$

- discussion invites
- HWI

Examples: Order, Linearity?

$$
\left(x u^{2}\right) u_{x x}+\left(u_{x}+y\right) u_{y y}+u_{x}^{3}+y u_{y}=f
$$

quasilírear, Ind over

$$
(x+y+z) u_{x}+\left(z^{2}\right) u_{y}+(\sin x) u_{z}=f
$$

sem.linew list order

Properties of Domains

$$
\begin{aligned}
& u\left(t^{?}, x\right) \quad x \in \Omega \mathbb{R}^{4} \\
& t \in(0, T]
\end{aligned}
$$

Function Spaces: Examples
\longrightarrow vector
Name some function spaces with their norms.
$c^{\circ}(\Omega)$: continuous
$c^{k}(\Omega)$: k - limes contincionaly differabible

$$
C 0, \alpha(\Omega):\|f\|_{\alpha}=\|f\|_{\substack{\infty}}^{\substack{\text { max } \\ x \rightarrow s}} \frac{\|f(x)-f(y)\|}{h_{x} x-y \|}
$$

$C_{L}(\Omega)$: "Lipsohith carr max abs value $\left.h f(x)-f \|_{b}\right) \| \leq(\| x-y h$

May also influence existence/uniqueness of solutions! weals doriatice

Solving PDEs
Closed-form solutions:

If separation of variables applies to the domain: good luck with your ODE

- If not: Good luck! \rightarrow Numerics

General Idea (that we will follow some of the time)

- Pick $V_{h} \subseteq \underline{V}$ finite-dimensional
h is often a mesh spacing
- Approximate u through $u_{h} \in V_{h}$
- Show: $u_{h} \rightarrow u$ (in some sense) as $h \rightarrow 0$

Example

About grand big unifying theorie's

Is there a grand big unifying theory of PDEs?

Collect some stamps
20 second-ordw liner

$$
a(x, y) u_{x x}+2 b(x, y) u_{x y}+c(x, y) u_{y y}+d(x, y) u_{x}+e(x, y) u_{y}+f(x, y) u=g(x, y)
$$

Discriminant value	Kind	Example
$b^{2}-a c<0$	Elliptic	Laplace $u_{x x}+u_{y y}=0$
$b^{2}-a c=0$	Parabolic	Heat $u_{t}=u_{x x}$
$b^{2}-a c>0$	Hyperbolic	Wave $u_{t t}=u_{x x}$

Where do these names come from?
scorch for characteristic cures
\rightarrow see lecture notes by Hogg

PDE Classification in Other Cases

Scalar first order PDEs?
Hyperbolic
First order systems of PDEs?
all types (ell, par, hop) are possible, see Hogg for classification

Classification in higher dimensions
$\mathbb{W C h}^{\text {h }} \quad L u:=\sum_{i=1}^{d} \sum_{j=1}^{d} a_{i, j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+$ lower order terms
Consider the matrix $A(x)=\left(a_{i j}(x)\right)_{i, j}$. May assume A symmetric. Why?
Schwar $\imath^{\prime} s$ theorem
What cases can arise for the eigenvalues?

Elliptic PDE: Laplace/Poisson Equation

$$
\triangle u=\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}=\nabla \cdot \nabla u(x) \stackrel{2 \mathrm{D}}{=} u_{x x}+u_{y y}=f(x) \quad(x \in \Omega)
$$

Called Laplace equation if $f=0$. With Dirichlet boundary condition

$$
u(x)=g(x) \quad(x \in \partial \Omega)
$$

Demo: Elliptic PDE Illustrating the Maximum Principle [cleared]

$$
\begin{aligned}
& \partial_{y} u=g \quad\left(\text { Newman }{ }^{n}\right) \\
& \alpha u \times \beta_{n} n=g\left({ }^{n} \text { Robin" }^{n}\right)
\end{aligned}
$$

Elliptic PDEs: Singular Solution

$$
\mathscr{L}_{n}-\Delta_{n}=
$$

Fandananal

$$
\mathscr{E} n=\Delta n-\delta
$$

Demo: Elliptic PDE Radially Symmetric Singular Solution [cleared]
Given $G(x)=C \log (|x|)$ as the free-space Green's function, can we construct the solution to the PDE with a more general f ? $\rightarrow \Delta u=f$

$$
u_{\Delta u^{\prime} f}(x)=(O * f)(x)=\int_{R^{2}} C(x-y) f(y) d y
$$

What can we learn from this?

Elliptic PDEs: Justifying the Singular Solution

$$
u(x)=(G * f)(x)=\int_{\mathbb{R}^{d}} G(x-y) f(y) d y
$$

$$
\begin{aligned}
\text { Why? } & \Delta G(x . \\
& \quad \begin{aligned}
\Delta n(x) & =\Delta \int(x-y) f(y) d y \\
& =\int \Delta G(x-y) f(y) d y \\
& =\int \delta(x-y) f(y) d y=f(x) \\
&
\end{aligned}
\end{aligned}
$$

Parabolic PDE: Heat Equation • Separation of Variables
Cup. $\quad u_{x x}+u_{y y}=0 L_{\rightarrow} u_{t}=u_{x x} \quad\{(x, t) \in[0,1] \times[0, T])$
Wave $u_{t t}=u_{x x} \quad u(x, 0)=g(x) \quad(x \in[0,1])$

$$
\frac{u(0, t)=u(1, t)=0 \quad(t \in[0, T])}{u(X, H)=v(f) \cdot w(X)}
$$

Plug into POEE: $\quad v^{\prime}(H) \cdot w(x)=v(f) \cdot w^{\prime \prime}(x)$

$$
\begin{array}{c|}
\frac{v^{\prime}(t)}{v(t)}=C=\frac{\omega^{\prime \prime}(x)}{w(x)} \\
v^{\prime}(f)-C \cdot v(f) \\
v(d)=\exp \left(-m^{2} \hbar^{2} t\right)
\end{array} \begin{aligned}
& w^{\prime \prime}(x)=C \cdot \omega(x) \\
& \omega(x)=\alpha \cdot \sin (m \pi x) \\
& \rightarrow C=-m^{2} n^{2}
\end{aligned}
$$

Parabolic PDE: Solution Behavior

Demo: Parabolic PDE [cleared] What can we learn from analytic and numerical solution?

- "washes our" the solution
- fund. solution $1 \sim \Delta \rightarrow$ \qquad

Hyperbolic PDE: Wave Equation

$$
\begin{array}{rlrl}
u_{t t} & =c^{2} u_{x x} \quad & ((x, t) \in \mathbb{R} \times[0, T]) \\
u(x, 0) & =g(x) & & (x \in \mathbb{R})
\end{array}
$$

with $g(x)=\sin (\pi x)$.
Is this problem well-posed?

Can be rewritten in conservation law form:

